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Abstract
Chiral inorganic materials have attracted increasing attention in the fields such as catalysis, electronics, photonics, and
sensing. A new class of functional materials with chirality is extensively explored. Herein, we demonstrate the synthesis of
nanometric nickel layered hydroxide salt (Ni-LHS) modified with chiral amino acids, (D- or L-) phenylalanine (PHE). An
alkalization reaction in a starting mixture of nickel-phenylalanine aqua complexes was induced by using propylene oxide,
leading to intercalate and adsorb phenylalanine on the surface and into the interlayers of Ni-LHS in an in-situ manner. The
chiral molecules also act as surface modifier to inhibit the extensive crystal growth and aggregation, to form Ni-LHS with a
diameter of 2–3 nm in a state of stablly-suspended in a solvent. It was also found that Ni-LHS exhibit induced circular
dichroism (ICD) in the spectral range of d-d transitions of Ni(II) metal centres. The layered nanomaterials with chiroptical
response demonstrated here is a promising option as an advanced adsorbent for detection of molecules.
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Highlights
● Synthesis of nanometric nickel layered hydroxide salt accommodating chiral amino acids is achieved.
● Epoxide-mediated alkalization reaction is adopted for the synthesis of the stable sol of the nano hydroxide.
● The material is found to exhibit induced circular dichroism (ICD) in visible light range.

1 Introduction

Chirality is a geometric feature of a structure which cannot
be superimposed on its mirror image. Chiral recognition
typically occurring in nature and living systems is crucial on
fundamental and application aspects in the cutting-edge
fields of biology, separation [1, 2], and asymmetric catalysis
[3]. Chirality on a solid surface is especially attracting
because a surface to be adsorbed by chiral molecules
potentially show chiralities at molecular and organization
(macro) levels [4]. For examples in heterogeneous catalysis,
transition metal centres complexed with chiral ligands are
immobilized on solid surfaces, such as mesoporous silica
[5–7], smectites [8], Zr-bases salt [9], and CNT [10].

Interestingly, a solid surface for the immobilization of
chiral molecules can, in some cases, work as more than
support materials and enhance properties, when electronic
and/or magnetic interactions between the surface and chiral
molecules are properly designed. Circular dichroism (CD)
from quantum dots (QDs) is a kind of the enhanced chiral
response [11]. CdS, CdSe, and HgS QDs prepared in the
presence of chiral surfactant molecules are reported to
exhibit CD signals related to a modulated excitonic band
structure [12–14]. In addition, semiconductors with crys-
tallographic and morphological chiralities showing much
stronger chiroptical effects have been demonstrated in these
systems [15]. The chiromorphological features are also
demonstrated in metal nanoparticles, including Te, Se, Ag,
and Au [16], where CD is further enhanced by being cou-
pled with plasmon-enhanced absorption [17, 18].

One of the promising applications taking advantage of
these chiroptical responses is sensing/detection of mole-
cules [19, 20]. Circular dichroism (CD) by introducing a
strong specific physical interaction with analytes has been
widely used to study biopolymers such as proteins, nucleic
acids, and polysaccharides [21, 22]. The development of
inorganic chiral nanomaterials with a capability of loading
analytes at a high concentration is of high priority to this
end. On the other hand, nanomaterials exhibiting chiroptical
response are still limited in several metals and metal sul-
fides, where only the surface of crystals adsorb analytes to
be detected. It is required to explore chiral nanomaterials
that can intercalate a large amount of guest organics in a
crystal interior as well as on outer surface, and effectively
exhibit a strong chiroptical response. Layered double
hydroxides (LDHs) and layered hydroxide salts (LHSs),
which are widely known as layered crystals of capability of

intercalation/adsorption of ions and molecules, are good
options for this purpose.

Herein, we demonstrate the synthesis of a nanometric
nickel LHS modified with chiral amino acids on crystal
surface and interlayer galleries. The obtained material was
found to exhibit an induced circular dichroism (ICD) at the
wavelength of d-d transitions of Ni(II) metal centres. The
crystallization of LHS was performed in the presence of
amino acids which were used to impart chiral characteristic.
In contrast to conventional LDHs and LHSs as powders of
micron-sized crystals, the reaction scheme developed here
allows to achieve colloidal dispersion of nanocrystals; the
aqua complex of Ni(II) coordinated by chiral amino acids is
hydrolyzed by adding an alkalization agent, to yield Ni-
LHS with a diameter of 2–3 nm, accommodating chiral
amino acids in an in-situ manner. Thanks to the nanometric
nature, the present Ni-LHS nanocrystals can be homo-
geneously dispersed in a solvent and exhibit strong ICD in
the spectral range of d-d transitions of Ni(II) metal centres.
The capability of loading additional guest molecules on
surface and interlayer galleries of the obtained Ni-LHS
nanocrystals is expected to open up a novel platform for
chiral sensing.

2 Experimental

2.1 Chemicals

Nickel(II) chloride hexahydrate (98.0+%), D- or
L-Phenylalanine (D- or L-PHE), ethanol (EtOH, 99.5%)
were purchased from FUJIFILM Wako Pure Chemicals
Corp. Propylene oxide (PO, ≥ 99%) was purchased from
Sigma-Aldrich Co. All the chemicals were used as received.

2.2 Synthesis of layered hydroxide salt nanocrystals

The typical synthesis of Ni-LHS nanocrystals is as follows.
NiCl2·6H2O (0.226 g; 0.95 mmol) and D- or L-PHE
(0.157 g; 0.95 mmol) were homogenously mixed in EtOH
(2.50 mL; 42.8 mmol) in a closed container. (Note: PHE is
not soluble in ethanol, but its Ni complex is soluble in
ethanol as discussed in the Results & Discussion section).
At a room temperature (20 °C), PO (1.00 mL; 14.3 mmol)
was added to the mixture and further stirred for 1 min to
yield a homogeneous solution. Then, stirring was stopped,
and the container was kept at a room temperature (∼20 °C).
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All the synthesis was performed under an ambient atmo-
sphere and the reaction container was sealed throughout the
reaction except when adding PO.

2.3 Characterizations

Ultraviolet-visible (UV-Vis) spectra (V-750 spectro-
photometer, JASCO Corp.) of precursory solutions con-
taining (D- or L-) PHE before the addition of PO were
measured to assess the coordination environment of nickel
cations. Crystalline nature of samples was identified by
X-ray diffraction (SmartLab, Rigaku) using Cu Kα radiation
(λ= 0.154 nm); a colloidal dispersion was poured on a
petri-dish preliminarily-heated at 60 °C for the drying, and
then collected powders were analyzed. The crystallite size
along the c axis, out-of-plane direction of hydroxide layers,
calculated from Scherrer’s equation, is <3 nm. Fourier
transform infrared (FT-IR) spectroscopy was carried out to
analyze chemical bonds of obtained samples after drying,
using a FT-IR spectrometer (ALPHA FT-IR spectrometer,
Bruker Optik GmbH, Germany) by KBr pellet method. A
transmission electron microscope (JEM-2000FX, JEOL,
Japan) was employed to observe fine structures. For the
preparation of the TEM sample, 2 μL of as-prepared col-
loidal dispersion was diluted with 10 mL of ethanol and
then drop-casted on a Cu grid and allowed for drying.
This drop-casting process was repeated five times.
Thermogravimetric-differential thermal (TG-DTA) analysis
(Thermo Plus Evo, Rigaku, Japan) was carried out at a ramp
rate of 10 °C min−1 while continuously supplying air to
assess the thermal behavior and chemical composition. The
TG-DTA analyses were performed on samples collected by
centrifugation at 50,000 rpm for 72 h (CS120FNX, Hitachi,
Japan). The crystal model of Fig. 3c was produced by using
VESTA software [23].

3 Evaluation of chiroptical property

Circular dichroism (CD) measurement was performed on a
JASCO J-820 spectropolarimeter to evaluate chiroptical
property of colloidal dispersion of Ni-LHS NC. The data
were expressed as moler ellipticity [θ] (deg·cm2·decimol−1)
[Eq. 1]:

θ½ � ¼ θ

10cl
ð1Þ

where, θ: ellipticity (mdeg), c: molality (mol/L), and l: cell
length (cm). The molality corresponds to the concentration
of Ni(II) in the analyte; as prepared colloidal dispersion
([Ni2+]= 0.38 mol/L) was diluted into 2/3 and subjected to
the measurement, i.e., c= 0.25 mol/L. l = 1.0 cm

4 Results and discussion

4.1 Synthesis of colloidal dispersion of chiral layered
hydroxide salt

Phenylalanine (PHE), an essential aromatic amino acid in
humans and also applicable to protein detection [24], was
used as a chiral amino acid for the chiral modification of
LHS. First, the precursory solution before adding alkaliza-
tion agent was investigated. Figure 1(a) shows UV-Vis
spectra of NiCl2·6H2O in ethanol (EtOH) with and without
PHE. The blue shift of the d-d absorption in the cases for
with PHE suggests that PHE of a higher ligand field par-
tially replaces H2O ligands surrounding Ni(II) in the solu-
tion; PHE: Ni= 1:1 in mole. Phenylalanine (PHE), which
does not dissolve solely in ethanol, homogeneously dis-
solved in the presence of Ni(II), also suggesting the for-
mation of an ethanol-philic Ni(II) aqua complex partially-
coordinated by PHE (Fig. 1(b)).

To this precursory mixture, PO was added as an alkali-
zation agent. Protonation and subsequent ring opening

Fig. 1 a UV-Vis spectra of NiCl2·6H2O in EtOH with and without
Phenylalanine (PHE). b photo image of the solution containing D-PHE

Fig. 2 a Appearance and b TEM image of Ni-LHS prepared with
D-PHE. c XRD patterns of Ni-LHS prepared with and without L-/D-PHE
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reaction of epoxides including PO is known to induce
alkalization and yield metal hydroxide in an aqueous media
[25–31]. This PO-driven alkalization was applied for the
solution containing PHE and Ni(II) in the presence of a
limited amount of H2O (H2O/Ni(II)= 6). Limiting the
amount of water successfully prevents the release of PHE
from Ni(II) aqua complex. After 24 h of the reaction,
hydrolysis of the metal aqua complex led to form a clear
solution (Fig. 2a). Transmission electron microscopy
(TEM) revealed that a colloidal dispersion of nanoparticles
with a diameter of <10 nm is formed (Fig. 2b). Phenylala-
nine (PHE) plays a critical role in the formation of the
colloidal dispersion; indeed, gel-like solid was obtained in
the case prepared without PHE (See Supporting Information
Fig. S1).

Figure 2(c) shows XRD patterns of Ni-LHS prepared
with and without L-/D-PHE. The referential sample pre-
pared without PHE is ascribed to α,β-interstratified Ni(OH)2
with a turbostratic disorder as is reported in a previous lit-
erature [32, 33], whereas, Ni-LHS prepared with L-/D-PHE
show peaks which are indicative of α-Ni(OH)2 with a
layered structure. The interlayer distance is estimated to

1.84 nm from the diffraction by the basal plane. The dis-
tance is in good agreement with the one in the case of the
bilayer head-to-tail arrangement of PHE molecules, with
8.3 Å in length, in the direction perpendicular to the
hydroxide layer in an inclined manner. This configuration
with a comparable d value allowing for the structurally
beneficial π–π interaction has been reported for PHE
accommodated in LDHs [34–36].

Figure 3(a) shows thermogravimetric-differential thermal
analysis (TG-DTA) curves of Ni-LHS prepared with
D-PHE. Ni-LHS suspension was centrifuged and the col-
lected powder was analyzed. Weight losses can be ascribed
to the following reactions; (i) <150 °C: desorption of
physically-adsorbed water; (ii) 200–350 °C: release of water
from interlayers and/or condensation of OH groups, and
evaporation of D-PHE; (iii) peak at 370 °C: combustion of
D-PHE in interlayer galleries. From the series of events of
weight losses, Ni/PHE (mol/mol) is calculated to be 1/1
(See Supporting Information for the details).

Figure 3(b) shows FTIR spectra of Ni-LHS prepared
with and without PHE. Pristine Ni(OH)2 shows a broad
band around at 1600 cm−1 corresponding to bending mode

Fig. 3 a Thermogravimetric-
differential thermal analysis
(TG-DTA) curves of LHS
prepared with D-PHE. b FTIR
spectra of Ni-LHS prepared with
and without PHE. c Schematic
illustration showing the structure
of Ni-LHS accommodating PHE
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of water molecules [37], and a weak absorption at 472 cm−1

due to v(Ni-OH) [38]. The coexistence of PHE leads to the
appearance of additional bands. The peaks on the spectra for
with PHE can be assigned as follows: 1497 cm−1 and
1454 cm−1: CH2 scissoring deformation; 1412 cm−1: COO−

symmetric stretch (vs(COO
−)); 1590 cm−1: COO− asym-

metric stretch (vas(COO
−)) [39]. The degree of splitting

between vas(COO
−) and vs(COO

−) reflects the coordination
mode of carboxylate moiety to the metal atoms [40]. A
splitting of ca. 178 cm−1 in the present case indicates that
oxygen ions of the carboxylate bind Ni(II) through a brid-
ging coordination; adjacent Ni(II) are connected by (κ1-κ1)-
μ2 carboxylate group [41, 42]. The coordination through the
carboxylic group is also supported by the appearance of v
(M-O) at 557 nm, whereas the sign of the formation of v(M-
N) bond typically appeared at ca. 420 nm was not observed
[42]. Taking into account the results of XRD, TG-DTA, and
FTIR analyses, Ni-LHS crystal prepared in the present
study can be schematically described as shown in Fig. 3(c).
The material obtained has a chemical composition of Ni
(OH)(C9H10NO2) with a structure of stacking of the
hydroxide sheets with interlayer galleries accommodating
PHE with the bilayer head-to-tail arrangement.

4.2 Chiroptical response of the obtained materials

To date, the synthesis of inorganic nanoparticles, such as
sulfides and metals with chiroptical properties relies on
strong metal-sulfur interaction by employing cysteine as a
typical additive. A characteristic feature for the synthesis in
this study is that various types of chiral amino acids other
than cysteine can be used to prepare inorganic nanomaterials.
This is an advantageous feature to tune the surface chemistry
of the obtained crystal for the application as a chiral adsor-
bent. Under the present solvent condition, relatively hydro-
phobic amino acids can be incorporated in the crystals (Table
S1). The hydrophobic amino acids form stable complexes
with Ni(II) in precursory ethanolic solutions as is the case for
Fig. 1b which is a critical requirement to achieve the sub-
sequent alkalization reaction to yield homogeneous colloidal
dispersion of Ni-LHS nanoparticles. The synthesis of sus-
pensions of LDH and LHS nanocrystals in various systems
has been demonstrated [32, 43–46], while the introduction of
chiral molecules into these suspended nanocrystals has been
for the first time achieved in the present study.

Induced circular dichroism (ICD) is observed when chiral
(bio-)polymers have strong and specific physical interaction
with a chromophore [47]. For example, ICD was reported on
colloidal cellulose crystallites adsorbing congo red [47],
cellulose film adsorbing trypan blue [48]. Finally, the cap-
ability of ICD from the present Ni-LHS was closely inves-
tigated. Figure 4 shows UV-Vis and CD spectra of the
colloidal dispersion of Ni-LHS accommodating D- and
L-PHE. The state of colloidal dispersion of nanometric Ni-
LHS allows for easy CD detection in a transmission geo-
metry through a sample. Ni-LHS with D-/L-PHE shows
light absorptions originated from PHE ( < 300 nm) and d-d
transitions of Ni(II) composing hydroxide sheets (3A2g →
3T1g(P),

3A2g →
3T1g(F),

1Eg) (Fig. 4a). As well as CD signal
at the absorption of L-/D-PHE molecules, occurrence of ICD
is clearly seen in the range of d-d transitions (Fig. 4b). It is
suggested that the physical interaction between PHE and Ni
(II) in LHS crystals is rather strong, inferred by the cases for
ICD demonstrated for chiral polymers with an organic
chromophore [47–49]. The close contact between Ni(II)
(achiral chromophore) and PHE (chiral molecule) allows
efficient coupling between the electric transition moments of
them. Additional contribution to the chiroptical property of
an anisotropic arrange of elements in crystals, for example,
reported on NiSeO4·6H2O and α-Ni(H2O)6SO4, [50–52],
and/or a dissymmetric ligand filed well-known for tris-
chelated Co(III) and Cr(III) complexes [53], are not fully
ruled out in the present case. Further investigation to resolve
the mechanism of chiral response is required.

The precursory Ni(II)-PHE aqua complex (before alka-
lization reaction by adding PO) also exhibits CD signals
(Fig. S2), however, the value of [θ] is smaller than that for

Fig. 4 a UV-Vis spectra and b corresponding CD spectra of colloidal
suspensions of Ni-LHS accommodating D- and L-PHE. [θ]: Molar
ellipticity
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Ni-LHS with PHE. The development of hydroxo bridge (M-
OH-M) to form LHS nanoparticles gives rise to much
stronger chiral response, i.e., larger [θ]. The enhanced
chiroptical response is an advantageous feature of using Ni-
LHS as a host material to be modified with PHE. It has been
reported that a stereoselective interaction between an
adsorbed molecule and its neighbor occur on a surface of
clays (montmorillonite, saponite), 2D crystals [54]. The 2D
interlayer galleries in LDH crystals are desirable reaction
field to accommodate chiral organics. Further study will
open up LHS-based nanometric chromophore with a chir-
optical response triggered by the recognition of guest
molecules. The enhanced host-guest interaction was
demonstrated for MgAl LDH modified with a chiral mole-
cule [55], while, the nanometric and suspended features of
crystals as well as the strong ICD originating from Ni(II)
demonstrated for the present material are unique additional
advantages compared with conventional LDHs and LHSs
based materials.

5 Conclusion

We have demonstrated Ni-LHS crystals accommodating
PHE molecules in their interlayer galleries. The synthesis
was performed through a direct nano-crystallization trig-
gered by PO-driven alkalization reaction. The carboxylic
group of PHE binds to Ni(II) centre though a bridging
coordination to form the layered crystal with a chemical
composition of Ni(OH)(C9H10NO2) and an interlayer dis-
tance of 1.84 Å. Thanks to the strong physical interaction
between PHE and Ni(II), the material exhibits ICD in the
spectral range of d-d transitions of Ni(II). The materials
developed here expectedly open up applications in which
chirality is fused with advantageous features of LHS
crystals.
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