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Abstract
Cosolvent-free (solventless) acid-catalyzed partial hydrolysis of tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS)
followed by neutralization with imidazole (pKa= 7.0) was employed to form macroporous silica gels via polycondensation-
induced phase separation and concurrent gelation. The reactions of TEOS at 20 °C and subsequent drying in air yielded
crack-free opaque macroporous xerogels. In contrast, cooling was necessary to derive opaque gels from TMOS, and the
resulting xerogels obtained by reactions at 5 °C broke into pieces during drying due to the too small size of the pores. A
macroporous silica xerogel prepared from 50 mmol (10.4 g) of TEOS was dried within 30 h in air, and subsequent sintering
in a helium atmosphere at 1300 °C yielded a monolithic silica glass. The yield of silica glasses was higher than 99%.

Graphical Abstract
Photographs of two opaque macroporous xerogels prepared by cosolvent-free acid-catalyzed partial hydrolysis of TEOS
followed by neutralization-induced gelation in parallel with phase separation, and silica glasses derived from these gels. The
amount of TEOS used was 50 mmol for the gel and glass in the left column, and 100 mmol for those in the center and right
columns.
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Highlights
● Formation of monolithic macroporous silica gels was examined by a cosolvent-free (solventless) sol–gel method using

tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS) as silicon sources.
● Acid-catalyzed partial hydrolysis of TEOS and subsequent neutralization with imidazole (pKa= 7.0) at 20 °C caused

gelation accompanied by phase separation and formed opaque macroporous silica gels, which were easily dried in air
without fracture and sintered into monolithic silica glasses with high yields exceeding 99%.

● Cooling was necessary to form opaque gels from TMOS, whereas the resulting xerogels were fractured because of the
too small size of the pores.

1 Introduction

The sol–gel synthesis of silica glasses has been studied over
several decades to form silica glasses at relatively low
temperatures without melting [1–7]. However, the proces-
sing of monolithic gels and glasses is often difficult because
of fracture during the drying of wet gels, originating from
capillary force at air–liquid interfaces and the resulting
uneven shrinkage [8]. This fracture problem can be avoided
by supercritical drying [8, 9] or the incorporation of parti-
culate silica fillers [10–12]. Other approaches include the
reduction of capillary force by increasing pore size
[3, 4, 13–16] and incorporating drying control chemical
additives (e.g., formamide [17] and N,N-dimethylforma-
mide [18, 19]) that reduce the surface tension of solvents.
Capillary force in macropores is small and the drying of
macroporous gels is relatively easy. Sol–gel processes
accompanied by phase separation are useful in obtaining
macroporous silica gels; when silica oligomers and solvent
mixture are repulsive, the growth of silica oligomers and
simultaneous decrease in mixing entropy lead to
polycondensation-induced phase separation [20, 21].
Additives such as strong acids [22, 23], organic polymers
[24, 25], and polar solvents (e.g., formamide [26]) have
been used to promote phase separation. Similar phenom-
enon also occurs in acid-catalyzed mixtures of methyl-
trimethoxysilane and water because hydrophobic silica
oligomers modified by nonhydrolyzable methyl groups are
formed in hydrophilic mixture of water and methanol [27].
Silica monoliths have been prepared from mixtures of tet-
raalkoxysilane and water without using cosolvent (parent
alcohol of the relevant tetraalkoxysilane), organic solvents,
and other additives [28, 29], whereas the preparation of
macroporous silica gels from such precursor solutions was
unexplored.

Our aim was to form macroporous silica gels from
mixtures of a tetraalkoxysilane and water without using
other additives than acid and base catalysts. At pH ≃ 7,
hydrolysis is expected to be the slowest but poly-
condensation is fast [30]. The partial hydrolysis of a tetra-
alkoxysilane at small water to alkoxide molar ratios (≲2)
readily yields solutions containing silica oligomers with
hydrophobic unreacted alkoxy groups [31]. When such a

solution is mixed with water and quickly neutralized to
suppress the hydrolysis of the residual alkoxy groups,
hydrophobic silica oligomers may be precipitated from
water-rich hydrophilic solvent mixture.

We found that this approach works well for preparing
macroporous silica gels with tetraethoxysilane (TEOS) [32–
34]. Its notable difference from conventional two-step acid-
base hydrolysis [35, 36] is that solutions are neutralized not
by a strong base like ammonia, but by a weak Brønsted base
with pKa ≃ 7, such as an acetate salt (pKa= 4.8) [32, 33],
imidazole (pKa= 7.0) [34], and ethylenediamine (pKa1=
9.9, pKa2= 7.1) [34]. The resulting weak Brønsted base
buffer stabilizes pH in the neutral pH range and improves
the reproducibility of macroporous morphology. The mac-
roporous silica gels prepared by this method have been
utilized as the precursors of various types of rare-earth-
doped silica glasses [37–39]. The resulting transparent
glass-ceramics containing the nanocrystals of (Gd,Pr)PO4

[40] and (Tb,Ce)PO4 [41] exhibit bright ultraviolet and
green photoluminescences, respectively, with internal
quantum efficiencies close to unity. However, it is unclear if
this strategy also operates in alkoxides other than TEOS.

The purpose of this study was to examine the cosolvent-free
(solventless) synthesis of macroporous silica gels using two
common tetraalkoxysilanes, TEOS and tetramethoxysilane
(TMOS), and investigate the similarity and difference.

2 Experimental procedure

In this study imidazole [34] was selected as the base for
neutralization. Dilute nitric acid was added to TMOS or
TEOS at an alkoxide: H2O:HNO3 molar ratio of 1:x1:0.002
(first mixing), and the mixture (solution 1) was stirred at 5
or 20 °C for 60 min in a sealed container to form a clear
solution. An aqueous solution of imidazole prepared at an
H2O: imidazole molar ratio of x2:0.005 (solution 2) was
then added (second mixing). The imidazole to HNO3 molar
ratio in this study was set at 2.5, which was close to the
typical base to acid molar ratio (2) to form a buffer solution.
The resulting solution with an overall alkoxide: H2O:
HNO3:imidazole molar ratio of 1:(x1+ x2):0.002:0.005,
where x1+ x2 was maintained at 10, was stirred for 1 min
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and then left to stand at the same temperature. Gelation time
(tg) was defined as the time from the second mixing until the
loss of macroscopic fluidity. The beginning and ending
times of phase separation (tpsb and tpse, respectively) were
similarly defined as the times of the appearance of turbidity
and complete loss of transparency, respectively. Wet gels
were aged at 60 °C for 24 h in sealed containers. After the
disposal of the solvent phase, they were dried at 60 or
80 °C. The morphology of xerogels was observed by a
scanning electron microscope (SEM, Phenom Pro, Thermo
Fisher Scientific). Several xerogels were sintered in a tube
furnace heated at a rate of 200 °C h−1 and maintained at the
target temperature. The sintering atmosphere was changed
from air to helium at ~600 °C.

3 Results

Solutions 1 became clear in ~40–50 min at 20 °C in the
TEOS system and in ~1 min at 5 °C in the TMOS system.
The TEOS-based gels were prepared at 20 °C. In contrast,
the TMOS-based solutions were reacted at 5 °C because
their gelation was very fast (tg < 1 min) at 20 °C. After the
second mixing, clear solutions were once obtained at x1 ≥
1.8 in the TEOS system and x1 ≥ 1.25 in the TMOS system,
whereas their fluidity and clarity were gradually lost by
gelation and concurrent macroscopic phase separation.

Figure 1 shows photograph of xerogels prepared from
25 mmol of alkoxide and gently dried at 60 °C for
~5–6 days. Opaque xerogels were formed from TEOS at x1
= 1.80 and 1.90, and from TMOS at x1= 1.25. Translucent
xerogels were obtained at larger x1. The size of xerogels
decreased with an increase in x1. All translucent gels were
fractured during drying. Opaque xerogels prepared from
TEOS were crack-free, whereas cracking occurred during
aging in the opaque wet gel derived from TMOS.

Figure 2 shows tg, tpsb, and tpse of gels shown in Fig. 1.
Although reaction temperature of the TMOS system (5 °C)
was lower than that of the TEOS system (20 °C), tg was
significantly shorter in the former than in the latter. In both
systems, tg of opaque gels was shorter than that of trans-
lucent gels, because phase separation concentrates silica
oligomers in the silica-rich phase and enhances their poly-
condensation [20, 32, 33]. Gelation was preceded by phase
separation (tpsb < tpse < tg) in opaque gels, and tpse was absent
in translucent gels because gelation halted domain growth
before its completion. The appearance, gelation behavior,
and their x1 dependence of gels derived from TEOS agreed
well with our previous reports [32–34]. The magnitude of
the driving force for phase separation may be expressed by
the normalized time required to complete phase separation,
i.e., (tpse− tpsb)/tpse. This value was much smaller in the
TEOS system (~0.05–0.2) than in the TMOS system (~0.8),
indicating that phase separation was more feasible in the
TEOS system than in the TMOS system.

Figure 3 shows SEM images of xerogels shown in Fig. 1.
Opaque xerogels prepared from TEOS at x1= 1.80 and 1.90
consisted of micrometer-sized spherical particles, whereas
average particle size in the former gel was much larger than
the latter. The structures of other gels were smaller than the
resolution limit and unclear, even in the opaque gel pre-
pared from TMOS at x1= 1.25.

Figure 4 shows photographs of a xerogel prepared from
50 mmol of TEOS at x1= 1.96 and silica glass obtained by
sintering this gel at 1300 °C for 120 min. This xerogel was
dried at 60 °C for 30 h, which was shorter than our previous
report (2 days) [32]. Figure 4 also shows a xerogel prepared
from 100 mmol of TEOS at x1= 1.96. This gel was dried at
80 °C for 4 days and converted to a monolithic silica glass
by sintering at 1350 °C for 40 min. The weights of these

Fig. 1 Photograph of xerogels prepared from 25 mmol of TEOS at
20 °C (top) or TMOS at 5 °C (bottom), and dried at 60 °C

Fig. 2 Dependence on water to alkoxide molar ratio in solution 1 (x1)
of gelation time (tg) and beginning and ending of phase separation
times (tpsb and tpse, respectively) of gels shown in Fig. 1, prepared from
TMOS at 5 °C or TEOS at 20 °C. The symbols “O” and “T” denote
“opaque gel” and “translucent gel”, respectively
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glasses prepared from 50 and 100 mmol of TEOS were
~2.979 and ~5.977 g, respectively, and their yields simply
calculated from the weights and the molar mass of SiO2

(60.084 g mol−1) were ~99.2% and ~99.5%, respectively.
SEM images shown in Fig. 4 were taken from a xerogel
prepared from 25 mmol of TEOS at x1= 1.96.

4 Discussion

For each series of gels prepared from TMOS or TEOS,
morphology was significantly different despite the same
final solution compositions. In the TEOS system, the size of
domains (spheres) varied by more than an order of magni-
tude with a small change in the water to alkoxide molar
ratio of partial hydrolysis of solution 1 (x1) from 1.8 to 2.0.
This wide variation in domain size and its high sensitivity to
preparation conditions are consistent with the characteristics
of phase separation by spinodal decomposition.

Both TMOS and TEOS are immiscible with water, but
become miscible upon hydrolysis. The hydrolysis of TMOS is
faster than that of TEOS [42, 43]. Indeed, the homogenization
of TMOS–water mixtures was much faster than that of
TEOS–water mixtures. Thus, after the second mixing, residual
methoxy groups in the TMOS system would be lost much
faster than residual ethoxy groups in the TEOS system. Such
gradual loss of residual alkoxy groups would make silica
oligomers less hydrophobic in the TMOS system than in the
TEOS system prepared at the same x1. This hypothesis is
supported by a large (tpse− tpsb)/tpse of ~0.8 in the TMOS
system, suggesting a slow down of phase separation with time.
The vulnerability of methoxy groups to hydrolysis makes
phase separation in the TMOS system more difficult, and
explains why small x1 is necessary to prepare opaque gels in
the TMOS system than in the TEOS system.

Opaque xerogels were larger than translucent xerogels
(Fig. 1) because of small shrinkage (syneresis) during aging
and low capillary force in large pores. Both the low

capillary force and small shrinkage are favorable for redu-
cing stresses during drying and suppressing fracture in
opaque gels. However, the opaque gel prepared at x1= 1.25
from TMOS was cracked during aging. This crack forma-
tion is attributed to the small domain size and hence to the
small pores of this gel, much smaller than that of opaque
gels prepared from TEOS (Fig. 3). Other reasons include
polycondensation after gelation, which would be more
significant in the TMOS system, because methoxy groups
are more reactive than ethoxy groups and the fraction of
unreacted methoxy groups was larger than that of unreacted
ethoxy groups in wet gels prepared in this study.

Under the conditions examined in this study, the pre-
paration of crack-free macroporous gels from TEOS was
easier than that from TMOS. We thus tried to reduce drying
time by increasing drying rate. As shown in Fig. 4, a
monolithic xerogel prepared from 50 mmol of TEOS was
dried in 30 h at 60 °C, shorter than the time (2 days)
recorded in our previous report [32]. A xerogel prepared
from 100 mmol of TEOS was dried in 4 days at 80 °C.
Simple solution composition (TEOS, water, and catalysts),
relatively short processing time, and high silica yield (≳99
%) make this method attractive for the sol–gel synthesis of
silica glasses.

5 Conclusions

Monolithic silica gels suitable as the precursor of silica
glasses were prepared by acid-catalyzed partial hydrolysis
of TEOS or TMOS and subsequent neutralization with

Fig. 3 SEM images of xerogels shown in Fig. 1

Fig. 4 Photograph of xerogels prepared at x1= 1.96 from 50 mmol
(10.4 g) of TEOS and dried at 60 °C for 30 h (top left) and from
100 mmol (20.8 g) of TEOS and dried at 80 °C for 4 days (top center),
and silica glasses obtained by sintering the former gel at 1300 °C for
120 min (bottom left) and the latter gel at 1350 °C for 40 min (bottom
center) in a helium atmosphere. SEM images of a xerogel prepared
from 25 mmol of TEOS at x1= 1.96 and dried at 60 °C are also shown
with two different magnifications (right)
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imidazole (pKa= 7.0). Solutions prepared from TEOS
underwent gelation accompanied by polycondensation-
induced phase separation at 20 °C, and formed opaque
macroporous silica gels. Such gels were easily dried in air
without fracture in several days and converted to monolithic
silica glasses in high yields exceeding 99% by sintering in a
helium atmosphere. Solutions prepared from TMOS also
generated opaque gels by the same mechanism. However,
cooling to slow down reactions was necessary, and crack-
free xerogels could not be obtained because of the absence
of macropores.
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