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Abstract Today, implanted medical devices are increasingly
used for many patients and in case of diverse health problems.
However, several runtime problems and errors are reported by
the relevant organizations, even resulting in patient death. One
of those devices is the pacemaker. The pacemaker is a device
helping the patient to regulate the heartbeat by connecting to
the cardiac vessels. This device is directed by its software, so
any failure in this software causes a serious malfunction.
Therefore, this study aims to a better way to monitor the de-
vice’s software behavior to decrease the failure risk.
Accordingly, we supervise the runtime function and status of
the software. The software verification means examining lim-
itations and needs of the system users by the system running
software. In this paper, a method to verify the pacemaker
software, based on the fuzzy function of the device, is present-
ed. So, the function limitations of the device are identified and
presented as fuzzy rules and then the device is verified based
on the hierarchical Fuzzy Colored Petri-net (FCPN), which is

formed considering the software limits. Regarding the experi-
ences of using: 1) Fuzzy Petri-nets (FPN) to verify insulin
pumps, 2) Colored Petri-nets (CPN) to verify the pacemaker
and 3) To verify the pacemaker by a software agent with Petri-
network based knowledge, which we gained during the previ-
ous studies, the runtime behavior of the pacemaker software is
examined by HFCPN, in this paper. This is considered a de-
veloping step compared to the earlier work. HFCPN in this
paper, compared to the FPN and CPN used in our previous
studies reduces the complexity. By presenting the Petri-net
(PN) in a hierarchical form, the verification runtime, de-
creased as 90.61% compared to the verification runtime in
the earlier work. Since we need an inference engine in the
runtime verification, we used the HFCPN to enhance the per-
formance of the inference engine.
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Introduction

Nowadays, the implantable medical devices are increasingly
used. According to the U. S Food and Drug Administration
(FDA), the medical devices sale has increased 56% between
2004 and 2009, while the drug sale has increased only 38% [1,
2]. The medical devices, whose main purpose is medical care,
are used to cure and prevent abnormal physical conditions
without manual intervention in human body. Medical devices
are categorized into three classes: the first class is at minimal
risk for patients including simple equipment such as tongue
depressors and handheld surgical instruments. The higher risk
devices like wheelchairs, surgical needles and insulin pumps
are placed in class II. The class III devices have higher risks
and it is important to guarantee their normal accurate function
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in every situation. Examples of these devices include cardiac
pacemakers and neurostimulators, and replacement heart
valves. These devices can monitor the health conditions of
the patient everywhere, even in remotely, thanks to the con-
nection to the patient body. These devices have some software
applications controlling their behavior and activities.
Regarding the dispersion of the hospitals and their wide un-
availability for the patients, the proper and accurate function
of these devices should be guaranteed. Between 2006 and
2011, 2294 fault cases and 1,154,451 side effects cases were
reported by FDA due to the medical devices malfunction.
92,600 cases of these reports include injuries, and 4590 cases
are fatal. 1210 (22.9%) of these faults were blamed on the
medical device software applications [1]. Among these, there
were 234 device operation failures in class II devices and 23
cases in class III. Again there were 311 calculation or output
errors in class II devices and 20 cases in class III [1]. One of
the ways to decrease such malfunction is using software ver-
ification methods as a tester beside a medical device.

As mentioned before, a pacemaker is a device helping reg-
ulation of the heart beat by connecting to the cardiac vessels.
The pacemaker is implanted under skin by an expert and is
used to cure arrhythmia. Irregularity in the normal heart rate is
called arrhythmia. Formerly, a pacemaker was a simple device
stimulated the heart muscles in order to produce pulses in a
regular rhythm [3]. Figure 1a and b show the older and current
pacemaker respectively [4].

Figure 1b shows that, logic and control parts have been
added to the modern pacemaker which can make decisions
about the device functioning while receives information di-
rectly from the attached sensors. Modern pacemaker devices
include one or more sensors that can identify the patient body
changes made by exercise or increasing metabolism. The in-
formation received from the sensors help the pacemaker to
plan the heart rate for an individual and personalize the device
[4]. As this device is set once at the beginning and then it has
to keep working accurately in the body for 5 to 10 years with-
out any regular physical availability, assurance of its function-
ing accuracy is essential.

The above mentioned problems of a medical device can be
dealt with by either: (1) examining description and structure of
its software (static verification) or, (2) Examining the runtime
function of the software (runtime verification). In the first
method, the correctness of limitations and needs of the users
are addressed. Despite the correctness of the software descrip-
tion, due to the possibility of error, in its implementation and
impossibility of its perfect prediction in the software environ-
ment, the software may have an error while running. Proving
the correctness of the software is complicated and not simply
possible due to the large number of the running states of the
software.

In the second method, the device runtime function is ex-
amined. The runtime verification studies, develops and imple-
ments the verification approaches which allow examination of
the user’s needs, goals, and limitations. Based on the previous
experiences of the authors, the insulin pump and pacemaker
software is verified, which will be described later.

Regarding the above mentioned items, runtime verification
can be a solution to verify pacemaker behavior that will be
described in BThe proposed method^ section. In this paper,
runtime verification is performed by a software monitor, which
momentarily controls accuracy of the target software running,
regarding the software inputs status in order to prevent any
error and unsafemode, if any, or report it. This runtimemonitor
includes the knowledge which is the accurate process of the
software running. Therefore, in this paper, knowledge repre-
sentation techniques are used in the runtime monitoring.

In recent years, different knowledge representation
methods have been introduced, some of which are as follows:
Weighted Fuzzy Production Rules(WFPRs); Disjunctive
Logic Programming; Semantic Networks; Extended
Hierarchical Censored Production Rules; FPNs; Ontology
and the Entity Relation Propagation Diagram Tree [5, 6].
One of the knowledge representation techniques is PN.
Regarding the advantages of PN in software modeling based
on the software descriptions and limitations, also considering
the requirement of fuzzy inference, FPN is used instead of PN
for verification in this study.

Fig. 1 a The old pacemaker device [4]. b. The modern pacemaker device [4]
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FPN was used in our previous research to verify the insulin
pump [7]. The insulin pump is a device used in the body of the
patients with diabetes, helping to regulate their blood sugar.
Applyingmeasurement sensors, this devicemomentarily mea-
sures the blood sugar and other factors influencing the blood
sugar measurement such as the insulin produced by the
human’s body and four other parameters and also calculate
the insulin which needs to be injected. Regarding the uncer-
tain behavior of the insulin pump, FPN was used to examine
the correctness of runtime function, resulting in the exact ver-
ification of the insulin pump’s behavior. There will be a large
network with 26 places and 277 transitions by using FPN for
pacemaker and then the speed of the verification will be
slowed. In this paper, FPN and CPN will be combined, then
the scale of the network will be reduced to 6 places and 277
transitions, also, by using hierarchical FCPN, the scale of the
network will be reducing to 6 places and 26 transitions. The
pacemaker verification by contribution of a software agent
with PN-based knowledge is also presented by the authors
previously in [8] that only three parameters of the parameters
influencing the heartbeat calculation are used. In the current
paper, these parameters will be increased to five, and the struc-
ture will be changed to HFCPN.

The pacemaker verification has been done in [9] using the
CPN, in which the previousmethod has been improved and the
verification has got a more accurate structure than the previous
experience. By using the CPN for the pacemaker, the scale of
the network has been reduced to 6 places and 277 transitions.
Examining the potentiality of transition for firing is very time-
consuming. Then we will change the structure of the network
to hierarchical to reduce the scale of it to 6 places and 26
transitions. In the current paper, the past approaches will be
developed to HFCPN instead of nonhierarchical FCPN and the
number of parameters influencing the measurement of the
heartbeat control will be increased to five cases, then the
runtime verification will be improved to 90.61%which is elab-
orated in BThe proposed method^ section.

In [10, 33], PN is used to control the system behavior of the
insulin pumps. Using PN, the accurate behavior of the insulin
pump is modeled and its inaccurate behavior is identified if the
system safety is not assured. In [7], to examine the accurate
behavior of the insulin pump software, the FPNs are used.
Every time the insulin pump software is run, its behavior is
compared to the PN, so that when a runtime error occurs and
in the case of unsafe behavior of the software, its inaccurate
running can be prevented. [11] Presents a method to examine
the medical equipment behavior using PN. In this reference,
PN is used to track system operational and security needs. To
show how to do this, injection pump is used as a medical
device. [12] Modeled real time systems including cardiac
pacemaker, using the timed automata and then automatically
launched model checking process to produce a code. Then
consider preserving security properties transformed from a

model to code in order to guarantee the security properties
of the code and a strategy to identify the errors in the insulin
pump system using the blood sugar continuous control is pro-
posed. [13, 14] have used the combination of the fuzzy infer-
ence and PN to identify the certainty failure and analysis. In
[13], the hardware implementation corresponding to the PN is
presented which provide a fast implementation of the PN. In
[15], PNs are applied as Rule-based expert systems for the
distributed systems inference. In [16] designs a rule-based
system to make decision about Arteriovenous Shunt
Stenosis diagnosis. [15] used CPN as an inference engine on
the semi-parallel knowledgebase to find the appropriate
switching function for the services of the parallel distributed
systems. In [17], the identification and control systems in nu-
clear power plants are automatically monitored by an FCPN.
Fault identification modeling using an FCPN is applied in
[14]. In [18], a reliable multi-level routing algorithm is pre-
sented which uses an FPN for cluster head selection and
choosing one route among the cluster heads next.

This paper presents a newmethod for runtime verification of
the pacemaker function. The runtime verification is carried out
by a software monitor, which momentarily controls accuracy of
the target software running, regarding the software inputs situ-
ation in order to prevent any error and unsafe mode, if any, or
report it. Instead of directly changing the code into a high level
design, we made a design mechanism for running stage as an
applicable model of software description which can be imple-
mented as an abstract inference engine and can refine medical
devices rules. This abstract inference engine is a HFCPN.

In BBackgrounds^ section, an overview of the backgrounds
is presented. In BJustification of using the Petri-nets^ section,
benefits of PN over knowledge-based system are discussed.
Next, the proposed method is explained in BThe proposed
methods^ section and some scenarios are presented in
BExperiments results^ section. Finally in BDiscussion^ sec-
tion, discussion and future works are presented.

Backgrounds

Fuzzy expert system

Fuzzy logic is a relatively new concept introduced in 1965 by
Zadeh. The difference between crisp and fuzzy sets is
established by introducing a graded membership function.
The membership functions of the five input parameters used
in this paper and their areas are described in BThe proposed
method^ section.

In Fig. 2, a typical expert system is shown. One of the
major parts of an expert system is its inference engine. The
inference engine can make decisions and determine the output
value based on its accompanying knowledgebase. Fuzzy ex-
pert system (Fig. 2) usually has four major components:

J Med Syst (2017) 41: 27 Page 3 of 21 27



(1) Fuzzification interface; this component is used to define
the fuzzy sets used to represent linguistic values in
the fuzzy rules and translate crisp (definite) values
into linguistic values. A fuzzy set is characterized
by a membership function associating each variable
with a membership degree value. In real world, the
variables of the Pacemaker are fuzzy. The set mem-
bership functions of input and output parameters
are shown in BFuzzification of the inputs and output
of the pacemaker^ section and BObtaining pacemaker
constraints^ section.

(2) Fuzzy knowledge base; this component consists of fuzzy
rules in form of IF-THEN rules.

(3) Fuzzy inference engine; this component is used for rea-
soning fuzzy rules and input values.

(4) Defuzzification interface, which translates fuzzy set out-
put values into crisp values. For defuzzification of out-
put, all fuzzy outputs of the system are aggregated with a
union operator. In fact, aggregation is unification of all
rule outputs.

An example of this process is shown in Fig. 3. This
figure indicates that the aggregation of three types of
fuzzy rules where output of rules C1, C2 and C3 are
0.1, 0.2 and 0.5, respectively and the aggregated rule
has been specified by the Σ notation. The input to the
expert system and the values produced temporarily are
stored in the working storage and then used in the next
decision makings.

Among other defuzzification techniques, we use the
centroid defuzzification known as center of gravity or
center of area defuzzification. This is the most commonly used

and accurate deffuzification technique, which is expressed
as (1) [19]:

x* ¼

Z
μi xð Þxdx

Z
μi xð Þdx

ð1Þ

Where x* is the defuzzified output, ∫μi xð Þ is the aggregated
membership function and x is the output variable. It must be
noted that the difficulty of computation for complex member-
ship functions is the main problem of this method. The pace-
maker is in fact a fuzzy expert system as it makes decisions
based on the input values and regarding the knowledge
existing in its knowledgebase and acts accordingly.

Fuzzy Petri-net

PN theory provides a graphical language (model) for describ-
ing software needs and limitations. PN has the capacity to
provide a simple strategy for control, correctness, consistency,
and completeness of the software [5]. PN as a runtime simu-
lator has an intuitive capability in visual representation of the
logic. These capabilities are applicable in the software using
the logic and rules. By graphically satisfying the needs and
limitations of the software which is working based on the
logic, the complication of decision making in a PN is reduced
to one route [20]. PN approach can be easily combined with
other techniques and theories such as programming, fuzzy
theory, neural networks, and so on. These modified PNs are
widely used in computer; manufacturing; robotic; knowledge
based system; process control; as well as other engineering
applications. For example, FPN is used for modeling, analyz-
ing, and inference in knowledge-based systems (KBSs) [21].

Colored Petri-nets

CPN is a tool by which validation of discrete-event systems can
be studied and modeled. CPNs are used to analyze and obtain
significant and useful information from the structure and dy-
namic performance of the modeled system. CPN mainly focus
on synchronization, and concurrency of asynchronous events
[22]. The graphic features of CPNs specify the applicability and
visualization of the modeled system. Furthermore, synchronous
and asynchronous events present their prioritized relations and
structural adaptive effects. PN characteristics are:

1) More activeness for its graphical presentation,
2) Not allotting to specific systems,
3) Being proper in modeling all systems,
4) Less planning but efficient elements which caused the sim-

ple use of this tool. FCPN is a special kind of FPN. In
FCPN, tokens, places, and transitions can be colored [17].Fig. 3 Aggregation of three rules

Fig. 2 Fuzzy Expert System
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FCPN is a combination of two CPN and FPN networks in
which the tokens, places, and transitions are colored, while
they have fuzzy and CPN characteristics, too.

In this paper, FCPN is used for presentation of the pace-
maker knowledge. PN is used in a fuzzy form because of
uncertain quantities measured by input sensors and therefore
the uncertain rules of decision making. CPN decreases the
number of input places and makes decision making simple,
compared to the non-colored state. In this paper, a combina-
tion of CPN and FPN is used to represent the runtime verifi-
cation knowledge of the pacemaker, which will be shown in
BThe Proposed Method^, and a comparison of the application
results and advantages of CPN and FPN combination are pre-
sented in BExperiments Results^ in a simple and hierarchical
form. The hierarchical or high-level PNs are hierarchical pre-
sentation of a PN structure whose advantages include hiding
details in an inference, dividing the network into the accessi-
ble and comprehensible parts, making single reusable subnets,
supporting bottom-up and top-down system design, and high
graphical expression. Regarding the above mentioned advan-
tages, HFCPN, whose application in FCPN network is
discussed in BExperiments Results^, is used.

HFCPN as an expert system substitute three categories of
inference engine, knowledge base, and working storage.
These parts are shown within the red box in Fig. 2. The expert
system’s knowledge base in the HFCPN is identified using the
rules on each transition. The tokens located at each place in a
running PN indicate the facts in the working storage.
Therefore, we can simply substitute an inference engine of
the expert system with a HFCPN. As said before, these phases
are elaborately described in BThe Proposed Method^.

Justification of using the Petri-nets

Using PNs in knowledge-based systems has got some advan-
tages. Below some of these advantages are listed:

– PN’s graphical nature simulates the firing mechanism
very well by token movement (replacement) along the
network and makes PN a suitable development tool for
rule-based systems.

– PN has well-established formal mechanisms for modeling
and checking features of the parallel and concurrent struc-
tures which are used to obtain parallel AND/OR in rule-
based systems.

– PNmathematical base represents a dynamic behavior and
system formation in an algebraic formation.

– When a rule changes to a PN, the indefinite inference
problem can turn into a linear equation which is solvable
in a parallel form [23].

– Inference route in a complicated expert system reduces by
FPN to a simple sprouting tree [5, 24].

– FPN allows checking the features of the modeled systems
using main features of the PNs such as correctness, con-
sistency, and reachability [5].

– FPNs are also used to represent fuzzy knowledge and
inference; many results have shown that FPN is appropri-
ate to represent and reason in misty logic implication
relations [25].

– Different studies proved that FPN is the best choice for
representing and inferring logical relations in expert sys-
tems [26].

– The main advantage of using PNs in a rule-based system
is providing a structured knowledge representation;
where relationships between the rules are easily under-
stood and a systemic inference capability can also be
provided.

– Using a FPN to model fuzzy rule based reasoning pro-
vides a couple of advantages such as: [27]

The visual representation of a FPN can help experts to
construct and modify fuzzy rule bases.
A FPN can model the dynamic behavior of fuzzy rule-
based reasoning. The token evaluation is used to simulate
the dynamic behavior of the system. The conclusion part
of each rule is expressed through the movements of to-
kens in the FPN.
A FPN eliminates the necessity of all the rules scanning.
Fuzzy rule based reasoning is improved efficiently by
connecting fuzzy rule as a net-based structure.
A FPN can check properties of a modeled system to gain
deeper insights into the system.

Therefor a HFCPN for pacemaker monitoring is employed
in this study.

The proposed method

In Fig. 4, the diagram determines the proposed method.
As can be seen, the sensor inputs enter the pacemaker and

runtime monitor at the same time. The runtime verification
steps are shown by numbers in Fig. 4.

(1) This monitor changes the sensor inputs into their corre-
sponding fuzzy values. The approach used in this opera-
tion is described in BA- Age^ to BF- Pacemaker output^
sections.

(2) By entering these values into the HFCPN, an acceptable
output, which is the expected heart rate, is given. The
approach of making HFCPN is described in BObtaining
pacemaker constraints^ section and its inference is ex-
plained in BKnowledge representation and reasoning by
FCPN^ section and a corresponding HFCPN for the
pacemaker is elaborated in BFuzzy colored Petri-net for
pacemaker^ section.
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(3) The output of HFCON is fuzzy; therefore, it is necessary
to transform it to a crisp value before comparison
with the pacemaker output. This is carried out by
defuzzification (see BThe proposed methods and
Experimental results^ sections). Then this value is
compared with the pacemaker output and rightly or
faulty modes are identified. The rightly mode rep-
resents the validity and acceptability of the pace-
maker output and the faulty mode shows unaccept-
ability of the device output. The details are shown
in Fig. 5.

Fuzzification of the inputs and output of the pacemaker

The pacemaker carries out a complicated function, which can
be studied in [28]. Firstly, it determines the device’s limita-
tions. To consider those limitations five criteria are considered
as the main criteria in this paper. Each of them is divided into a
few diverse subsets for more accurate estimation in fuzzy
systems. In Table 1, the proposed categorization of these
criteria can be seen.

Below we detail the criteria.

A- Age

Age is categorized into five ranges, each transforms to a mem-
bership function set. The allowable age range is from 0 to 100 as
shown in Table 2. The older people have lower heart rate. The
heart rate in newborn babies is 150 BPM, while this rate reduces
to 60–80 BPM in the adults. Each membership function set
includes support, core, and boundary zone. Table 2 indicates
the ranges of values and their intersection with each zone. For
example, in young zone, the support range is between 17 and
30; core zone is between 18 and 28; the left boundary zone is
between 17 and 18; and the right boundary zone is between 28
and 30. Chosen age membership function can be seen in Fig. 6,
where in the example of the age 29, 0.4 is a member of young
zone and 0.6 is a member of the middle-aged zone.

B- Body mass index (BMI)

The second parameter that determines the human heart rate is
the body mass index. This index is obtained using height and
weight. This index is divided into 4 levels according to [29]
changing from 0 to 35. (1) Light-weight (below), (2) Normal-
weight (Normal), (3) Over-weight, and (4) Obese. The mem-
bership functions of other parameters are not shown because
of limitation of the paper.

Fig. 4 Structure of Proposed
Method

Fig. 5 Structure of the paper
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C- Activity level

Activity level shows the patient activity level. This index is
between 0 and 100. The best way to identify the activity
level of a body is using an activity sensor referred to as
Accelerometer [30]. This Accelerometer can change the hu-
man activity level into signals based on the patient body
movements. The emotional state of the patient can be mea-
sured based on his or her breath. This can be done by a minute
ventilation sensor or a blended sensor.

D- Emotion

Emotions are considered as effective factors in human heart
rate. In this paper, Emotions are categorized into four parts as
shown in Table 1. For example, in Anxious set, the support
zone is between 50 and 85, within which the range of 58–80 is
related to the core zone, the 50–58 range is in Left boundary
zone and the 80–85 range is in right boundary subset.

E- Blood pressure

Blood pressure is one of the most effective factors in the heart
rate. The blood pressure range is divided into three parts as
shown in Table 1. For example, the high zone supports the
pressure between 12.5 and 16 from which the 13.55–16 range
is in the core zone and 12.5–13.5 range is in left boundary
zone.

F- Pacemaker output

Heart rate is the pacemaker output whose categorization can
be seen in Table 1. The heart rate is divided into four groups.
For example, the normal heart rate supports the range of 55–
100 pulses per second from which the heart rate range of 60–
95 is in the core subset and the range of 55–60 is in the left
support subset and the 95–100 range is in the right support
subset.

Table 1 The proposed categorization of five criteria for pacemaker

Criteria Age BMI Emotion

Range 0–100 0–35 1–100

Categorization Title Range Title Range Range Title

Child 0–10 Blow 0–20 Relax 1–25

Teenager 8–18 Normal 18–27 Extraordinary sad or happy 20–58

Young 17–30 Over 25–32 Anxious 50–85

Middle-age 28–60 Obese 30–35 Stress 80–100

Aged 58–100

Criteria Activity level Blood pressure

Range 1–100 8–16

Categorization Title Range Range Title

Level 0 (Normal zone) 0–15 Low 8–11.5

Level 1 (weight management zone) 10–25 Normal 11–13.5

Level 2 (Healthy hearth zone) 23–50 High 12.5–16

Level 3 ( Aerobic zone) 45–75

Level 4 (Anaerobic Zone) 70–95

Level 5 (Red zone) 90–100

Table 2 Age membership function values

Zone name Support Core Left boundary Right boundary

Child 0–10 0–8 - 8–10

Teenager 8–18 10–17 8–10 17–18 Support: the crisp set containing nonzero membership degrees for
all elements.

Core: the crisp set containing membership degree in A for all x
elements.

Boundary: the crisp containing membership degree 0 < μA(x) < 1
in A for all x elements

Young 17–30 18–28 17–18 28–30

Middle-age 28–60 30–58 28–30 58–60
Aged 58–100 60–100 58–60 -
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Obtaining pacemaker constraints

Regarding the different zone of each fuzzy variable and pace-
maker’s experts view, 1440 rules have to be defined. However,
considering the fact that some fuzzy variables are unimportant
in some rules, this number has been reduced to 277. These
rules were verifiably to the experts too. Figure 7 shows a part
of these rules. We used these rules through the inference in
Matlab format. All of the rules can be seen in appendix.

Some rules have same left side hypothesis. We can gather
these rules together in a hierarchical FCPN. As can be seen in
Fig. 7, each rule has at least 1 term and at most 5 terms in its
hypothesis part. Some rules have the same terms in their left side
hypothesis parts. Thanks to the same terms, it is possible to
categorize the rules and FCPN structure can be depicted hierar-
chically. Therefore, status of the Age parameter is examined first
and then the input parameters including BMI, Activity level,
Emotion, and finally Blood Pressure are examined. Some tran-
sitions are divided into other transitions, whichwill be explained
in BFuzzy colored Petri-net for pacemaker^ section. The number
of the places will be reduced by using hierarchical FCPN too. In
BExperiments results^ section, a comparison between hierarchi-
cal FCPN and nonhierarchical FCPN will be made.

Knowledge representation and reasoning by FCPN

In this section, knowledge representation and FCPN-based
inference are discussed. Using the items mentioned above,
an FCPN can be used to build up the knowledge-based of
fuzzy production rules; a typical rule is R1where C1 and C2

in the rule hypothesis consist of fuzzy variables such as high
and low.

R1Þ IF X is C1 α1ð Þ THEN Y is C2 α2ð Þ: CF ¼ β1ð Þ

Hypotheses of a rule consist of a probability between 0 and
1 (Table 3) indicated by α1 and α2 in R1. For each rule a
certainty factor, indicated by β1 in R1, is determined showing
degree of the belief in the rule.

(1) Places X and Y as input and output places respectively
are shown as Set P, (2) Transition R1 is done as Set T, (3)
colored tokens in the input place X are done as Set DPX,
expressed like (C1, α1) and (4) colored token in output place
Y are done as Set DPY, expressed like (C2, α2). Probability of
firing of R1 is β1. Figure 8 shows the FCPN for the rule R1

regarding to Table 4.
For instance, corresponding FCPN for the Rule1 is shown as:

Fig. 6 Membership functions of Age

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level0) and (Emotion is Stress) then (Pulse is High) (1)

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level1) and (Emotion is Relax) then (Pulse is Normal) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level1) and (Emotion is Ex-Sad-Happy) then (Pulse is Normal) (1)

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level1) and (emotion is Stress) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level1) and (emotion is Stress) then (Pulse is High) (1)

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level2) and (emotion is Relax) then (Pulse is Normal) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level2) and (emotion is Ex-Sad-Happy) then (Pulse is Normal) (1)

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level2) and (emotion is Anxious) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level2) and (emotion is Stress) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level3) and (emotion is Relax) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level3) and (emotion is Ex-Sad-Happy) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level3) and (emotion is Anxious) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level3) and (emotion is Stress) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level4) and (emotion is Relax) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level4) and (emotion is Ex-Sad-Happy) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level4) and (emotion is Anxious) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level4) and (emotion is Stress) then (Pulse is High) (1) 

If (Age is Young) and (BMI is Blow) and (Activity-Level is Level5) then (Pulse is High) (1) 

Fig. 7 Part of pacemaker rules

27 Page 8 of 21 J Med Syst (2017) 41: 27



Rule1: IFAge is Teenager (0.9) ANDBMI is Below (0.8) AND
Activity_level is Level1(0.3) THEN Pulse is normal (CF = 0.8)

FPN = (P, T, D, I, O, f, α, β)

P = {Age, BMI, ActivityLevel, Puls}, T = {Rule1}, D = {age is
teenager AND BMI is blow AND activity_level is level1 THEN pulse is
normal},

I(Rule1) = {Age, BMI, ActivityLevel}, O(Rule1) = {Pulse},
f(rule1) = 0.8,

α (Age) = 0.9, α(BMI) = 0.8, α(ActivityLevel) = 0.3,

β(Age) = is teenager, β(BMI) = is blow, β(ActivityLevel) = is level1,
β(Pulse) = is normal

Figure 9a shows Rule1 before firing consisting of colored
tokens: (1) Teenager with certainty of 0.9, (2) Below with cer-
tainty of 0.8 and (3) Level1 with certainty of 0.3 in places Age,
BMI, and ActivityLevel respectively as the hypothesis of Rule1.
Each colored token consists of 2 elements, a fuzzy variable and a
correctness level. By firingRule1, the Pulse2 place will contain a
token with Normal value and certainty of 0.24 (Fig. 9b). The
certainty is calculated by minimum of the input certainty factors
multiplied by 0.8 (CF rule).

Figure 9 shows a token in Age place with Teenager value,
and there is a token in BMI place with Below value, and also a
token in Activity level place with level 10 value. With these
setting, rule 1 can be fired. CF of this rule is 0.8 as written below.
By firing this rule, the token with normal value and certainty
factor of 0.24 are in output pulse place (Fig. 9b). This value is
obtained from minimum input multiple of 0.8.

Fuzzy colored Petri-net for pacemaker

According to the extracted fuzzy rules in BObtaining
pacemaker constraints^ section, based on which the pace-
maker works; the corresponding FCPN is built up and

illustrated in CPN tool environment. For a better representa-
tion of a PN, the hierarchical representation of the subnet in
PN is used here. In Fig. 10, the highest level of the network
with two places and one transition is shown.

The transition in Fig. 10 (RulesAge) will be activated when
one of its internal subnet is fired. This transition consists of five
subnets, depicted in Figs. 11, 12, 13, 14, and 15. Figure 11 shows
the first sublevel of the network.

As Fig. 11 shows, in the first sublevel of the PN, the age
status is evaluated based on the five states of theAge, which can
be active and fired based on the input values received from the
related input. Having implemented the network based on the
first input, the second sublevel-the level related to BMI-will be
applied. This level is shown in Fig. 12.

Figure 12 shows four examined BMI running states
(according to Table 1). Having implemented the network
based on the BMI input, the third sublevel, the level related
to the activity level, will be applied (Fig. 13).

As Fig. 13 shows, the network status are examined based on
six activity-level inputs (Table 1). The routes are departed in the
second part of the network (right side of Fig. 13) due to the
difference of the outputs of three first rules and those of the three
second rules. That is, for the first three rules, the output has to be
calculated accurately and the heart rate has to be Normal, while
in the three second rules, this output is High. Therefore, in the
second part of the network, these two routes are departed. Having
implemented this level, the fourth sublevel in the network, the
emotion input, which is shown in Fig. 14, will be applied.

The fourth sublevel is applied by examining input emotions
(Table 1). The route in the right side of Fig. 14 is departed for the
same reason as the route in the third sublevel is departed. Having
implemented this sublevel, the fifth sublevel will be applied
(Fig. 15).

As Fig. 15 shows, blood pressure input conditions are ex-
amined in this level (Table 1). Finally, by having this sublevel
implemented the output transfers to the output place.

Experiments results

To evaluate our pro-posed method, and to show its effective-
ness, five scenarios are presented. We implemented the pro-
posed method in C# and CPN-tools. Each scenario enters to
the implemented program as shows in Fig. 16a and b.

Table 3 Validity scale
and numerical interval
corresponding to each
[31]

Degree of accuracy Numerical distance

Always true [1.00,1.00]

Extremely true [0.95,0.99]

Very true [0.80,0.94]

Considerately true [0.650.79]

Moderately true [0.45,0.64]

More or less true [0.30,0.44]

Minor true [0.10,0.29]

Minimally true [0.01,0.09]

Not true [0.00,0.00]

Fig. 8 Rule R1 in FCPN

Table 4 The conversion
of R1 to FCPN Rule R1 FCPN (Fig. 8)

X , Y Places

DPX = (C1,α1) Token in place X

DPY = (C2,α2) Token in Place Y

Firing the rule Transition

β1 Possibility of firing
the rule
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Scenario 1: a thirty-year-old patient with the
mass body index of nineteen is sitting calmly
and his/ her blood pressure is low. Figure 16a
and b show inputs and outputs for scenario 1,
respectively.

Figure 16b shows that the heart rate is 30–55 BPM.
However, if the pacemaker software determines the output

between 30 and 55, it will threaten the patient health.
Therefore, by making a comparison between this value and
the monitor output, this contradiction becomes revealed.

Fig. 9 Showing the rule in FCPN. a Before firing. b After Firing

Fig. 10 FCPN of pacemaker
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Fig. 11 First sublevel of FCPN of pacemaker

Fig. 12 Second sublevel of FCPN of pacemaker
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Fig. 13 Third sublevel of FCPN of pacemaker

Fig. 14 Fourth sublevel of FCPN of pacemaker
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Scenario 2: Consider a twenty years old patient with
body mass index 32 whose activity level is between 4
and 5 (while running or swimming fast) and heart rate
is between 95 and 150. If an ordinary inference engine is
used instead of a PN, the output will be obtained by firing

rule 75; however, rule 76 meets the better conditions.
Considering firing rules concurrently, rules 75 and 76
could be fired at the same time since the activity level 92
is a number between levels 4 and 5 (0.4 and 0.6 for levels 4
and 5 respectively, Fig. 17). Concurrent implementation is

Fig. 15 Fifth sublevel of FCPN
of pacemaker

Fig. 16 a The primary values in
Scenario 1. bThe output values of
Scenario 1
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one of the essential features of PN and the output can be
followed by firing 2 transitions at the same time. In this
case, we will have a more accurate and valid output.

Compared to the ordinal inference engines, HFCPN led to
accuracy with 25% more by concurrently firing rules.

75. If (Age is Young) and (BMI is Obese) and
(Activity_Level is Level4) then (Pulse is High) (1)

76. If (Age is Young) and (BMI is Obese) and
(Activity_Level is Level5) then (Pulse is High) (1)

Scenario 3: One of the input sensors such as activity
level stops working and does not produce an input. In
this case, the device stops working and the breakdown
will be reported by a warning. However, in the monitor
PN, there is a token with the low priority in each place
(the first token in Fig. 18) which makes a rule to be fired
and produces an acceptable output value if any rule is
not fired. So the device can have an output and the
patient is not endangered until the problem is solved.
As can be seen in Fig. 18, the second token in the
SENSOR place has produced an empty (null) fuzzy val-
ue of 0.0, as the activity level sensor stopped working.
However, due to the existence of the first token in this
place, the network has produced an output.

Regarding lack of the input parameter by the activity level
sensor, if a fuzzy inference engine is used, no rule can fire.
This is resulted based on searching all rules which needs 277-
time unit if each rule is examined in one-time unit. After this
time, no rule can cover the conditions. Using HFCPN,
searching will only include examining transitions of each
level, i.e. (3 + 4 + 6 + 4 + 5 = 22), and if examining
each transition needs only 1 s, the output will be obtained
after 22-time unit, which is obtained 0.92% improvement in
running time.

Scenario 4: One of the sensors produces two outputs
successively. For example, the Activity-level sensor pro-
duces values of 43 and 51 consecutively. In an inference
engine, the behavior is only based on the last value. In
other words, the first value is ignored. In the PN, this
situation put two tokens in the related place (Fig. 19a);
however, the maximum value influences the rule firing
and an output value is produced due to the inference
functioning of the network (max-min), (see Fig. 19b).

Scenario 5: The age value is presumed as 9 and two
tokens with (Child, 0.15) and (Teenager, 0.85) are located
in the age place, according to the designed fuzzy mem-
bership functions. These two situations fire two different
rules in the PN (Fig. 20a). The PN can be implemented

Fig. 17 Output for the rules 75 and 76 in scenario 2

Fig. 18 Token with the low
priority in each place
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concurrently, therefore, by concurrent running of these
two rules, two values are produced as the output that
complement each other, ((Low, 0.15) and (Normal,
0.3)); it can be seen in Fig. 20b.

Discussion

In this paper, a method to verify the pacemaker soft-
ware was presented. The pacemaker is one of the im-
planted devices which needs to keep working without
external control and operates upon software. The patient
life will be endangered if any error occurs in such soft-
ware. There are many reports of implanted patient death
due to software errors [2]. Therefore, the runtime veri-
fication has a vital role in such device. In this research,
hierarchical FCPN is used for runtime verification. It

has many advantages compared to the typical inference
engine. It can be used to represent software require-
ments and limitations description and provide a simple
strategy to control correctness and consistency of the
software needs. This Hierarchical FCPN as a runtime
monitor is located beside the pacemaker and controls
that the software never breaches the determined limita-
tions. As rows 2 and 3 of Table 5 shows, the number of
the places will be reduced from 277 to 6 using colored
tokens reducing the network size significantly.

Compared to a simple inference engine, the HFCPN
can cover the concurrent states by examining the valid-
ity and finding the inconformity in the system rules.
This case is not achievable in one short running of
the inference engine and the inference engine has to
be run twice or acts in a parallel form in two proces-
sors for examining the concurrent states. In contrary,

Fig. 19 a Scenario 4. bOutput of
Scenario 4

Fig. 20 a Scenario 5. bOutput of
Scenario 5
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HFCPN examining concurrent states are easily possible.
If one of the sensors fails to work for any reason and
cannot produce an output, an inference engine cannot
make a decision, while by putting the primary tokens
with lower priority in the HFCPN, we can be sure of
output production of HFCPN even in a situation with-
out receiving the primary value from the sensor. One of
the other advantages of the HFCPN as a runtime mon-
itor is that, the hardware implementation by fuzzy JK
Flip-flop and fuzzy gate possible [32]. In Table 5, a
comparison between all kinds of implementable methods is
shown.

Regarding Table 5, using FPN, 26 places and 277
transitions exist. In case of network changes to a non-

hierarchical FCPN, number of places will reduce to six.
If for examining each transition, just T seconds is spent,
using FPN or nonhierarchical FCPN, 277 T seconds are
spent to examine transitions. While by using a hierar-
chical FCPN, this time reduces to 26 T seconds (con-
sidering middle transitions) which shows a 90.61% de-
crease of runtime in the HFCPN compared to the non-
hierarchical FCPN. It should be noted that in this re-
search five effective criteria for the heart rate are con-
sidered; other criteria can be considered in the future
works. As the implantable medical devices are increas-
ingly used, happening faults becomes more critical. Our
proposed method can help to reduce risk of the faults
and increase the level of the device robustness.

Table 5 Comparison between all kinds of PN

Method The number of Places The number of transition Problem

Simple PN It has no fuzzy computations and it is
essential regarding the fuzzy calculations

FPN 277 22 Inputs- 4 Outputs The number of places is high

NonHierarchical FCPN 5 Inputs- 1 Outputs 277 transition that all of them must
be examined for could be fire or not

The high number of the transitions that have
to be activated

Hierarchical FCPN 5 Inputs- 1 Outputs and 4 middle place 22 and 4 middle transition

Appendix
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