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Abstract Electrocardiogram (ECG) compression finds wide
application in various patient monitoring purposes. Quality
control in ECG compression ensures reconstruction quality
and its clinical acceptance for diagnostic decision making. In
this paper, a quality aware compression method of single lead
ECG is described using principal component analysis (PCA).
After pre-processing, beat extraction and PCA decomposi-
tion, two independent quality criteria, namely, bit rate control
(BRC) or error control (EC) criteria were set to select optimal
principal components, eigenvectors and their quantization
level to achieve desired bit rate or error measure. The select-
ed principal components and eigenvectors were finally com-
pressed using a modified delta and Huffman encoder. The
algorithms were validated with 32 sets of MIT Arrhythmia
data and 60 normal and 30 sets of diagnostic ECG data from
PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For
BRC with a CR threshold of 40, an average Compression
Ratio (CR), percentage root mean squared difference nor-
malized (PRDN) and maximum absolute error (MAE) of
50.74, 16.22 and 0.243 mV respectively were obtained. For
EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the
average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV
respectively were obtained. For mitdb data 117, the recon-
struction quality could be preserved up to CR of 68.96 by
extending the BRC threshold. The proposed method yields

better results than recently published works on quality con-
trolled ECG compression.

Keywords Electrocardiogram compression . Quality
awareness . Principal component analysis . Error control . Bit
rate control

Introduction

Electrocardiography (ECG) is the primary diagnostic tool for
investigation of cardiac diseases. The amplitudes and time
durations of the constituent waves P, QRS and T and wave
segments PQ, ST and TP represent diagnostic information on
cardiac functions. With the introduction of microcomputers in
medical instrumentation, computerized processing of ECG
has enabled consistent and fast interpretat ion of
long-duration medical records, data archiving and develop-
ment of cardiac monitoring systems. One of the prominent
areas of contemporary biomedical research has been compres-
sion of ECG signals, which plays important role in applica-
tions like continuous arrhythmia monitoring, fetal ECG re-
cording, and tele-care of elderly patients. Till date, many al-
gorithms [1] have been proposed on ECG data compression.
ECG compression algorithms employ two broad approaches:
direct data compression (DDC), and transform domain (TD)
methods. Among these, the DDC methods exploit the corre-
lation between the adjacent samples (intra-beat redundancy) in
a group and encode them into a smaller sub-group. Some
popular algorithms employing DDC approach are AZTEC
[2], turning point (TP) [3], CORTES [4], SAPA/ Fan [5, 6],
interpolators [7] etc. Another method, delta encoder [8],
which utilizes slope between adjacent samples in ECG, has
been successfully implemented in wireless telecardiology [9].
In general, the DDC algorithms are computationally simpler
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and easy to implement using low end processors [10].
However, while attempting to achieve higher compression
ratio, they produce serious distortion in the reconstructed
ECG. Parameter extraction (PE) method, a sub-group of
DDC extracts some additional features, based on the notion
that consecutive ECG beats have close similarity (inter-beat
redundancy). Some of the PE methods are residual-encoding
[11], ECG modeling by synthesis [12, 13] etc.

TD methods, although of higher computational com-
plexity, became popular choice for ECG compression in
the last two decades. Fourier transforms [14], discrete
cosine transform (DCT) [15], discrete Legendre trans-
form [16], and Karhunen Louve transform (KLT) [17,
18] have been successfully implemented to achieve
higher compression efficiency with low reconstruction
error. However, discrete wavelet transform (DWT)
gained maximum popularity among all TD methods for
ECG compression [19–22] due to its capability to cap-
ture most of the ECG beat energy into smaller number
of coefficients. The rest, insignificant coefficients are
either discarded or suitably truncated using a threshold
criterion for encoding (like energy packing efficiency,
fixed error, data rate etc.) [23].

The performance metrics for classical (early) ECG com-
pression works are percentage root mean squared difference
normalized (PRDN), compression ratio (CR), root mean
square error (RMSE) etc. defined as:
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where, x, ⌢x and x represent original, reconstructed and mean
of original signal respectively, N: length of data array.
Recently, quality of the reconstructed ECG has become
an important criterion for its clinical use. It was subse-
quently established by researchers that metrics like PRD
and PRDN can only provide a global estimate of the
reconstructed signal error and have little to do with
the ‘diagnostic quality’ of the ECG [24, 25]. New error
measures were introduced, like weighted diagnostic dis-
tortion (WDD) [24], wavelet based diagnostic distortion
measure (WWPRD) [26], etc. However, they introduce
additional computational burden on the algorithm. A
few wavelet based quality control approaches for ECG

compression are available [26, 27]. In general, two sets
of error metrics were set-forth, namely, global error
measures like PRD, RMSE, SNR etc. and local distor-
tion measure like maximum absolute error (MAE) or
peak error, defined as:

MAE ¼ max x n½ �−⌢x n½ �
���

���
� �

ð2Þ

This paper focused on quality criteria of ECG com-
pressions and their control in the compression algorithm
using principal component analysis (PCA). In the liter-
ature, only few works are available on KL Transform
(which is similar to PCA) based ECG compression.
PCA, as a powerful tool for data compression is still
underutilized in ECG compression. In [18] the authors
described a quality control compression based on beat
segmentation, down-sampling and decomposed the ECG
beats into three zones, namely, PQ, QRS and ST
followed by a variance control and quality control
criteria to select few basis vectors to compress the data.
To the best of author’s knowledge, there has been hard-
ly any attempt to control the compression quality by
recursive selection of principal components and their
adaptive adjustment of quantization level employing
principal component analysis. In the proposed work, a
new method is used to retain the fewer dominant prin-
cipal components guided by two independent quality
control criteria, namely, bit rate control (BRC) and error
(or reconstruction quality) control (EC). For validation,
MIT BIH Arrhythmia data (mitdb), and ECG data from
PTB Diagnostic ECG data (ptbdb) under Physionet [28]
were used, each of one minute duration and at 1 kHz
sampling. All the results were clinically validated by
two cardiologists.

Methodology

The logic flow diagram mentioning the major steps of the
developed algorithm is shown by Fig. 1. The preprocessing
reduces the noise and enhances inter and intra-beat correla-
tion, which is exploited in the principal component analysis
stage.

Preprocessing and beat extraction

The pre-processing stage is aimed to refine the ECG signal
with the beat detection. An ECG beat is defined between two
successive baseline points, detected in the TP segment be-
tween two R peaks. To achieve these, the single lead ECG
data array a[] were decomposed up to 10th level using
Doubechis 6 (db6) wavelet. The array was reconstructed by
discarding detail coefficient D1, and D2, which represent high
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frequency noise and then discarding approximation coeffi-
cient A10, which represents baseline wander. QRS region is

typically indicated by D4 and D5. The detail of this denoising
is available in [29].

The algorithm steps for R-peak detection are given as;

/*—————————————————————————————————————————————————*/
1. x= D4×D5
2. mx_x= max(x); mn_x=min(x)

3. Threshold = 0.05× mx_x

4. Detect peaks pk[] in x[] using the Threshold

5. For each pk, find absolute maximum positions mk[] in a[] in pk±70 ms window

6. Divide the mk(k) to mk(k+1) region, bt_len(k) in 2:1

7. Detect baseline points bl[] in the region of (2/3)×bl_len±50 ms window as maximum flat
region

8. Define the baseline voltage

9. Compute the amplitude of maximum (mx_x) and minimum (mn_x) points around each mk

10. Define R-peaks: if |mx_x| > 0.1× {|mx_x|+ |mn_x|}
Else, QS peak

11. Extract the beats between all bl(k) to bl(k+1) and store QRS index

/*—————————————————————————————————————————————————*/

Legends:
N_pc= retained number of PCs/ eigenvectors
bp  = quantization level of PCs

N_pc=k+1
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Fig. 1 Logic flow diagram of the
quality aware compression
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Beat matrix generation

In this stage, beats were extracted and arranged in the form of
matrix aligned with respect to the R-peak (or QS) index, with
appropriate padding at the start and tails to form the beat
matrix B. A single beat may be represented as:

⌢
bk ¼ b1 b2 b3… bn½ �T ð3Þ
where, b1, b2 are ECG samples, bk is the k

th beat vector with j
and t samples on left and right side respectively of R-peak (or
QS) at the position r.

The beat matrix having m number of beats is represented
as:

B ¼ b̂1 b̂2… b̂m
h i

ð4Þ

where, b̂k is the modified beat vector having a length of l1 + l2
with (l1-j) and (l2-t) numbers of zero pads on beat-start, and
beat-end respectively, l1 and l2 being the maximum beat
lengths on left and right side with respect to R-peak (or QS)
index.

Eigenvalue decomposition to get principal components

Principal Component Analysis (PCA) [30] is a statistical sig-
nal processing tool used to extract latent or hidden information
from a multivariate data, having non-Gaussian distribution. It
uses an orthogonal transformation to map the original corre-
lated data to a set of mutually uncorrelated vectors, named
principal components. These new variables are obtained in
decreasing order of their variances, and hence in many cases,
only few of them (i.e., less dimensions) are sufficient to rep-
resent the variability (or total energy content) of the data.
These non-contributing components can be suitably truncated
or eliminated without significant information loss from the
original dataset. In this way, PCA can be used as a useful tool
for dimensionality reduction in a correlated multivariable
dataset, leading to data compression.

In the current study, the multivariate population B is
R-peak-aligned beat vectors, which are mutually correlated
(inter-beat correlation). A new matrix C is formed by

segmenting the beat matrix B in equal partitions and using
11 beats at a time. The matrix C is then undergoes PCA after

mean adjustment from each beat vector b̂k. The linear orthog-
onal transformation is represented as:

P ¼ ΨT � C ð5Þ

where, P= [p1 p2..pm] is the Principal Component matrix, and
Ψ= [ψ1 ψ2 … ψm] is the Eigenvalues matrix.

Figure 2 represents one representative ECG beat and its
energy distribution among first three PCs using PCA decom-
position. It shows that the maximum energy is retained in the
first PC and contributions from rest PCs are insignificant.
Hence, in principle, the original data can be reconstructed by
an inverse transform, retaining less number of PCs, leading to
data compression.

Quality awareness in ECG compression

Quality awareness was introduced in the compression algo-
rithms from two independent perspectives, BRC and EC. Bit
Rate, expressed in bits per second, represents the post-
compression number of bits used to transfer the block of data,
defined as:

Bit rate ¼ bitsused to represent thecompresseddata

samplingfrequencyof theoriginaldata samples=secð Þ ð6Þ

From Eqs. (1) to (6), we can relate the CR and bit
rate. Lower the number of bits to represent compressed
data, higher the CR and lower the bit rate. Hence,
higher CR indicates lower bit rate. The error (recon-
struction quality) was checked by PRDN and MAE in
the reconstructed data, defined in Eqs. (1) and (2) re-
spectively. From Eq. (5), the compression can be initi-
ated by quantization of the PCs (P) and Eigenvectors
matrix (Ψ), using the linear quantization formula:

Q ¼ 2b−1
� �� s−sminð Þ

smax−sminð Þ ð7Þ

Where, b = quantization level in bits, Q = quantized ampli-
tudes of s, smin and smax are minimum and maximum values of

Fig. 2 Showing Energy
contribution (E) from first three
Principal components in a
representative ECG beat in Lead
II (For visual clarity, all PC are
plotted with a small offset)
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s array respectively. The original beat B can be reconstructed
by the formula:

BT ¼ Em � PCT
m ð8Þ

where, Em and PCm are the modified Eigenvalues matrix and
PC matrix respectively.

The final packet structure will contain compressed PCs,
Eigenvectors and side information.

Error control (EC)

For EC, PRD and maximum absolute error were combined to
form single evaluation criteria and used as a limit. Denoting
bp: bits to represent PCs; be: bits to represent eigenvectors;
N_pc: number of PCs to be retained.

The algorithm steps of EC for a single group of 11 beats are
given below:

/*————————————————————————————————————*/

/* Error Limit set as PRDN≤ 5 % and MAE≤0.1 mV
1. N_pc=1; bp =8; be = 6;

2. Reconstruct data using Eq. (8)

3. Calculate the PRDN and MAE, discarding padding at beat-start and beat-end
4. If Error criteria is satisfied, go to

step 7

5. N_pc=N_pc+1;
6. Go to step 2;

7. Compress PCs using modified delta + run length encoder or Huffman coder

8. Compress Eigenvectors using delta encoder
9. Form data packets for the current 11 beats

/*————————————————————————————————————————*/

Bit rate control (BRC)

For BRC, the CR of a packet was put as single evaluation
criteria and used as a threshold. Using the same symbols,
algorithm steps are given as:

/*—————————————————————————————————————————*/
/* Bit rate Threshold set as CR ≥ 40
1. N_pc=1; bp =8; be = 6;

2. Reconstruct data using Eq. (8)

3. Calculate the block CR, discarding padding at beat-start and beat-end
4. If CR criterion is satisfied, go to step 7

5. bp=bp -1;
6. Go to step 2

7. Compress PCs using modified Huffman coder

8. Compress Eigenvectors using delta encoder

9. Form data packets for the current 11 beats

Compression of the PCs and eigenvectors

Two different approaches were used for PC compres-
sion, based on their suitability for quality control
criteria. For EC, 2–7 numbers of PCs were retained in
most cases. Since variance of these lower order PCs are
of low values, delta encoder followed by sign and

magnitude encoding and run length encoding (RLE)
was applied.

A single PC vector is represented as:

p ¼ y1 y2…yl½ � ð9Þ
where, l is true length of the array, discarding zero pads. A
down-sampling was performed to keep optimum number of
samples to get array pd. The first difference was calculated as,
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Δpd kð Þ ¼ y k þ 1ð Þ−y kð Þ; f or k ¼ 1;… l−1ð Þ ð10Þ

The array length of Δpd was adjusted by zero padding, if
required, so that it becomes multiple of 8. Then, any consec-
utive 8-elements (say, kth group) ofΔpd can be represented as,

pd;k ¼ sk1; sk2 ;… ; sk8½ � mk1j j mk2j j… mk8j j½ �T ð11Þ

where, skj represents sign of j
th element, which is ±1, encoded

as 0 or 1 respectively and |mkj| the amplitude. The encoding
rule for mkj is designed as:

for mj

�� ��; mjþ1

�� ��≤9
Ruleof combination : e j; jþ 1ð Þ¼10� mj

�� ��þ mjþ1

�� ��
else
Rule of offset :
e jð Þ ¼ 100þ mj

�� ��

e jþ 1ð Þ¼ 100 þ mjþ1

�� ��

Finally, the RLE was applied to compress the insignificant
Δpd elements is equipotential regions and lower order PCs
with the following rule. The detail of the delta encoder method
is given in [31].

for e kð Þ ¼ 0 to e kþnð Þ ¼ 0
f jð Þ ¼ 200þ n f or n <¼ 55

For BRC using a single PC, Huffman coder was used on
modified second difference of PC array, derives as:

p ¼ y1 y2…yl½ �
Δp kð Þ ¼ y k þ 1ð Þ−y kð Þ; f or k ¼ 1;… l−1ð Þ
Δ pm kð Þ ¼ Δ p kð Þ− min Δp kð Þðj j

ð12Þ

The modified second differenceΔp2m was also computed.
At first the unique symbols of Δp2m were detected, followed
by the construction of Huffman table and assigning of codes
per symbol to construct the Huffman tree. The detail of this
compression logic can be obtained in [32].

The Eigenvectors have arbitrary magnitudes. For EC, the
retained eigenvectors were compressed using combination or
offset logic and for BRC, the single eigenvector was retained
with fixed quantization level of 6 bits.

Additional information like quantization level, number of
PCs etc. was combined to form header bytes, the structure of
which is given in Tables 1 and 2.

Results and discussions

The compression (and decompression) algorithm was validat-
ed using ECG data from Physionet. This website contains a
large repository of various physiological signals that can be
used for biomedical research. The ptbdb database under
Physionet contains 12 lead ECG records with various cardiac

disorders. mitdb database, which contain different types of
arrhythmia records, has been universally established as bench-
mark for validation of compression algorithms. Since the pri-
mary objective of the proposed algorithm was to control the
post-compression diagnostic quality of ECG data, four differ-
ent datasets under Physionet were used: 30 sets of normal
(healthy control), 15 sets each from Anterior Myocardial
Infarction (AMI) and Inferior Myocardial Infarction (IMI)
from ptbdb and 32 sets of Arrhythmia data from mitdb. The
reason for using AMI and IMI is that they exhibit widely apart
pathological symptoms [33]. For AMI records lead v4 and for
IMI lead III was analyzed, where the pathologies are most
prominent. For evaluation, objective and subjective measures
were used. Objective test were performed by computing
PRDN, CR, MAE with one minute data using Eq. (1).
Subjective tests were performed by two cardiologists indepen-
dently, using a double blind test.

Table 3 shows the compression performance for few arbi-
trarily selected AMI and IMI data. For EC with a limit of 5 %
of PRDN and 0.1 mVof MAE, the average CR, PRDN, and
MAE of 26.23, 4.11 and 0.057 mV respectively were found
with AMI. The same figures for IMI data were 11.92, 4.88 and
0.0328 mV respectively. For BRC with a CR threshold of 40,
these performance metrics came out to be 45.22, 7.90 and
0.351 mV respectively for AMI data and 48.02, 13.90, and
0.272 mV respectively for IMI data.

Table 2 Header structures for bit rate control

Sr. No. Description No. of bits
allocated

1 Number of bytes in the packet 8

2 No. of PCs Retained –

3 Extrema of PCs and Eigenvectors with signs (16+ 2) × 2 = 36

4 Quantization level of PCs 4

5 PC encoder side information 24

6 Eigenvalue encoder side information –

Total 72

Table 1 Header structures for error control

Sr. No. Description No. of bits
allocated

1 Number of bytes in the packet 12

2 No. of PCs Retained 04

3 Extrema of PCs and Eigenvectors with signs (16+ 2) × 2 = 36

4 Quantization level of PCs –

5 PC encoder side information 18

6 Eigenvalue encoder side information 18

Total 88
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Table 3 Performance indices for
compression using MI-anterior
and MI-inferior from ptbdb

Record details with abnormality Error control
(target PRDN<5 % and MAE 0.1 mV)

Bit rate control (target CR> 40)

CR PRDN MAE (mV) CR PRDN MAE (mV)

p005/s0021are (AMI) 27.26 4.72 0.066 47.28 6.02 0.169

p005/s0025lre (AMI) 20.27 4.53 0.069 49.06 9.97 0.284

P010/s0042lre (AMI) 36.37 3.70 0.076 47.96 7.63 0.121

p010/s0061lre (AMI) 20.52 3.89 0.040 43.14 11.89 1.104

p014/s0071lre (AMI) 22.39 4.78 0.048 44.04 8.03 0.140

P026/s0095lre (IMI) 10.66 4.64 0.044 47.71 3.77 0.736

P066/s0280lre (IMI) 8.80 4.66 0.023 46.22 28.53 0.248

P050/s0177lre (IMI) 12.19 4.57 0.028 45.75 11.16 0.095

P011/s0044lre (IMI) 9.55 4.70 0.017 49.12 16.23 0.108

P050/s0185lre (IMI) 9.68 4.50 0.050 46.78 11.73 0.189

Fig. 3 Reconstruction quality for EC and BRC using a AMI data p005/s0021are and b IMI data (P050/s0177lre)
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The reconstruction quality is represented in Fig. 3,
using one each from AMI and IMI records. As expected,
for EC, the reconstructed signal more closely matches with
the original signal than the corresponding case in CR con-
trol, although both were clinically acceptable.

From Table 3 results it can be concluded that for BRC, the
algorithm had almost similar efficiency on AMI and IMI data.
For EC, CR values for IMI were low compared to AMI. The
low CR value in EC is attributed to inclusion of more number
of PCs and eigenvectors to meet the quality criteria. This is
represented in Fig. 4, using IMI data P066/s0280lre. The en-
tire data set was divided into 6 blocks, each consisting of 11
beats, as marked along X-axis, each ranging between a sharp
peak and next lowermost valley point. The sharp peaks indi-
cate the PRDN and MAE values with one PC and eigenvector
incorporated in the reconstruction. With gradual selection of
more PCs and eigenvectors, both PRDN and MAE settle
down at the corresponding lowest valley point.

Table 4 shows some of the results using lead II mitdb
data. For EC (PRDN limit of 5 % and MAE limit of

0.1 mV) the average CR, PRDN, and MAE were found
as 9.48, 4.13 and 0.049 mV respectively, while for BRC
(CR threshold at 40), these performance metrics came out
to be 50.74, 16.22 and 0.243 mV respectively. In Fig. 5,
the reconstruction quality for BRC and EC is shown for
lead II mitdb data 117. It shows that except a few minor
local distortions, the reconstructed signal closely follows
the original signal plot.

The variation in PRDN and MAE with CR was investi-
gated by varying the CR threshold in the range 40–70
using the same data and shown in Fig. 6a. It is seen that
for nearly 68 % variation in CR (44 to 74), the PRDN and
MAE vary only by 20 and 8 % respectively from their
respective initial values. The reconstructed waveform
maintains the ECG morphology (PRDN of 13.39 with
MAE of 0.275 mV) till CR of 68 (Fig. 6b top panel),
although some minor local distortion was observed.
However, beyond CR=70, the reconstructed morphology
completely distorted (Fig. 6b bottom panel) and was clin-
ically unacceptable.

Fig. 4 Convergence of PRD and MAE for IMI data P066/s0280lre

Table 4 Performance indices for
compression using mitdb data Record details with abnormality Error control

(target PRDN<5 % and MAE 0.1 mV)
Bit rate control (target CR> 40)

CR PRDN MAE (mV) CR PRDN MAE (mV)

100 7.32 4.71 0.031 50.97 19.82 0.27

103 13.40 4.72 0.057 56.35 13.98 0.223

117 14.79 4.87 0.063 44.12 12.01 0.258

201 7.07 3.95 0.030 50.11 26.86 0.245

114 9.71 4.40 0.075 45.48 10.39 0.301

116 9.34 4.32 0.036 55.50 17.95 0.154
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Fig. 5 Reconstruction quality for a EC and b BRC using mitdb data 117 lead II

Fig. 6 CR and MAE variation with CR threshold of 40 (BRC)

Table 5 Performance
comparison Works Used database with quantization CR PRD or PRDN

Blanchett [18] mitdb 30–40 –

Lee [34] mitdb 27.9 2.93

Mamaghanian [35] mitdb, 12 bit 10 2

Benzid [36] mitdb, 11 bit 9.04 0.29

Kim [37] mitdb 16.9 6.41

Mitra [38] mitdb, 8 bit 43.54 3.14

Ma [39] mitdb, - 44.5 2.0

Proposed mitdb, 8 bit (Bit rate Control) 50.74 16.22

mitdb, 8 bit (Error Control) 9.48 4.13
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For objective evaluation, a double blind test was performed
with two cardiologists independently. They were shown the
ECG plots each containing 3–4 beats, but without marking
which is original and reconstructed and were requested to
comment on the preservation of ECG prime clinical signatures
and their diagnostic information. For EC and BRC, all the
ECG data used in this study qualified for clinical acceptance.

Table 5 shows a comparison of the efficiency of the pro-
posed work, with recent published work in similar area. It
clearly indicates that the proposed method performs better
than some recent published works.

Conclusion

In this paper, an algorithm for quality control in single lead
ECG compression is presented using PCAwith two indepen-
dent approaches, namely, EC and BRC. Major contribution of
the work is to retain distortion levels in the ECG within clin-
ically acceptable limits even with high CR values (near 50).
This can be useful for health monitoring applications with low
link speed. For EC, the reconstruction error was very negligi-
ble. The proposed algorithm was validated with 90 data sets
(60 normal and 30 diagnostic) from ptbdb and 32 datasets
from mitdb. For a tighter control over reconstruction error
(PRDN 5 % and MAE 0.1 mV as limit), a moderate CR of
9.48 was achievedwith PRDN of 4.13 andMAE of 0.049 mV.
For BRC with a target CR of 40, average PRDN, CR and
MAE of 16.22, 50.74 and 0.243 mV respectively were obtain-
ed. To the best of author’s knowledge, this is the maximum
average CR reported in published literature with mitdb data
with acceptable reconstruction quality. For mitdb data 117, a
maximum CR of 68.96 still retained ECG morphology with
clinical features.
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