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and maintaining patient confidentiality have limited the 
adoption of inter-hospital patient EHR data systems.

Improper EHR resource sharing occurs when Personally 
Identifiable Information (PII) or Protected Health Informa-
tion (PHI) is shared without patient approval. This could 
take the form of a data breach in which an external party 
gains access to the data by attacking a third-party server, 
like the AMCA data breach [5]. But it could also originate 
from a less malicious, but equally dangerous, loss of secu-
rity control when sensitive healthcare records are shared 
with multiple parties [6]. In either case, the leakage threat-
ens institution reputation and jeopardizes patient privacy. 
It also violates the HIPAA Privacy Rule’s PHI protection 
guarantee and could constitute a failure to meet the HIPAA 
Security Rule [7].

Maintaining patient PHI and PII privacy ensures that an 
individual patient cannot be connected back to their medical 
history. Confidentiality is important because leaking sensi-
tive information can lead to patient stigma, embarrassment, 
and discrimination [8]. The current practice to ensure PHI 
remains protected for medical research is de-identification 
of patient data. However, even with anonymized EHR data, 
sensitive information might be learned in combination with 
external knowledge [9]; studies have shown that using pre-
scription records [10], diagnosis code data [11], genomic 
data with allele frequency [12], improperly published medi-
cal data [12], or naïve suppression [13] it is possible for an 

Introduction

The widespread adoption of certified Electronic Health 
Records (EHRs) over the last decade has created siloed 
repositories of patient healthcare data [1]. Currently, indi-
vidual health providers maintain isolated collections of dig-
itized patient records with limited system interoperability 
and few sharing capabilities with external research teams. 
The ability to share EHR data across healthcare silos would 
be useful for medical research and public health analysis 
as it would create more comprehensive patient data sets [2] 
making possible health data analysis studies across multi-
ple providers. More data, from multiple EHRs, would give 
reseaerchers the ability to better analyze condition-specific 
clinical outcomes and improve patient healthcare outcomes 
[3, 4]. However, concerns about improper resource sharing 
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attacker to determine either patient uniqueness, or worse, 
patient re-identification. This risk is especially prevalent for 
smaller patient samples [14], such as rare disease patients or 
new medication releases, for whom inter-hospital EHR data 
sharing would be most beneficial.

In order to ensure controlled access to patient data 
and appropriate levels of confidentiality while encourag-
ing inter-hospital resource sharing, we propose a custom-
ized but flexible leveled homomorphic encryption system 
(LHE). Homomorphic encryption (HE) schemes allow for 
additive and multiplicative operations to be performed over 
encrypted data. This means that once decrypted, the result is 
comparable to the same operations performed over plaintext. 
The benefit of this system is that it guarantees that informa-
tion remains secure through data transfer and computation. 
Using this scheme, researchers would be able to securely 
perform aggregating and linear operations over encrypted 
medical data gathered from multiple sources while main-
taining patient PHI and PII privacy. Moreover, by treating 
HE as a component within a larger data security system 
– with de-identification of patient data and access control 
procedures – this system ensures high levels of patient pro-
tection while allowing approved researchers access to rel-
evant medical data.

Related Work

Ensuring PHI data privacy and health care system secu-
rity while also permitting sharing of and computation over 
healthcare data is an ongoing research and implementation 
challenge. The use of an additive partially homomorphic 
encryption (PHE) scheme to protect EHR data during com-
putation and storage in an untrusted third-party cloud server 
has been discussed in [4, 15–17]. All systems described are 
limited to data aggregation through addition and are unable 
to perform multiplicative operations over the encrypted 
data.

A more flexible, leveled homomorphic encryption 
scheme, which allows for limited multiplicative opera-
tions, is employed for aggregate EHR data encryption using 
HEANN [18, 19] and SEAL [20, 21]. In [19] and [21], 
researchers employ LHE schemes to average pre-generated 
differentially private histograms of diabetes patient medical 
records in third-party cloud servers. Computation performed 
directly over encrypted patient data for secure, wearable 
mobile health technology is discussed in [22] using HElib 
[23]. Similarly, an LHE scheme is used in a near real-time 
ECG-data monitoring system to securely compute the aver-
age heart rate of a patient in a cloud computing environment 
in [24] and to carry out linear regression model predictions 
in [25].

Our work builds upon the LHE approaches discussed 
above, using nGraph-HE [26], an HE-secure graph com-
piler, to encrypt data selected directly from a synthetic EHR 
system, to securely share across a third-party server, to effi-
ciently generate data statistics, and to perform linear com-
putations. We use a privacy structure for EHR data-sharing 
similar to those proposed in both [19, 21], focus on direct 
computation over encrypted data as in [22, 24], and would 
be able to generate predictions for a patient as in [25]. Using 
this system, we allow researchers the flexibility to generate 
their own computational commands, as in [15], while ensur-
ing patient privacy and institutional oversight.

Methods

Synthea Synthetic Patients and HL7 FHIR Standard

We considered a data-sharing scenario using synthetic 
HL7 FHIR resources constructed using Synthea™ stored 
in a PostgreSQL relational database [27, 28]. Synthea is an 
open-sourced, synthetic patient generator that models com-
plete medical history, which we selected in order to mimic 
realistic patient data and associated health records. The 
records are stored as modular Fast Healthcare Interoper-
ability Resources (FHIR) JSON objects, which allows users 
access to atomic data elements. Meaning that, with Fhirbase, 
an open-source tool to store and manage FHIR data in Post-
greSQL [29], both objects and their component parts are 
searchable. Using the FHIR framework and Fhirbase tool, 
patient data relevant for research and not PII can be quickly 
extracted for de-identification and encrypted sharing using 
SQL commands; see example commands in Appendix A1. 
We generated and stored two databases of 10,000 patients in 
this format as our synthetic EHR System for HE-encryption 
and computational experiments.

Data Analysis

We chose to focus on computation scenarios where data is 
aggregated or a linear regression computation is performed. 
Aggregation represents the most necessary and computa-
tionally simple statistic for health care analytics. Moreover, 
many of the barriers to information exchange across EHR 
systems are in cases where aggregation analysis is needed 
and analytics are being provided by third-party compa-
nies [30]. Regression analysis is a commonly used predic-
tive technique in data mining – for healthcare data, it is 
widely used for predicting the disease or survivability of a 
patient [31]. However, current EHR networks do not often 
take advantage of the technique, because existing firewall-
based setups do not allow for continual data flow, even for 
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deidentified data, without human interference [32]. Our sys-
tem would allow for both of these computation types to be 
set up and used across multiple EHRs in near-realtime.

Homomorphic Encryption

Public-key leveled homomorphic encryption (LHE) allows 
for depth-bound polynomial computation to be performed 
over encrypted data [33]. Using an LHE scheme, users are 
able to encrypt data with a public key, perform a limited 
number of additive and multiplicative operations over the 
encrypted data, return an encrypted response, and decrypt 
with a secret key to reveal the computational solution. The 
result is comparable to an answer obtained by performing 
the same calculate without encryption. For our research, we 
selected the CKKS scheme [34] as implemented by nGraph-
HE [35]. We chose the CKKS scheme, because it allows for 
real-number calculations – meaning that test results could 
be directly stored and encrypted along with result code data. 
We selected nGraph-HE, which relies on Microsoft SEAL 
CKKS for underlying HE evaluation and nGraph for the 
graph compiler [36], because it has been optimized to per-
form LHE matrix computation over larger data sets.

System and Threat Model

Below is the model we propose for secure data transfer. 
There are three key entities including an: Oversight Orga-
nization, multiple EHR Data Centers, and the Approved 
Researcher. As in the diagram below, each entity would be 
responsible for the associated bullet-point tasks. We assume 
a semi-honest adversarial model – whereby attackers may 
attempt to gather information as available, but do not devi-
ate from the protocol specifications.

Figure 1 above includes the following roles and associ-
ated responsibilities:

	● Approved Researcher: A researcher or organization with 
approval to carry out computation on EHR data. Sec-
ondary analysis of existing data does not require Insti-
tutional Review Board (IRB) oversight if coded [37]; 
however, most institutions require internal approval to 
access data resources. Either the Oversight Organization 
or each individual EHR Data Center could be respon-
sible for granting researcher approval. Once approved, 
the researcher is responsible for developing a standard 
data request. This reduces the workload on each EHR 
Data Center and ensures that all data is encrypted with 
the same underlying structure for computation. The 
researcher also develops the linear model for compu-
tation associated with their study. Some examples of 
requests that could be made include: an aggregation 
request, sample statistics generation, or a prediction 
given a multiple regression model.

	● Oversight Organization: The oversight organization is 
a trusted party responsible for managing all data collec-
tion and computation request transfers for the Approved 
Researcher and the EHR Data Centers. It is their respon-
sibility to verify that the data can be accessed and that 
neither the computation nor the requested data inappro-
priately reveal PII or PHI data. This is a necessary step 
in order to ensure data queried does not violate patient 
privacy by targeting individual or non-essential informa-
tion in order to gain unapproved access to data. Once the 
Oversight Organization receives the data request format 
and computation from the Approved Researcher, they 
carry out the following steps: (1) approve researcher 
request; (2) create a public and private encryption key; 
(3) send the data request to each EHR Data Center 

Fig. 1  The proposed privacy 
preserving framework for data 
sharing
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That said, it is possible for an improperly managed/
setup Oversight Organization to attempt to collude with the 
approved researcher in order to gain undue plaintext access 
to the data. The oversight organization could purposefully 
craft queries that have small enough data samples across a 
subset of hospitals in order to be reveal patient identity. In 
order to protect against this, we note that the system has 
been set up such that each EHR Data Center can approve/
disapprove queries sent by the Oversight Organization, 
and moreover, in deployment suggest that appropriate 
query types be pre-determined by all parties before data is 
transferred.

Results

Prototype Implementation

We implemented the proposed solution as a client-server 
application in Python (version 3.5) and Tensorflow v1.14.0 
for graph computation. For HE, we used nGraph-HE, the 
homomorphic encryption backend to Intel’s nGraph com-
piler with a CKKS encryption scheme, as developed by 
Microsoft SEAL. Our module for EHR encryption allows 
for data extraction from a Synthea FHIR database using SQL 
commands, public key homomorphic encryption, and com-
putation over encrypted data by a server. The client compo-
nent enables users to encrypt across patient and event-level 
quantitative and one-hot encoded categorical variables 
using nGraph-HE. The server performs computation across 
over the available encrypted data, including aggregation and 
averaging and linear regression predictions.

Performance Evaluation

We tested performance of the proposed model on an HPE 
ProLiant DL580 Gen 10 server with an Intel Xeon Plati-
num 8280 Processor and an Ubuntu 16.04 operating sys-
tem. Using a forked version of nGraph-HE, we simulated 
two different FHIR JSON databases and tested scenarios 
for encryption and computation. For each example compu-
tation, we discuss timing, storage, and error by size given 
different levels of security. All computations are measured 
by averaging over 10 trial runs at various computation size 
levels.

Aggregation.
In the first example case, we looked at SQL aggregation 

scenarios from the database. This work mimics the aggre-
gating query setup in [14] and the histogram sharing in [3]. 
For example, we asked questions like:

along with a public key for encryption; and (4) send the 
approved computation to the third party server. After 
computation is performed, the Oversight Organization 
decrypts with the private key and returns the unen-
crypted result to the approved researcher. We assume 
that the Oversight Organization maintains encryption 
protocol–meaning that there is no decryption prior to 
computation – and that it does not collude either with 
the EHR Data Center or the Approved Researcher.

	● EHR Data Centers: The hospitals, physicians offices, or 
healthcare systems holding patient data. The EHR Data 
Center (1) responds to the data request; (2) encrypts the 
data using the public key; and (3) shares the information 
to the third-party server. EHR Data Centers can chose to 
not accept a query and can chose to only accept queries 
of certain types as determined in advance between the 
Oversight Organization and EHR Data Center.

	● Third Party Server: Accepts the shared model, as deter-
mined by the researcher and passed to the oversight 
organization, and carries out computation over the 
aggregated LHE encrypted data passed from EHR Data 
Centers. The third-party server could be held locally by 
the oversight organization, but it could also be an unse-
cured cloud server. The benefit of using a cloud server is 
that the space for encrypted data and memory for com-
putation is only needed while gathering encrypted data 
from the EHR Data Centers and executing the model. 
That data is never decrypted nor is it available within 
this server and thus is a limited security risk. After-
wards, the encrypted information could be deleted and 
the cloud server instance terminated.

Like in [18], this system relies on the Oversight Organiza-
tion (Trusted Third Party) to manage key generation, over-
see data collection from EHR Data Centers, and ensure the 
Approved Researcher is making appropriate requests. This 
layer of abstraction between hospital EHR and researchers 
is necessary in order to ensure the researcher cannot sim-
ply decrypt all stored data or that the computational queries 
neither gather nor reveal PHI/PII information. Many of the 
tasks the Oversight Organization carries out could be auto-
mated (key generation) or standardized (approved computa-
tional type). However, having an authoritative board stand 
between the Approved Researcher and the EHR Data Cen-
ters provides credibility and trust to the system. As such, we 
believe that an Oversight Organization controlling aggrega-
tion and computation is a necessary part of this data sharing 
model.

The benefit of this system is that nowhere, outside of the 
hospital EHR Data Center, is the raw patient data unen-
crypted. Patient data remains secure in transit and over 
computation.
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Linear Regression Predictions.
In the second example, we looked at linear multiple 

regression prediction scenarios. Similar to cases discussed 
in [24], we focused on carrying out regression-style predic-
tions for health care data. For example, we asked questions 
like:

	● ‘Given that patient A  has observation B , what is test 
result should we expect for observation C ?’

	● ‘What is the likelihood that patient will have disease D , 
given that they have test results T1, T2, T3?’

We assume that researchers have pre-generated a linear 
model to use for predictions that can be shared with the 
server for prediction. An example use case for this scenario 
would be for a drug company carrying out post-market 
release testing on either a new treatment to (1) compare 
treatment effectiveness in pre-market release against newer 
results; (2) predict sample market-size across institutions; 
(3) determine additional use-cases based on information 
learned about patients in a post-market release.

Time required to run regression predictions on encrypted 
data depend upon number of variables included, the num-
ber of test samples, and the exponential power required by 
the regression equation. The more variables, the more test 
samples, and the higher the exponential power required 
for the regression equation, the longer it will take to return 
prediction(s). Moreover, in carrying out multiplicative 
operations over LHE encrypted data for linear and multiple 
regressions, it is important to be aware of ring size con-
straints to ensure your encrypted data remains within the 
cipherspace ring required for HE schemes. For a single vari-
able linear regression equation of the format y = αx + β  
the following timing, space, and error constraints were 
found using our system with complex packing. Queries of 
this type meet the runtime, space, and error specifications 
shown in Fig.  3; and like aggregation, is also dependent 
upon input matrix size:

	● ‘How many patients prescribed drug X  will have also 
received diagnosis Y  in timeframe Z ?’

	● ‘What is the average A  for patients with condition B ?’
	● ‘Given condition C, what percent of patients were given 

medications M1, M2, M3?

Each question is transformed into a SQL command to 
search the EHR FHIR JSONB database; see appendix A.1 
for examples of SQL scripts that generate data capable of 
answering questions in the above format. Queries of this 
type meet the runtime, space, and error specifications shown 
in Fig. 2; primarily dependent upon input matrix size:

Once the queried data is returned, it is converted into 
a dataframe object. In order to process categorical data 
objects, like LOINC code names [38] and SNOMED Clini-
cal Terms [39], variables are transformed into one-hot 
encoded vectors, whereby each unique value increases the 
size of the database by an additional vector. Quantitative 
data objects, like observational data and medicine dosage 
information, do not grow the dataspace in the same way, and 
are instead converted into tf.float32 compatible variables.

For each EHR Data Center, the resultant dataframe 
object, which could be a combination of one-hot encoded 
vectors and quantitative entries, is then flattened into an 
array, encrypted, and transferred along with shape to the 
server. The server waits until all data is collected from vari-
ous pre-designated sources before carrying out computa-
tion. The data aggregation or averaging result, which would 
include data obtained from multiple EHR Data Centers, is 
then returned to the Oversight Organization for review and 
to the Researcher for analysis.

With increased matrix size, time and space constraints 
grow exponentially, while average error per input row 
remains constant, growing linearly over aggregation only 
with the increased number of row summations needed for 
larger square matrices. This is with the CKKS complex 
packing encoding optimization [40], which reduces mem-
ory and runtime constraints of HE. Without encryption,

Fig. 2  All figures are averages of ten-run trials performed in square matrix size steps of five across plaintext, 128, 192, and 256-bt encryption levels 
using complex packing optimization
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statistics or make predictions for patients from multiple 
sources over an unsecured third-party server. A system like 
this, while slower than plaintext computation, makes avail-
able in near-real time a previously unattainable capability 
– secure data analysis while maintaining patient privacy and 
confidentiality.

Homomorphic encryption for EHR’s has previously been 
seen as computationally restricted by both time and space 
constrains, and not practical due to EHR construction. How-
ever, recent research and implementation developments in 
EHR data storage and HE cryptographic schemes has made 
this type of construction more practical. In this paper, we 
have shown that given commercially available storage and 
power, it is feasible to carry out computation over EHR data 
for medical research. We believe that for small, disparate 
studies where patient privacy is of the utmost concern, a 
system like this could be invaluable. Using our system, LHE 
for EHR’s is possible, and would be beneficial for computa-
tion across hospital systems for research purposes.

The space and time constraints grow linearly for small 
prediction samples, while absolute error fluctuates within 
the bounded, pre-set limits for each security level. Similar 
to the case above, categorical data is converted into one-
hot encoded vectors, computation type is pre-generated, and 
data is aggregated at the server level prior to computation.

Conclusion

Patient EHR data is an important resource for research, and 
increased access would allow for a more accurate picture of 
public health, accelerate healthcare and medical research, 
and could bring treatments to patients sooner. However, 
due to silo-ed healthcare databases and an overarching con-
cern for patient PHI and PII privacy, this resource has been 
largely untapped. We believe that a homomorphic encryp-
tion system could be a viable solution to this problem; pro-
viding data security during both transfer and computation. 
In particular, our work could allow researchers to collect 
resources across multiple institutions to generate aggregate 

Fig. 3  All figures are averages of ten-run trials performed in point steps of 5 across plaintext, 128, 192, and 256-bit encryption levels using complex 
packing optimization
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