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Abstract
Resource coordination in surgical scheduling remains challenging in health care delivery systems. This is especially the 
case in highly-specialized settings such as coordinating Intraoperative Neurophysiologic Monitoring (IONM) resources. 
Inefficient coordination yields higher costs, limited access to care, and creates constraints to surgical quality and outcomes. 
To maximize utilization of IONM resources, optimization-based algorithms are proposed to effectively schedule IONM 
surgical cases and technologists and evaluate staffing needs. Data with 10 days of case volumes, their surgery durations, 
and technologist staffing was used to demonstrate method effectiveness. An iterative optimization-based model that deter-
mines both optimal surgery and technologist start time (operational scenario 4) was built in an Excel spreadsheet along 
with Excel’s Solver settings. It was compared with current practice (operational scenario 1) and optimization solution on 
only surgery start time (operational scenario 2) or technologist start time (operational scenario 3). Comparisons are made 
with respect to technologist overtime and under-utilization time. The results conclude that scenario 4 significantly reduces 
overtime by 74% and under-utilization time by 86% as well as technologist needs by 10%. For practices that do not have 
flexibility to alter surgeon preference on surgery start time or IONM technologist staffing levels, both scenarios 2 and 3 
also result in substantial reductions in technologist overtime and under-utilization. Moreover, IONM technologist staff-
ing options are discussed to accommodate technologist preferences and set constraints for surgical case scheduling. All 
optimization-based approaches presented in this paper are able to improve utilization of IONM resources and ultimately 
improve the coordination and efficiency of highly-specialized resources.
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            Introduction

Coordination of resources, both human and physical, within 
health care delivery systems is challenging [1, 2]. If ill-
managed, uncoordinated inefficiencies can lead to waste, 
increased costs, delays in patient access, frustrated staff, and 
patient safety challenges [3–5]. This is particularly true in 
quaternary care systems where highly-specialized resources 
are limited, demand may be high, and patients have often 
experienced extensive barriers to obtaining care such as 
travel and appointment coordination. This paper considers 
a scheduling coordination setting where patients are sched-
uled for complex procedures which are highly uncertain in 
their duration and technologists supporting the procedures 
need to be scheduled in an efficient manner while maintain-
ing high service levels for patient access.

Intraoperative Neurophysiologic Monitoring (IONM) 
measures neural function and integrity as per an estab-
lished strategy to reduce the risk of injury during surgery 
[6]. IONM services requested for complicated neurosurgi-
cal procedures has steadily increased [7]. In general, IONM 
is extensively used in spinal, cranial, and brainstem types 
of surgeries and is commonly utilized by various specialties 
including Orthopedics, Cardiovascular Surgery, Neurologic 
Surgery, and Otorhinolaryngology. IONM is performed by 
highly trained technologists and is monitored by a neuro-
physiologist on-site.

An IONM technologist monitors different modalities that 
can give real time information regarding the integrity of 
different neural pathways during surgery including motor 
evoked potentials (MEP), somatosensory evoked poten-
tials (SSEP), electroencephalography (EEG), and electro-
myography (EMG) and is usually required throughout the 
duration of specific surgeries. In our practice, the daily aver-
age number of IONM surgeries, i.e., surgeries that require 
IONM, is 8.2 and ranges from 5 to 15. To ensure adequate 
coverage, 8 IONM technologists may be scheduled in a typ-
ical day. As the duration of IONM surgeries ranges from 60 
to 810 min with an average of 400 min, the variability in the 
volume of IONM cases and their duration create substantial 
challenges for IONM scheduling decisions.

Most of the quality improvement efforts in IONM con-
texts have primarily focused on surgery outcomes [8] and 
staffing studies mostly center around neurologists and other 
neurophysiologists in IONM volume, case type, duration, 
numbers of concurrent cases, and physical location of the 
monitoring [9]. While the ultimate decision making is 
dependent on the interpreting neurophysiologist, it is the 
IONM technologist that is typically performing the physi-
cal monitoring in the operating room with practice guide-
lines published to assist increasing their capability [10]. In 
most spine surgeries that require instrumentation, IONM 

monitoring is considered the standard of care, reflecting the 
importance of IONM technologists’ role and responsibility. 
This paper proposes multiple scheduling methods for IONM 
technologists which meet the demand of IONM surgeries. 
As per the current practice, the schedules of IONM surger-
ies are asynchronous with the IONM technologists’ sched-
ules, which significantly adds to their overtime and low 
utilization. Therefore, this study aims to propose scheduling 
methods which meet the demand for IONM technologists 
while simultaneously reducing their overtime and increas-
ing their planned staff utilization and potentially reduces the 
number of concurrent IONM cases. The scheduling meth-
ods or operational scenarios proposed attempt to improve 
upon these goals by either (1) adjusting the IONM surgery 
schedules, (2) adjusting the IONM technologists’ sched-
ules, or (3) simultaneously adjusting both in a coordinated 
fashion. In the next section, we describe the optimization 
approaches undergirding the proposed methods.

Methods

Four scheduling operational scenarios (3 proposed and 1 
current practice) are presented in this section that define 
the IONM technologists’ schedule such that the demand 
of IONM surgeries is satisfied and the total overtime and 
under-utilization time of IONM technologists is reduced 
with respect to the current practice. Overtime is defined as 
the time (in minutes) spent on monitoring surgery by the 
IONM technologists beyond their scheduled shift end time 
while the under-utilization is defined as the total time (in 
minutes) in their scheduled shift when IONM technologists 
are not in surgery.

Our practice uses the OpTime module within Epic for 
Operating Room (OR) scheduling. When someone lists a 
surgery, they simply add an IONM technologist to the list 
of staffing resources needed for the case. When the case is 
scheduled in a specific OR on a specific date and time the 
Epic system runs a concurrency check to verify that the num-
ber of concurrent cases requesting IONM resources does 
not exceed resource availability. The system also checks the 
total number of cases requesting IONM resources for the 
day and verifies the daily limit is not exceeded. The com-
bination of these two checks ensures that the neuro-physi-
ologist on-site is not overwhelmed with too many cases at 
the same time and that IONM technologists are not over-
whelmed with too many cases in a day.

An example based on a typical surgery day is selected to 
describe and demonstrate all four operational scenarios. This 
particular day consists of five IONM surgeries with dura-
tions of 360, 390, 390, 420, and 600 min, respectively. The 
example day had five IONM technologists assigned since 
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all five surgeries were scheduled concurrently at some point 
in time. Figure 1 shows the resulting schedule for IONM 
technologists and surgeries under all four operational sce-
narios along with the accumulated surgeries at any given 
30-minute time interval. The total overtime (the grey bar 
outside the staffing line in Fig. 1) and under-utilization (the 
white area within the staffing line in Fig. 1) for all IONM 
technologists is also shown. The subsequent descriptions 
of the scheduling operational scenarios will refer to Fig. 1 
and its example for illustrative purposes and each scenar-
io’s description. A larger set of test cases is later used in 
the Results section to demonstrate the performance of the 
proposed operational scenarios.

Operational Scenario 1: Current Practice

This scenario represents the current practice where all 
IONM technologists start in the beginning of the day while 
the start times of IONM surgeries depend on surgeons’ pref-
erences. IONM technologists generally prefer the shift start-
ing from 7:00 am to 4:00 pm with a 30-minute preparation 
time from 7:00 to 7:30 am. Operational scenario 1 in Fig. 1 
gives the schedule of five IONM surgeries. Two surgeries 
(420 and 600 min) start at 7:30 am and one each starting 
at 8:00 am (390 min), 8:30 am (360 min), and 11:30 am 
(390 min). As all five IONM technologists start monitor-
ing at 7:30 am, their scheduled coverage ends at 4:00 pm 
which leads to 210 min of total overtime and 600 min of 
total under-utilization; a total of 810 min.

Operational scenario 2: Determine Optimal Surgery 
Schedule

This scenario assumes that IONM surgeries can be sched-
uled according to IONM technologists’ schedule. An opti-
mization-based approach is adopted. The objective is to 
minimize the total overtime and under-utilization time. The 
decisions are to determine the start time of each IONM sur-
gery. The constraints include IONM staffing at any given 
time, number of IONM surgeries, number of operating 
rooms, operating hours, and how surgeries can be overlaid 
for the same surgeon.

In general, for a given IONM technologist’s schedule, an 
IONM surgery is allocated to available IONM technologists 
in the order of their surgery times such that surgeries with 
longer surgery times are started as early as possible. This is 
to avoid overtime resulting from delayed starting of longer 
surgeries. In the example, as all five IONM technologists 
start their shift at 7:00 am, the optimization model decision 
for scenario 2 in Fig. 1 schedules three IONM surgeries 
(360, 390, and 600 min) to start at 7:30 am and one each 
starting at 8:30 am (390 min) and 9:00 am (420 min). This 
schedule generates 90 min of total overtime and 480 min of 
total under-utilization for IONM technologists with a total 
of 570 min, yielding a reduction of 57% total overtime, 20% 
total under-utilization time, and 30% in total over scenario 
1 (current practice). The 600-minute IONM surgery is the 
only case that exceeds technologist availability.

Fig. 1 The four scheduling 
operational scenarios are illus-
trated based on an example for a 
day with 5 surgical cases and 5 
IONM technologists. Overtime 
and under-utilization time are 
presented for each scenario
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IONM surgeries) are required. The objective is, again, to 
minimize the total overtime and under-utilization time. The 
optimization-based algorithm iterates between scenario 2 
and scenario 3 until the objective converges and no lon-
ger improves between iterations. This method is initialized 
using a given IONM technologists’ schedule from current 
practice and is assumed to be the current best IONM tech-
nologists’ schedule. The optimization starts with the deci-
sion on the current best IONM surgery schedule for the 
current best IONM technologists’ schedule (operational sce-
nario 2). Then the current best IONM technologists’ sched-
ule is updated with the current best IONM surgery schedule 
(operational scenario 3). The algorithm continues to iterate 
and terminates when scheduling decisions and the objective 
values show no change between iterations. The current best 
IONM technologists’ and IONM surgery schedule after ter-
mination are considered as the final schedules.

Figure 3 demonstrates three iterations of scenario 4 in 
the aforementioned example involving five IONM surger-
ies and five IONM technologists. Scenario 4 is initialized 
with all five IONM technologists starting their shift at 7:30 
am as in Method (1) In Iteration 1, this IONM technolo-
gists’ schedule (considered as current best IONM technolo-
gist schedule) acts as the input to scenario 2 yielding the 
current best IONM surgery schedule with 570 min of total 
overtime and under-utilization for IONM technologists. In 
Iteration 2, the current best IONM surgery schedule from 
Iteration 1 acts as the input for scenario 3 which outputs the 
updated current best IONM technologist schedule, leading 
to a total of 390 min of overtime and under-utilization time. 
As total overtime and under-utilization time from Iteration 
1 is not equal to the one resulting from Iteration 2, scenario 
4 executes Iteration 3 where the current best IONM tech-
nologists’ schedule from scenario 3 is again provided as 

Operational Scenario 3: Determine Optimal 
Technologist Schedule

This scenario determines the IONM technologists’ sched-
ules for a given IONM surgery schedule. An optimization-
based approach is also used. The objective is to minimize 
the total overtime and under-utilization time. The decision 
is to determine the start time of each IONM technologist. 
The constraints include the number IONM surgeries at any 
given time, the number of IONM technologists, and IONM 
technologist work hours.

The number of IONM technologists required by a sur-
gery schedule is determined by the maximum number of 
concurrent surgeries at any point of time. In the current 
practice, these IONM technologists are allocated to the sur-
geries randomly such that the same IONM technologist is 
not allocated to multiple surgeries at any point of time. In 
the example, for the IONM surgery schedule stated in sce-
nario 1, scenario 3 in Fig. 1 shows that the optimization-
based decision schedules two IONM technologists to start at 
7:30 am, and one each at 8:00 am, 8:30 am, and 11:00 am. 
This results in 30 min of total overtime and 420 min of total 
under-utilization for IONM technologists yielding a reduc-
tion of 86% in total overtime, 30% in total under-utilization 
time, and 44% in total as compared to scenario 1.

Operational Scenario 4: Determine Optimal Surgery 
and Technologist Schedule

Figure 2 outlines operational scenario 4. Here, we assume 
flexible start times for both IONM technologists and surgical 
cases. An iterative optimization-based approach is adopted 
since two scheduling decisions (IONM technologists and 

Fig. 2 The algorithm for iterative 
optimization-based model (opera-
tional scenario 4) is illustrated as 
iterating between the decision on 
surgery (operational scenario 2) 
and technologist schedule (opera-
tional scenario 3)
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operations research [11]. Optimization methods have been 
applied in a range of health care delivery settings such as 
optimal treatment design, patient scheduling, resource 
allocation, and pharmacy inventory management [12–14]. 
Much of the literature using optimization methods applied 
to coordinating staff and resources in surgery or procedure 
settings has been in the context of nurse scheduling in oper-
ating suites [15, 16]. While most surgery scheduling optimi-
zation models are focused on surgery-to-room assignments 
or developing block-based schedule structures, there have 
also been optimization-based approaches on scheduling 
staff who are integral to the surgeries or procedures [17]. 
The authors’ model simultaneously develops a master sur-
gery schedule and nurse staffing schedule based on various 
workload requirements. However, simultaneously obtaining 
such schedules is shown to be computationally burdensome 
and the authors propose a column generation approach that 
is shown to be able to solve the model in reasonable time. 

input to scenario (2) This iteration yields the same results 
as Iteration 2, so scenario 4 terminates with the current best 
IONM technologists’ and surgery sched- ule as the final 
schedules. To be noted, each iteration improves the objec-
tive (total overtime and under-utilization time). Since the 
total time of 390 min all comes from under-utilization time, 
the IONM technologists are adjusted from five to four; see 
Fig. 4. We then rerun scenario 4. After three iterations, the 
method terminates and yields a result of 360 min total time 
(240 min overtime and 120 min under-utilization time), 
which improves the objective. However, the scheduled 
IONM technologist hours need to be extended for two hours 
to accommodate this resource reduction.

A Note on the Optimization-based Methods

The optimization-based methods described in this sec-
tion draw from the math programming discipline within 

Fig. 3 Three iterations of opera-
tional scenario 4 are presented for 
an example of 5 IONM surger-
ies with 5 IONM technologists. 
The optimization iterations are 
terminated at the iteration 3 since 
overtime and under-utilization 
time remain the same between 
iteration 2 and 3
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The optimization-based methods in this paper were 
implemented in Microsoft Excel Solver [24], which is 
a spreadsheet-based solver with a user interface within 
Microsoft Excel. Excel Solver was chosen due to it being 
widely available for implementation without the use of 
sophisticated commercial solvers. However, Excel Solver is 
also limited by the number of variables and constraints in a 
model. As a result, instead of combining the two objectives 
into a single model which is too large for Excel Solver, the 

Column generation was also used to mitigate computational 
challenges in [18] where the authors include a multi-objec-
tive model to which schedules nurses to surgeries based on 
specialty and competency. The scope of surgery scheduling 
models continues to broaden, notably in the incorporation of 
upstream and downstream capacity considerations [19–21] 
and in the use of implementable heuristics [22, 23]. Yet, the 
scheduling of auxiliary staff in surgical planning requires 
further investigation.

Fig. 4 Three iterations of opera-
tional scenario 4 are presented for 
an example of 5 IONM surger-
ies with 4 IONM technologists. 
The optimization iterations are 
terminated at the iteration 3 since 
overtime and under-utilization 
time remain the same between 
iteration 2 and 3
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surgery schedule and outperforms scenario 1 by improving 
the total overtime by 63% and total under-utilization time 
by 37% on average. Operational scenario 4 which imple-
ments scenario 2 and scenario 3 iteratively reduces the total 
overtime by 74%, total under-utilization by 86%, and the 
number of IONM technologists scheduled by 10% as com-
pared to the current practice. Table 2 also shows that, on 
average, scenario 2 is outperformed by scenario 3, which 
is outperformed by scenario 4. Note that Test Cases 3 and 
10 using scenario 4 extend IONM technologist schedule by 
two hours and one hour, respectively. The other eight days 
are able to complete the day within the longest surgery dura-
tion. Based on internal discussions and practice feedback, a 
two-hour delay is reasonable as long as overtime and under-
utilization time are improved significantly.

Discussion

Surgery scheduling has received significant attention in 
the literature [25–27]. In addition, the impact on surgery 
sequencing and scheduling on operational performance 
measures such as staffing, operating room over/under uti-
lization, and costs have been studied [28–31]. However, 

iterative approaches were developed to ensure their usabil-
ity by the partnering practice as well as for broader uptake 
in other organizations. The software allows for inputs from 
different databases and can run on most personal comput-
ers, making its implementation transition within the prac-
tice setting simple. An example screenshot of the program 
is included in the Fig. 5 with explanation on spreadsheet 
modeling and setting up solvers.

Results

The four scheduling methods are compared using 10 test 
case days from our practice. The test cases’ data are sum-
marized in Table 1. Results are shown in Table 2 where 
each row gives compares the total overtime and under-
utilization time for IONM technologists and the number 
(under the heading staff) scheduled each day. Operational 
scenario 2, which matches the IONM surgery schedule to 
a given IONM technologist schedule, outperforms the cur-
rent practice (operational scenario 1) by reducing the total 
overtime by 49% and total under-utilization time by 29%, 
on average. Operational Scenario 3, on the other hand, 
matches the IONM technologist schedule to a given IONM 

Fig. 5  A screenshot of the imple-
mentation of iterative optimiza-
tion model using Excel Solver 
illustrates how excel functions 
and solvers are set up. The top 
portion presents how spreadsheet 
is arranged and modeled. The 
bottom portion demonstrates 
how solver is set up in relation to 
spreadsheet
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schedules which may violate some of the working con-
straints such as the latest hour by which the technologists 
are willing to start their shift, maximum number of desired 
shifts in a day, the time difference between shifts, and the 
maximum number of technologists in each shift. Thus, to 
resolve this problem we develop four IONM technologist 
staffing levels that satisfy these working constraints. These 
are illustrated in Fig. 6. Once the staffing level is decided, 
the IONM surgery schedule is constrained by it when using 
scenario 2.

For our practice, the latest shift start time preferred by 
IONM technologists is 11:00 am and the maximum time dif-
ference between shifts is upper-bounded at 90 min. Hence, 
in Fig. 6, we consider IONM staffing with one (Staffing 
1), two (Staffing 2), three (Staffing 3), and four (Staffing 
4) technologists per shift with the start time of each shift 
uniformly distributed between 7:30 am to 11:00 am. Table 3 
compares the performance of the four IONM staffing pat-
terns proposed in Fig. 6 over the 10-day data set stated in 
Table 1. As seen in Table 3, Staffing 1 yields the minimum 

less is understood regarding methods to coordinate highly-
specialized procedure staff and resources and surgery sched-
ules. In this paper, we presented and evaluated four methods 
for coordinating IONM technologists and surgeries.

The results in the previous section illustrate the improve-
ments in overtime and under-utilization of IONM resources 
associated with the optimization-based approaches pre-
sented in this paper. Operational scenario 4 significantly 
reduces the total overtime and under-utilization of IONM 
technologists as compared to all other scenarios, includ-
ing the current practice. However, the assumption of flex-
ible start times of both IONM surgeries and technologists 
may not be reasonable for some health care organizations. 
As surgery start times are often driven by surgeons’ prefer-
ences and are difficult to be altered, scenario 3 seems to be 
the most preferable among the proposed methods. Hence, 
distributing IONM technologists start times throughout a 
day is a potential solution to reduce IONM staff overtime 
and under-utilization rather than all technologists starting 
at 7:00 am. However, this may lead to IONM technologist 

Table 2 Four Scheduling Operational Scenarios Comparison across 10 Test Instances for Overtime, Under- utilization, and Staffing level

 

Table 1 Summary Statistics of 10-day Data Set (rounded to the nearest ten for duration)
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most effectively schedule IONM surgical cases and technol-
ogists. Three scheduling operational scenarios are presented 
and compared with current practice with respect to tech-
nologist overtime and under-utilization time. Our results 
show that scenario 4, which uses an iterative optimization 
approach for scheduling between surgical cases (operational 
scenario 2) and IONM technologists (operational scenario 
3), significantly reduces overtime by 74% and under-under-
utilization time by 86% as well as technologist needs by 
10%. For practices that do not have flexibility to alter sur-
geon preference or IONM technologist staffing levels, they 
can select either scenario 2 or scenario 3 according to their 
objectives. Both these methods also result in substantial 
reduction in technologist overtime and under-utilization 
time. While intended to achieve balance between surgical 
case preferences and IONM technologist schedules, one 
can develop a reasonable technologist staffing levels simi-
lar to the ones discussed in the Discussion section and use 

average total overtime and under-utilization for IONM tech-
nologists among all four staffing patterns. Moreover, Staff-
ing 1, Staffing 2, Staffing 3, and Staffing 4 give improvement 
of 41%, 38%, 37%, and 28%, respectively, over scenario 2 
in Table 2 where all IONM staff start at 7:00 am. Note that 
although Staffing 1 is the best choice among the feasible 
alternatives, the choice is still left with individual practices.

Conclusion

Resource coordination in surgical scheduling remains 
challenging in health care delivery system due to surgeon 
preference, especially in requesting a highly-specialized 
resource such as IONM technologists. Limited access to this 
type of resource creates constraints to surgical quality and 
outcomes. To maximize the efficiency in utilizing IONM 
resources, we adopted optimization-based approaches to 

Fig. 6 Four possible schedule structures for eight IONM technologists: one starts every 30-minute from 7:30 to 11:00 am (Staffing 1), two start 
every hour from 7:30 to 10:30 am (Staffing 2), three start every 90-minute from 7:30 to 10:30 am (Staffing 3), four start at 7:30 am and at 9:00 
am (Staffing 4)
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neurophysiologic monitoring programs. Neurodiagnostic Jour-
nal, 53(1):46–57, 2012.

9. Marc R Nuwer, Bruce H Cohen, and Katie M Shepard. Practice 
patterns for intraoperative neurophysiologic monitoring. Neurol-
ogy, 80(12):1156–1160, 2013.

10. Jeffrey H Gertsch, Joseph J Moreira, George R Lee, John D 
Hastings, Eva Ritzl, Matthew A Eccher, Bernard A Cohen, Jay 
L Shils, Michael T McCaffrey, Gene K Balzer, Jeffrey R Balzer, 
Willy Boucharel, Lanjun Guo, Leah L Hanson, Laura B Hemmer, 
Faisal R Jahangiri, Jorge A Mendez Vigil, Richard W Vogel, Law-
rence R Wierzbowski, Bryan Wilent, James S Zuccaro, Charles 
D Yingling, and membership of the ASNM. Practice guidelines 
for the supervising professional: intraoperative neurophysiologi-
cal monitoring. Journal of Clinical Monitoring and Computing, 
33(2):175–183, 2019.

11. Lieberman Hillier and Gerald J Lieberman. Introduction to opera-
tions research, 1980.

12. William Crown, Nasuh Buyukkaramikli, Praveen Thokala, Alec 
Morton, Mustafa Y Sir, Deborah A Marshall, Jon Tosh, William 
V Padula, Maarten J Ijzerman, Peter K Wong, et al. Constrained 
optimization methods in health services research — an introduc-
tion: report 1 of the ispor optimization methods emerging good 
practices task force. Value in health, 20(3):310–319, 2017.

13. Muge Capan, Anahita Khojandi, Brian T Denton, Kimberly D 
Williams, Turgay Ayer, Jagpreet Chhatwal, Murat Kurt, Jennifer 
Mason Lobo, Mark S Roberts, Greg Zaric, et al. From data to 
improved decisions: Operations research in healthcare delivery. 
Medical Decision Making, 37(8):849–859, 2017.

14. Yu-Li Huang, Alan H Bryce, Tracy Culbertson, Sarah L Connor, 
Sherry A Looker, Kristin M Altman, James G Collins, Winston 
Stellner, Robert R McWilliams, Alvaro Moreno-Aspitia, Sikan-
der Ailawadhi, and Ruben A Mesa. Alternative outpatient chemo-
therapy scheduling method to improve patient service quality and 
nurse satisfaction. Journal of Oncology Practice, 14(2):82–91, 
2018.

15. Lim, G. J., Mobasher, A., Kardar, L., & Cote, M. J.  Nurse sched-
uling. In Handbook of healthcare system scheduling (pp. 31–64). 
Springer, Boston, MA, 2012.

16. Cardoen, B., Demeulemeester, E., & Beliën, J. Operating room 
planning and scheduling: A literature review. European Journal of 
Operational Research. 201(3):921–932, 2010. 

17. Beliën, J., & Demeulemeester, E.  A branch-and-price approach 
for integrating nurse and surgery scheduling. European Journal of 
Operational Research. 189(3):652–668, 2008.

them as a constraint when scheduling surgical cases. All 
optimization-based approaches presented in this paper are 
able to maximize utilization of IONM resources and have 
the potential to reduce costs significantly.
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