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Abstract The purpose of this paper is to develop an
accelerometry system capable of performing gait event
demarcation and calculation of temporal parameters using
a single waist-mounted device. Particularly, a mobile phone
positioned over the L2 vertebra is used to acquire trunk
accelerations during walking. Signals from the accelera-
tion magnitude and the vertical acceleration are smoothed
through different filters. Cut-off points between filtered
signals as a result of convolving with varying levels of
Gaussian filters and other robust features against tempo-
ral variation and noise are used to identify peaks that
correspond to gait events. Five pre-frail older adults and
five young healthy adults were recruited in an experiment.
Cadence, step/stride time, step/stride CV, step asymmetry
and percentages of the stance/swing and single/double sup-
port phases, among the two groups of different mobility
were quantified by the system.
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Introduction

Quantitative gait analysis (QGA) involves the accurate mea-
surement, description, and assessment of gait dynamics
that characterize person’s locomotion [1] and which can
be affected by physical impairment, age progression and
changes in health status.

From this standpoint, gait evaluation aids in understand-
ing the etiology of gait abnormalities and in treatment
decision-making [2]. Moreover, beyond the assessment of
gait pathologies and identification of gait abnormalities
[3, 4] several studies have shown that QGA can be a pow-
erful tool to measure the inherent gait variability over time
which is a crucial aspect for diagnosing and monitoring the
clinical course of specific disabilities or diseases [5–7]. In
such a context, changes in gait patterns have a potential use
as specific predictive markers of frailty syndrome [8, 9],
the onset of cognitive decline [10] and neurodegenerative
diseases such as Parkinson [11, 12], among others.

However, to this day, gait analysis is still frequently based
on observational interpretations by clinicians. Human obser-
vations tend to be subjective and depend on the experience
and judgement of the clinician, which can vary from person
to person [13].

On the other hand, there are currently specialized lab-
oratories in physical performance where it is possible to
carry out QGA to estimate gait parameters that are very
accurate and redundant. These laboratories use highly spe-
cialized systems for 3-D motion capture as the Vicon motion
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capture system (Vicon Motion Systems Ltd., Oxford, UK).
Nonetheless, despite the accuracy achieved there are a
number of constraints that limit gait analysis inside these
laboratories, such as the onerous cost of equipment and the
low access to these facilities for many people.

Against this background, there is a need for affordable
wearable technologies suitable for QGA. Such systems,
can identify changes in the gait patterns and, along with
appropriate reasoning techniques, to predict adverse events
and diagnose early stages of specific diseases, encouraging
timely medical interventions. Nonetheless, these technologies
can also effectively complement the traditional gait analysis.

In this work, a new procedure to accurately demarcate
gait events from a waist-mounted single accelerometer is
presented. The device acquires trunk accelerations during
gait trials. Signals from the acceleration magnitude and the
vertical acceleration are smoothed through different filters.
Cut-off points between filtered signals as a result of con-
volving with varying levels of Gaussian filters and other
robust features against temporal variation and noise are used
to accomplish the identification of characteristic peaks that
correspond to gait events in the antero-posterior acceleration.

For validation purposes, five pre-frail elders and five
young healthy adults have been recruited in order to investi-
gate whether the gait parameters derived from the identified
gait events can determine if there are substantial differ-
ences in the gait patterns, among the two groups of different
mobility.

The rest of the paper is organized as follows. This section
is closed with a descriptive definition of the gait cycle intro-
ducing its relevant gait events and the temporal parameters
derived from them. A review of the literature is also con-
ducted with specific references to other wearable sensors in
which a single accelerometer is used for QGA. “Method”
details the proposed system, paying particular attention to
the procedure to demarcate the gait events from acceleration
signals. The instrumentation used (the built-in accelerom-
eter from a mobile phone), the subjects who undergo the
trials and the clinical protocol are also described here.
“Results and discussion” presents and discusses the results.

Finally, “Conclusion” ends with concluding remarks about
the system’s limitations and possible future challenges.

The gait cycle

Gait is described as a cyclic movement of the feet in which
both alternate in contact with the ground [14]. In [15], it
is also defined as a sequence of repetitive movements that
varies over time and from one subject to another.

A more comprehensive description is provided in [16],
where a formal specification of gait is performed, consisting
of a reference model and a set of objectives that gait should
satisfy. As a result, gait is defined as:

An anthropomorphic upright self-displacement, in an
alternating stepping of two feet, with no additional ful-
cra, keeping at least a point of support at every time,
on a horizontal or slighty inclined surface.

These three definitions have in common the description
of gait as a periodic task, that can be decomposed into
gait cycles. A graphical definition of a normal or healthy
gait cycle, introducing its relevant gait events and temporal
parameters is illustrated in Fig. 1.

The heel-strike (HS) event represents the exact moment
when each foot comes into contact with the ground. On
the other hand, the toe-off (TO) occurs when each foot
leaves the ground. TO and HS events, referred to as gait
events help to determine the gait phases and other derived
parameters from the gait cycle. Thus, the correct timing of
the gait events must be accurately measured for a properly
characterization of the gait cycle.

In normal/healthy symmetrical gait, TO occurs at about
60–62 % of gait cycle [15], dividing the cycle into stance
(when the foot is on the ground) and swing phases (when
the foot is in the air), see Fig. 1.

The stance phase begins with a HS, and can be subdi-
vided into the single support and double support phases.
In a similar manner, the step time can be computed as the
measured time from HS of one foot to the next HS of the
opposite foot; and the stride time as the measured time from

Fig. 1 Graphical definition of a normal/healthy gait cycle
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HS of one foot to the next HS of the same foot, that means,
one entire gait cycle.

Review of the literature

The ability to demarcate the timing of gait events (HS
and TO) by means of acceleration signals acquired from a
waist-mounted single accelerometer has been an increasing
interest in designing wearable systems for QGA. Just the
fact that a single unit can provide these gait events is poten-
tially interesting because it reduces the number of inertial
sensors attached to the body, i.e. two devices mounted on
both lower limbs may be avoided. Therefore, less obtrusive
and simple wearable systems can be achieved. Moreover,
these systems are better suited to estimate other related fea-
tures, such as the gait balance due to the fact that trunk
accelerations are being measured.

In [17], HS events are estimated from vertical and antero-
posterior accelerations through a tri-axial accelerometer
held against the sacrum. TO is demarcated by an inflection
in vertical acceleration. Identification of right/left HS could
be achieved from medio-lateral acceleration.

An inverted pendulum model is used in [18] to identify
HS events from subjects walking at a range of speeds on
a treadmill. A tri-axial accelerometer positioned over the
second sacral vertebra enables the acquisition of antero-
posterior accelerations which are low-pass filtered with a
4th order Butterworth filter (first stage of filtering), and fil-
tered again using a cut-off frequency of 2 Hz (based upon
the expected maximum step rate). HS events occur when
the sign of the antero-posterior acceleration changes from
positive to negative (zero-crossing).

A refinement of the method in [18] is also provided in
the paper using the peak in acceleration preceding the zero-
crossing to estimate the HS event. Both approaches are
validated by comparison to ground reaction forces with a
significant improvement in the last one (in terms of error in
estimation).

The peak detection method proposed in [18] is adapted
in [19] for estimating HS events in older adults. In this
occasion, temporal gait parameters are compared to those
estimated using a GAITRite electronic walkway (CIR Sys-
tems Inc., PA, USA) as ground truth. Interclass correlation
coefficients (ICC) for step durations ranging from 0.81 to
0.88 are obtained.

Zero-crossing technique is also present in [20],
Mansfield et al. acquire data from accelerations perpendic-
ular to the lumbar spine (antero-posterior axis). The gravity
component is compensated by estimating the tilt of the
accelerometer during an initial standing position. After a
2 Hz low-pass filter, HS are segmented when the slope of
the signal changes from negative to positive. The system is
compared to a footswitch device.

Other algorithm based on the description of gait events
given in [18] is the one proposed by González et al. [21]. A
30th order low-pass FIR1 filter with a cut-off frequency of
2.5 Hz is applied to compute the principal harmonic of the
vertical acceleration obtained from a dedicated accelerom-
eter unit placed close to the L3 vertebral position. Filtered
signal is used to locate maxima in the vertical acceleration.
Each HS event is marked at the maximum of the antero-
posterior axis which is immediately before a vertical accel-
eration maximum. TO events are located as local minimum
in a small neighbourhood after each vertical acceleration
maximum. The TO that follows a given HS corresponds to
the contra-lateral foot.

A completely different approach for gait event demarca-
tion is presented in [22]. A time-frequency descomposition
of the vertical acceleration from a tri-axial accelerometer
placed on the fifth lumbar vertebra is used. Firstly, verti-
cal acceleration signal is integrated and then differentiated
using a Gaussian CWT.2 HS events are identified as the time
of the minima. The differentiated signal undergoes a further
CWT differentiation from which TO events are identified as
the times of the maxima. A GAITRite electronic walkway
is used as ground truth for validation purposes. The exper-
imental protocol conducted consists in walking at normal
pace for 2 minutes following a 25 metres designed route.

The approach presented in this article stands out from
the works in this section because of the use of a mobile
phone built-in accelerometer instead of a dedicated device.
This makes it accesible and easy-to-deploy. In addition, to
the best of our knowledge, the application of a scale-space
Gaussian filter in combination with zero-crossing and peak
detection techniques has never been used for gait event
demarcation over acceleration signals, providing a novel
point of analysis.

Method

Instrumentation

The built-in tri-axial accelerometer from an Android mobile
phone is used to acquire trunk accelerations during gait
trials at a sampling rate of 70 Hz. The mobile phone is
equipped with a LSM330 digital tri-axial accelerometer and
digital tri-axial gyroscope (STMicroelectronics, Ginebra,
Switzerland), commomly used in this kind of devices.

The mobile phone is positioned over the second lumbar
vertebra (L2) using a customized belt with the screen facing
away. The experimental set-up is shown in the scheme in
Fig. 2.

1Finite Impulse Response.
2Continuous Wavelet Transform.
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Fig. 2 Experimental set-up. The mobile phone is attached to the
L2 vertebra with the screen facing away. The vertical (VT), antero-
posterior (AP) and medio-lateral (ML) axes of the accelerometer are
displayed

A background service has been implemented to facilitate
the data acquisition process. An initial period of 15 s is pro-
vided to place the device in the belt, prior to the beginning of
the gait trial. Then, after three 1-second long alert tones the
trial starts and simultaneously the participant walks along a
straight line for 20 s, until a new tone alerts the end of the
capture.

Gait event demarcation and temporal parameter
calculation

Our algorithm has its roots in the definition of gait events
given by [18, 21] from the antero-posterior acceleration of
the Lumbar area. In that definition, relevant maximum peaks
correspond to HS events, and TO events of the contra-lateral
foot are the local minimum peaks in a small neighbourhood
after each HS, see Fig. 3.

Fig. 3 Extracted from [21]. Antero-posterior acceleration for a 31-
year-old subject while walking at 1.2 m/s. HS and TO, as described
in [18], are marked with a plus and a product sign, respectively. The
same events are detected by González et al. [21] and marked with an
open square and an open rhombus, respectively. Distance between tick
marks represents 0.5 s. The 16 events in the figure are considered as
correct detections

As prior steps to the gait event demarcation, the mag-
nitude of the 3-D acceleration which represents the energy
signal e(i) and the vertical acceleration signal y(i) are sepa-
rately filtered using different Gaussian kernels to accentuate
relatively high energy concentration areas in both signals.
These areas correspond to step occurrences in whose vicin-
ity the gait events are present.

The probability density function of the Gaussian distri-
bution is defined by the Eq. 1.

F(x, σ ) = 1√
2πσ 2

e
−x2

2σ2 (1)

where σ represents the standard deviation of the Gaussian
distribution (the width of the Gaussian kernel).

Filter settings

The smoothing capability of a Gaussian kernel depends
on the choosen σ parameter. A larger σ produces greater
smoothing effect, removing many peaks from the original
signal. A smaller σ has minor effect and therefore, more
peaks remain. If a tiny σ is used only high-frequency noise
is removed. The different Gaussian filters applied to the
energy e(i) and vertical acceleration y(i) signals are listed
below:

– Scale-space filtering of the energy signal e(i).
A 3-level scale-space Gaussian filter is applied to

the energy signal e(i). Each level (or Gaussian kernel)
in the scale-space filter provides a different smoothing
capability.

The use of the scale-space filtering idea enables a
multi-scale analysis of the magnitude of the 3-D accel-
eration signal, decomposing it according to different
scales (kernel widths) that correspond to a full range of
gait cycle durations.

In order to determine the size of the σ parameter
for each Gaussian kernel we have made the assumption
that the gait cycle duration (or stride time) is between
Tmin = 500 ms (milliseconds) and Tmax = 1750 ms.
This range works for different gait patterns and it is
derived empirically from other gait tests. In [23] we
estimated stride times with values between Tmin =
800 ms and Tmax = 1550 ms, for a population of
ten adults (five young adults and five elders without
known gait pathologies). A slightly larger range has
been adopted here to ensure that all gait speeds are
considered.

A pair of energy peaks are expected to be found
within each gait cycle, corresponding to two consec-
utive steps. Accordingly, the three σ widths that have
been assigned for the three Gaussian filters, repre-
sent three different step durations {short step,
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Fig. 4 Example to illustrate the output obtained in each of the levels
of the proposed scale-space Gaussian filter. A slice of the magnitude
of the 3-D acceleration (the energy signal e(i)) is the filter input.
This input is separately convolved with Gaussian kernels that repre-
sent short (σ = T min/4), medium (σ = (T min + T max)/8) and

large (σ = T max/4) step durations. T min and T max are predefined
time periods for minimum and maximum gait cycle durations. The
smoothed energy product pe(i) is the final output of the scale-space
filter

medium step, large step}. Therefore, σ

parameters are defined as follows:

σ ∈ {Tmin/4, (Tmin + Tmax)/8, Tmax/4} (2)

The signals êσ (i) illustrated in Fig. 4 are an example
of the output obtained after filtering an original energy
signal e(i) using the three σ parameters from Eq. 2,
which are configured to underscore short, medium and
large step durations, respectively. These signals are then
combined through the Eq. 3:

pe(i) =
∏

σ

êσ (i) (3)

The result of the previous equation (product) is the
smoothed signal pe(i), which represents the output of
the scale-space filter. It is drawn using an unfilled
purple red mark in the example in Fig. 4.

– Single Gaussian filtering of the vertical acceleration
signal y(i).

The vertical acceleration y(i) is separately con-
volved with two Gaussian kernels with σ = 50 ms and
σ = 100 ms. The resultant signals ŷσ50(i) and ŷσ100(i)

are illustrated in the example in Fig. 5.
The narrowest Gaussian kernel (σ = 50 ms) allows

us to accentuate relevant maximum peaks in the vertical
acceleration signal in whose vicinity a step occurrence
can be found. The purpose of this filter is similar to
that proposed in [21], where a cut-off frequency of
2.5 Hz (based upon the expected maximum step rate)
is used to determine “step” areas. The kernel width
(σ = 50 ms) works properly for all the stride dura-
tions defined before, between Tmin = 500 ms and
Tmax = 1750 ms.

From empirical observations by comparing the sig-
nal ŷσ50(i) with the antero-posterior signal z(i), we have
found evidence that each HS event occurs somewhere
between a local maximum in the ŷσ50(i) signal and its
previous local minimum. Therefore, if y(i) is convolved

Fig. 5 The vertical acceleration signal y(i) is convolved with two single Gaussian kernels with σ = 50 ms and σ = 100 ms. The slice of the
vertical acceleration comprises the same timestamp as the one in Fig. 4
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Fig. 6 The result of the subtraction signal sy between the smoothed signals ŷσ50 (i) and ŷσ100 (i). It is represented by a solid blue line. Maximum
peaks PKsy and different subsets of zero-crossing points are also marked in the figure

with the second Gaussian kernel that uses a σ parame-
ter which is twice the size of the first kernel, it produces
the smoothed signal ŷσ100(i) (see Fig. 5).

The ŷσ100(i) signal crosses ŷσ50(i) in intermediate
points between its local maxima and its previous local
minima, which will be useful to restrict the search area
where HS events are located in the following steps.

On the basis of this set of smoothed signals the algorithm to
identify characteristic peaks that correspond to HS and TO
events is explained in the next “HS and TO identification”.

HS and TO identification

There are a number of sequential processes required to iden-
tify HS and TO events in the antero-posterior acceleration
using the set of filtered signals from “Filter settings”. These
processes are detailed below:

– (P1) Subtraction signal sy(i) and identification of local
maxima and zero-crossing points.

The first process involves computing the subtraction
signal sy(i) between the smoothed vertical acceleration

signals ŷσ50(i) and ŷσ100(i). Peaks (local maxima) and
zero-crossing points are identified over this signal and
their x-coordinates are stored in the sets PKsy and ZC,
respectively.

For peak detection a simple algorithm as the pro-
posed in [24] is used. This algorithm is based on the
assertion that a peak (local maximum) is the highest
point between “valleys”. The strategy followed could be
summarized as iterating over the corresponding signal
looking for a local maximum, while the signal is grow-
ing; and then, keep iterating over it looking for a local
minimum, while the signal continues to decline. See the
explanation in [24] for more details.

Figure 6 shows the appearance of the subtraction sig-
nal sy(i) using the inputs from the example in Fig. 5.
Maximum peaks PKsy and zero-crossing points ZC are
also indicated.

Figure 7 shows the slice of the antero-posterior
acceleration signal z(i) that corresponds to the
same timestamp used in the above examples, HS and
TO events are marked according to the definitions in
[18, 21].

Fig. 7 The figure illustrates a slice of the antero-posterior accelera-
tion signal z(i). It corresponds to the same timestamp used in the other
examples. HS and TO events are marked based on the definitions in

[18, 21]. The relevant zero-crossing points (ZC2) within the time slice
are also represented with dashed lines
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Paying attention to the zero-crossing set ZC in
Fig. 6, it contains all the points where ŷσ50(i) and
ŷσ100(i) intersect, as indicated in “Filter settings”. Par-
ticularly, there is a subset of them, labelled as ZC2,
whose x-coordinates are very close to the HS loca-
tions, which matches what was said earlier in that
section. These zero-crossing points are marked with
green squares in Fig. 6 and with dashed lines in Fig. 7.
The next step is to build a process to automatically
select them from the whole set of zero-crossing points.

– (P2) Selection of relevant zero-crossing points (ZC2)
from the whole set.

In a first stage, only zero-crossing points from nega-
tive to positive are considered, forming the ZC1 subset.
Zero-crossing points from positive to negative (marked
with red crosses in Fig. 6) are discarded because they
are far from HS occurrences, as can be observed from
the comparison between Figs. 6 and 7.

In a second stage, the ZC1 subset requires further
refinement to isolate the relevant zero-crossing points
belonging to ZC2. Graphically, that means being able
to discard the zero-crossing points marked with black
crosses (×) in the ZC1 subset displayed in Fig. 6. The
procedure to do it programmatically starts computing
the subtraction signal se(i) between the output of the
scale-space filter pe(i) and the smoothed energy sig-
nal êσTmax/4(i). The result is illustrated in Fig. 8. Peaks
(local maxima) are identified over the signal using the
peak detection algorithm detailed in [24].

As can be observed in Fig. 8, there are three local
maxima in the signal slice se(i) that represent the
major differences in energy levels between the two
input signals, these maximum peaks contain substantial
amounts of energy and are very close to the ZC2 points
and therefore, very close to the HS occurrences. From
the whole set of local maxima PKse , these selected
peaks are identified when they are above a predefined
energy threshold (set to 0.13). This threshold has been

empirically determined from gait tests conducted on
young and older adults at multiple walking paces.

Following from these premises, the procedure to iso-
late the ZC2 subset from the zero-crossing set ZC1

involves the following steps:

1. Iterate over the ZC1 subset and for each zero-
crossing point zck ∈ ZC1 find the right closest
maximum peak pi in PKsy .

2. Once pi is determined in each iteration, its coun-
terpart peak ki in PKse is required. This peak
is expected to be found in se(i) within a search
window in the vicinity of the pi timestamp. If ki

exists and it is above the predefined threshold com-
mented before, the zck under evaluation is added
to the ZC2 subset. The window’s width is set to
|pi − zck|.

– (P3) Demarcation of HS and TO events in the antero-
posterior acceleration signal using the ZC2 subset.

It is required to iterate over the ZC2 subset in order to
demarcate the HS events in the antero-posterior accel-
eration signal z(i). There is a corresponding HS event
hsk in the immediate temporal vicinity of each zero-
crossing point timestamp. This HS event (hsk) matches
with the highest peak in the z(i) signal enclosed in a
search window. The width for the search window is the
same that was used in the P2 process.

Each HS event is marked with a gray dot in the
slice of the antero-posterior signal z(i) displayed in
Fig. 7. As indicated before, the timestamp of each zero-
crossing point is represented by a dashed line in this
figure.

Once HS events are demarcated, TOs are identified
as the right lower valleys in the proximity of each heel-
strike hsk . In this case, half the width of the search
window is used. Brown crosses are used to highlight the
TO events in Fig. 7.

Fig. 8 The result of the subtraction signal se between the output of the scale-space filter pe(i) and the smoothed signal êσTmax /4 (i). It is represented
by a solid red line. Maximum peaks PKse are marked in the figure. Three peaks are above the predefined energy threshold
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The flowchart in Fig. 9 uses symbolic notation to sum-
marize the three processes that have been described in
this section. The processes are framed with different color
rectangles. Each of the steps taken to achieve gait event
demarcation in these processes are first textually described
and then mathematically formulated.

Calculation of temporal gait parameters

The temporal parameters of the gait cycle defined in
“The gait cycle” are calculated from HS and TO events to
investigate whether the system is able to quantified differ-
ences in the gait patterns between the pre-frail elders and
the young adults.

Particularly, step time, stride time, single and double sup-
port, and stance and swing phases are estimated (phases
are computed as a percentage of the gait cycle). More-
over, the coefficients of variation (CV) of step and stride
time, cadence (#steps/minute) and step asymmetry (differ-
ence between consecutive steps divided by stride time) are
also obtained.

Subjects and protocol

Five elders (three males and two females, 85 ± 2.7
years) diagnosed as pre-frail and whose mobility has been

evaluated through the Tinetti test [25] by a physician; and
five healthy adults without mobility impairment (all males,
29 ± 2.8 years) were recruited for the experiment. Before
gait trials began, participants gave their consent and they
received an informal explanation of the protocol of the
test.

The protocol consisted in walking at a comfortable
speed along a straight line during 20 s, as described in
“Instrumentation”. The first four seconds and the last four
were discarded from each trial to avoid acceleration and
deceleration stages. Therefore, 12 seconds were used for
analysis.

Results and discussion

Table 1 shows the mean values of the temporal gait param-
eters and the Tinetti gait and balance average scores for
the two groups. Some conclusions can be drawn from the
cross-sectional analysis.

The first remarkable aspect is related to the mobility
assessment performed by the clinician by means of the
Tinetti test. Subjects from both groups registered the high-
est score in the gait evaluation (12), without evidences of
abnormalities regarding the test criteria. It is in the balance
aspect where the clinician slightly reduces the score of each

Fig. 9 The process flowchart for gait event demarcation
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Table 1 Comparison of temporal gait parameters and Tinetti gait and
balance average scores between the two groups

Young adult Pre-frail older

group group

Gait parameter

(Mean±StDev)

Step time (seconds) 0.61±(0.06) 0.53±(0.06)

Stride time (seconds) 1.21±(0.08) 1.10±(0.11)

Step time CV (%) 5.74±(2.39) 8.54±(3.94)

Stride time CV (%) 3.13±(1.79) 4.11±(2.13)

Single support (%) 40.70±(4.14) 37.90±(5.51)

Double support (%) 9.30±(3.92) 12.07±(4.53)

Stance (%) 59.36±(3.77) 62.34±(5.03)

Swing (%) 40.64±(3.77) 37.66±(5.03)

Step asymmetry (%) 3.59±(3.87) 6.76±(6.21)

Cadence (#steps/min) 93.66±(5.77) 100.75±(10.30)

Tinneti test

(Mean±StDev)

Tinetti gait (0-12) 12±(0) 12±(0)

Tinetti balance (0-16) 16±(0) 13.2±(1.38)

older adult, the group is characterized with a value of 13.2
± 1.38 out of 16.

The Tinetti test is a suitable performance-oriented mobil-
ity assessment tool for the early detection of fall risk
[25]. Moreover, it is also useful to estimate the prevalence
of frailty if it is complemented by other indicators from
functional, nutritional, cognitive, and social domains [8].
However, it has a subjective nature and depends on the
judgement of the clinician, which prevents that small differ-
ences in the gait patterns (not visible with a naked eye) may
be measurable.

In view of the results of the QGA performed using the
waist-mounted single accelerometer, there are differences
in the gait patterns between the groups that were not cap-
tured by the test. The average cadence of the pre-frail group
(100.75 ± 10.30 steps/minute) is slightly higher than that
of the young adults (93.66 ± 5.77 steps/minute). This, com-
bined with higher double support phases and a reduced
single support results in shorter steps and slower walking
speeds. The mean swing percentage is also lower (37.66 %
± 5.03) than in the young adult group, while the stance
phase increases. Because of higher cadence, step and stride
times have less duration. Furthermore, the coefficient of
variation indicates greater variability in step and strides in
the older adults, specially in the step time (8.54 % ± 3.94).
Finally, the average asymmetry between consecutive steps
in the elders is approximately the double (6.76 % ± 6.21)
than in the young adult group (3.59 % ± 3.87).

Conclusion

In this study, gait events were estimated from trunk acceler-
ation signals acquired by the built-in tri-axial accelerometer
in a mobile phone. A novel algorithm to identify peaks that
correspond to HS and TO events based on scale-space fil-
tering using Gaussian kernels is presented, this procedure is
expected to contribute in the design of wearable and mobile
technologies for QGA based on a single accelerometer.

The protocol conducted shows that the system is capable
of distinguishing differences in gait patterns better than an
observational method as the Tinetti test.

As future enhancements, the identification of right or left
gait events is expected to be determined from the direction
of medio-lateral acceleration. Spatial parameters, such as
step length or walking speed should be also incorporated
to improve the quantitative analysis. Moreover, it is impor-
tant to investigate the system’s applicability in areas such
as ambulatory rehabilitation, in-home gait assessment and
long-term gait monitoring.
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