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Abstract We report on our research in using literature-
based discovery (LBD) to provide pharmacological and/
or pharmacogenomic explanations for reported adverse
drug effects. The goal of LBD is to generate novel
and potentially useful hypotheses by analyzing the sci-
entific literature and optionally some additional re-
sources. Our assumption is that drugs have effects on
some genes or proteins and that these genes or proteins
are associated with the observed adverse effects.
Therefore, by using LBD we try to find genes or pro-
teins that link the drugs with the reported adverse ef-
fects. These genes or proteins can be used to provide
insight into the processes causing the adverse effects.
Initial results show that our method has the potential
to assist in explaining reported adverse drug effects.
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Pharmacovigilance . Adverse drug effects . Adverse drug
reactions . Pharmacogenomics

Introduction

Adverse drug effects pose significant health and finan-
cial problem worldwide. The World Health Organization
(WHO) defines Bpharmacovigilance^ as Bthe science and
activities relating to detection, assessment, understand-
ing, and prevention of adverse effects or any other drug
related problems^. Some of the adverse effects are de-
tected during clinical trials, but some are detected after
the drugs come to market. Considerable research and
effort in pharmacovigilance is dedicated to adverse drug
effect signal detection. Most often spontaneous reporting
systems (SRSs) such as FAERS are used for detecting
signals with statistical and data mining algorithms [1].
Adverse drug effects can also be detected in biblio-
graphic databases such as MEDLINE [2]. Electronic pa-
tient records are another resource for detection of ad-
verse drug effects [3]. Sometimes, combined signals
from various sources can be used for adverse drug ef-
fects detection [4]. Recently, social media, such as med-
ical message boards [5] and Twitter [6] has been used
for adverse drug effect detection.

In contrast to the majority of other pharmacovigilance
methods, whose goal is to detect drug safety signals,
our goal is to provide an explanation for known adverse
drug effects. More specifically, our goal is to provide a
pharmacological and/or pharmacogenomics explanation
by finding genes or proteins that link the drug to the
observed adverse effect. Our basic assumption is that
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the drugs have some effect on some genes or proteins
and that these genes or proteins are associated with the
observed adverse effects.

Methods

We use Literature-based Discovery (LBD) [7] to find ex-
planations for (drug, adverse effect) pairs. The goal of
LBD is to generate novel hypotheses by analyzing the
literature and optionally other knowledge sources. LBD
uses either of two basic approaches: open discovery and
closed discovery; both are based on a paradigm of three
related concepts: X, Y, and Z. In open discovery only the
starting concept is known. For example, if we want to find
a new treatment for a given disease (X), we first try to
find (patho)physiological characteristics (Y) of the disease
and then seek drugs (Z) that can deal with these charac-
teristics. In closed discovery both the starting concept (X)
and the end concept (Z) are known, and we want to find
intermediate, linking concepts (Y) that may help explain
the relationship between X and Z. In any case, LBD is
meant as a discovery support paradigm. LBD generates
hypotheses, but a knowledgeable human expert is needed
for the interpretation of these hypotheses [8]. Our method-
ology is meant to assist an experienced pharmacovigilance
expert.

For the current study closed discovery is better suited
because we work with known adverse effects. In other
words, the starting concept (Drug_X) is known as well
as the end concept (Adverse_effect_Z), and we want to
find Genes_or_proteins_Y that somehow link the drug
with the adverse effects. By finding the linking genes or
proteins, we provide an explanation for an association
found statistically.

For this research we used the closed discovery compo-
nent of a LBD tool called SemBT [9, 10] available at [11].
SemBT uses semantic relations extracted with the
SemRep [12] natural language processing system from
all of MEDLINE.

Results

The SemBT version used for this study is based on se-
mantic relations extracted with SemRep from 44,250,865
sentences. These sentences come from 23,657,386
MEDLINE citations (the entire MEDLINE database up
to the end of March 2014). 15,175,993 distinct semantic
relations were extracted from a total of 69,331,058 se-
mantic relation instances.

Statistical evaluation

To evaluate our methodology we selected 51 true positive
and 29 true negative (drug, adverse effect) pairs that were
curated by pharmacovigilance experts. All the 29 true
negatives and 28 of the true positives came from the
EU-ADR project [2] because it is a well-established
benchmark used in several recent pharmacovigilance pa-
pers. The additional 23 true positive pairs were added by
pharmacovigilance experts because they believed that
these pairs likely had pharmacogenomic explanation. For
each pair, we created a ranked list of linking Y genes or
proteins using SemBT.

For the group of 51 true positive pairs, we found a total
of 1523 linking Y genes or proteins, giving 29.86 Ys per
true positive pair. For the group of 29 true negative pairs,
we found a total of 392 linking Ys, giving 13.52 Ys per
true negative pair. The Nonparametric Mann–Whitney test
for comparison of two independent samples was used to
compare the number of Ys found in the two groups. There
was a significant difference between the groups
(p = 0.00975), with Group 1 having significantly higher
values than Group 2. Therefore, our method finds consid-
erably more Ys per (drug, adverse effect) pair for the true
positive pairs than for the true negative pairs. For us this
is an indication that our basic idea is valid, i.e. explaining
adverse drug effects through the genes and/or proteins
that link the drug to the disease.

Potentially new adverse drug effect explanations

For each true positive (drug, adverse effect) pair, a ranked
list of linking genes or proteins was produced and given
to a pharmacologist for expert evaluation. The linking
genes or proteins (Ys) were ranked by the sum of distinct
relations between the drug (X) and the Ys plus the distinct
relations between the Ys and the adverse effect (Z). The
pharmacologist found out that in the majority of cases, the
adverse effect was due to the drug’s primary pharmaco-
logical effect, i.e. drug’s major mechanism of action, as
was expected. However, he found a considerable number
of cases where the adverse effect was not caused by the
major drug action and therefore represented potentially
novel ways to explain the adverse drug effect. Some of
these cases are shown in Table 1.

The examples in the table are explained in more detail
below.

Azathioprine

Azathioprine is an immunosuppressive drug that is metabo-
lized to 6-mercaptopurine, a purine analogue that inhibits
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DNA synthesis by inhibiting the enzyme hypoxanthine-
guanine phosphoribosyltransferase (HGPRT). This leads to a
cytotoxic effect in dividing cells; therefore, some of the re-
ported adverse side effects, such as leucopenia, cytopenia,
myelosuppression, and anemia, can be explained by the main
mechanism of action. However, here we provide novel LBD
approach to identify the protein targets to explain other report-
ed adverse side effects, in particular, acute pancreatitis and
hepatotoxicity.

To provide a new hypothesis for the mechanism of
azathioprine-induced acute pancreatitis, we identified pancre-
atic lipase and glutathione S-transferase as protein targets, as
shown in Table 1. Application of azathioprine can lead to an
asymptomatic increase in pancreatic enzymes, such as lipase
and amylase [13]. Indeed, the onset of acute pancreatitis is
positively correlated with the abnormally high pancreatic en-
zyme levels, e.g. pancreatic lipase and amylase [14].
Importantly, pancreatic lipase is the key enzyme in the devel-
opment of acute pancreatitis by releasing membrane-toxic
fatty acids [15]. Moreover, azathioprine is a competitive
inhibitor of glutathione S-transferase [16], and can thus lead
to glutathione (GSH) depletion. Since GSH is an important
intracellular antioxidant this leads to increased cellular oxida-
tive stress. Indeed, GSH depletion is correlated with the

pancreatitis [17]. Furthermore, hepatotoxicity is also correlat-
ed with GSH depletion [18], which was also detected by our
SemBT software.

Irinotecan

Irinotecan is bioactivated by carboxylesterases to SN-38, a
molecule which is an inhibitor of topoisomerase I, and thus
leads to the inhibition of both DNA replication and tran-
scription in dividing cells. Thus, some of the reported ad-
verse side effects, such as myelosuppression, neutropenia,
and cytopenia, can be explained directly by the cytotoxic
action (main mechanism of drug action) on dividing immune
cells [19]. However, to explain other common adverse reac-
tions, such as diarrhea, we applied literature-based discovery
for identifying target proteins, as presented with semantic
relations in Table 1. To explain diarrhea, we identified the
uridine diphosphate glucoronosyltransferase 1A1 (UGT1A1)
as a target protein. UGT1A1 is involved in the inactivation
of the bioactive molecule SN-38 by glucuronidation [19].
Indeed, patients bearing certain specific gene polymor-
phisms of UGT1A1 have a higher risk of severe neutropenia
and diarrhea [20].

Table 1 Providing explanations for reported drug adverse effects through linking genes or proteins

Drug (X) -RELATION- Gene/Protein target (Y) Gene/Protein target (Y) -RELATION- Adverse drug effect (Z)

Azathioprine STIMULATES lipase Lipase ASSOCIATED_WITH pancreatitis

Azathioprine INHIBITS Glutathione S-Transferase
Azathioprine INTERACTS_WITH Glutathione S-Transferase

glutathione S- transferase ASSOCIATED_WITH Pancreatitis, Chronic
glutathione ASSOCIATED_WITH pancreatitis
Glutathione CAUSES Pancreatitis

Azathioprine INHIBITS Glutathione S-Transferase
Azathioprine INTERACTS WITH Glutathione S-Transferase

Glutathione CAUSES Hepatotoxicity

Irinotecan INTERACTS_WITH UGT1A1
Irinotecan COEXISTS_WITH UGT1A1

UGT1A1|UGT1A1 gene AFFECTS Diarrhea
UGT1A1|UGT1A1 gene CAUSES Diarrhea
UGT1A1|UGT1A1 gene PREDISPOSES Diarrhea
UGT1A1|UGT1A1 gene ASSOCIATED_WITH Diarrhea

Simvastatin INTERACTS_WITH SLCO1B1
Simvastatin COEXISTS_WITH SLCO1B1

SLCO1B1 ASSOCIATED_WITH Rhabdomyolysis

Simvastatin INHIBITS CYP3A4|Cytochrome P450 3A4
Simvastatin INHIBITS CYP3A
Simvastatin INHIBITS Cytochrome P450
Simvastatin INTERACTS_WITH CYP3A4|Cytochrome P450 3A4

Cytochrome P450 ASSOCIATED_WITH Rhabdomyolysis
Cytochrome P450 PREDISPOSES Rhabdomyolysis

Atorvastatin INTERACTS_WITH SLCO1B1
Atorvastatin COEXISTS_WITH SLCO1B1

SLCO1B1 ASSOCIATED_WITH Rhabdomyolysis

Atorvastatin STIMULATES Carnitine O-Palmitoyltransferase Carnitine O-Palmitoyltransferase CAUSES Rhabdomyolysis

Atorvastatin INHIBITS CYP3A4|Cytochrome P450 3A4
Atorvastatin INHIBITS CYP3A
Atorvastatin INHIBITS Cytochrome P450
Atorvastatin INTERACTS_WITH CYP3A4|Cytochrome P450 3A4

Cytochrome P450 ASSOCIATED_WITH Rhabdomyolysis
Cytochrome P450 PREDISPOSES Rhabdomyolysis

Pravastatin INTERACTS_WITH SLCO1B1
Pravastatin COEXISTS_WITH SLCO1B1

SLCO1B1 ASSOCIATED_WITH Rhabdomyolysis

Pravastatin INHIBITS CYP3A4|Cytochrome P450 3A4
Pravastatin INHIBITS CYP3A
Pravastatin INHIBITS Cytochrome P450

Cytochrome P450 ASSOCIATED_WITH Rhabdomyolysis
Cytochrome P450 PREDISPOSES Rhabdomyolysis
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Atorvastatin, simvastatin, pravastatin

Although statins are well tolerated in most patients,
around 7–29 % of them have statin-associated muscle
symptoms [21], which are now recognized as a clinically
significant complication of statin therapy. There is a
knowledge gap in understanding the mechanism of
statin-induced rhabdomyolysis, and even more in their
therapy. Thus, we tried to use the literature-based discov-
ery approach to identify the target proteins, which might
explain these statin-associated muscle side-effects. We
used atorvastatin, simvastatin, and pravastatin as represen-
tative drugs of statins, and identified the SLCO1B1 gene
encod ing the OATP1B1 pro t e in , Ca rn i t i ne O-
Palmitoyltransferase, and Cytochrome P450 3A4 as target
proteins involved in statin-induced rhabdomyolysis. The
semantic relations identified are presented in Table 1.

The first target was OATP1B1, which belongs to the family
of a solute carrier organic anion transporters, and is an influx
membrane transporter responsible for the uptake of statins into
hepatocytes. Changes in its activity, either by drug-drug inter-
actions or by SLCO1B1 gene polymorphism, can affect the
pharmacokinetics of statins [22]. For example, the inhibition,
or lower activity, can lead to increased bioavailability (higher
plasma concentrations of statins), and thus to adverse reac-
tions, such as rhabdomyolysis. The second target identified
was Carnitine O-Palmitoyltransferase (CPT), which is a mito-
chondrial transferase enzyme involved in the metabolism of
palmitoylcarnitine into palmitoyl-CoA. Abnormal regulation
of CPT can cause rhabdomyolysis [23]. Importantly, statins
can interfere with CPT activity, e.g. in one study atorvastatin
increased the expression of CPT [24]. Moreover, CPT defi-
ciency often also causes non-exercise-induced rhabdomyoly-
sis [25]. The third target identified was Cytochrome P450 3A4
(CYP3A4), which is one of the most important enzymes in-
volved in the drug metabolism. Importantly, statins are metab-
olized by CYP3A4, as they also inhibit its activity [26].
Therefore, concomitant administration of statin therapy and
drugs that inhibit CYP3A4 increases the risk of rhabdomyol-
ysis [27].

Semantic relation extraction evaluation

The quality of the explanations for the drug adverse ef-
fects provided in our approach largely depends on the
quality of the semantic relation extraction process.
Therefore, we conducted an evaluation to estimate the
accuracy of the semantic processing. The evaluation was
conducted at the semantic relation instance level. In other
words, the goal was to determine whether a particular
semantic relation was correctly extracted from a particular
sentence. Eighty subjects, students in the final year of

medical school (Faculty of Medicine, University of
Maribor) received intensive training and detailed instruc-
tions on how to evaluate before conducting the evalua-
tion. Subjects were organized in such a way that three
of them independently evaluated the same semantic rela-
tion instance. However, subjects could decide whether to
skip a relation to be evaluated and which ones to evaluate
from the set of assigned relations. Therefore, it turned out
that although most of the instances were evaluated by
three subjects, not all were.

The semantic relation instances evaluated were a sub-
set of those relevant to the true positive and true negative
adverse drug effects mentioned before. In total 4069 se-
mantic relation instances were evaluated 10,279 times.
The instances were evaluated as correct 8646 times
(84 %) and as incorrect 1633 times (16 %). 3795 distinct
instances were evaluated as correct (93 %) at least once
and 1068 distinct instances were evaluated as incorrect
(26 %) at least once. If we did not take into account the
number of persons who evaluated a particular relation
instance, we found that 3369 (82 %) distinct instances
were evaluated more frequently as correct than as incor-
rect: 442 (11 %) instances were evaluated more often as
incorrect than as correct, and 258 (7 %) relation in-
stances were evaluated as correct exactly as many times
as they were evaluated as incorrect. However, if we con-
sider only the relation instances being evaluated by ex-
actly three evaluators (N = 1500), then 1321 (88 %) rela-
tion instances were evaluated more times as correct than
as incorrect, and 179 (12 %) instances were evaluated
more times as incorrect than as correct, 1062 instances
were always evaluated as correct (71 %) and 45 distinct
instances were always evaluated as incorrect (3 %).

Conclusions

We presented a tool and a methodology for finding pharma-
cological and/or pharmacogenomics explanations for known
adverse drug effects through genes or proteins that link the
drugs to the adverse effects. We found several potentially nov-
el explanations, which cannot be explained by the drug’s ma-
jor mechanism of action.
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