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Abstract
Min–max spanning tree problem is a classical problem in combinatorial optimiza-
tion. Its purpose is to find a spanning tree to minimize its maximum edge in a given
edge weighted graph. Given a connected graph G, an edge weight vector w and a
forest F , the partial inverse min–max spanning tree problem (PIMMST) is to find
a new weighted vector w∗, so that F can be extended into a min–max spanning
tree with respect to w∗ and the gap between w and w∗ is minimized. In this paper,
we research PIMMST under the weighted bottleneck Hamming distance. Firstly, we
study PIMMST with value of optimal tree restriction, a variant of PIMMST, and show
that this problem can be solved in strongly polynomial time. Then, by characterizing
the properties of the value of optimal tree, we present first algorithm for PIMMST
under the weighted bottleneck Hamming distance with running time O(|E |2 log |E |),
where E is the edge set of G. Finally, by giving a necessary and sufficient condition to
determine the feasible solution of this problem, we present a better algorithm for this
problem with running time O(|E | log |E |). Moreover, we show that these algorithms
can be generalized to solve these problems with capacitated constraint.

Keywords Partial inverse problem · Min–max spanning tree · Weighted bottleneck
hamming distance · Strongly polynomial-time algorithm

1 Introduction

Many classical 0-1 combinatorial optimization problems can be written as P =
(E, T , w), where E is a ground set, T ⊆ 2E is the set of feasible solutions, and
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w is a weight vector on E . The objective of (E, T , w) is to find an optimal solution
T ∗ ∈ T such that

w(T ∗) = min(max)T∈T w(T ).

Given a combinatorial optimization problem P and a partial solution T ′ which is
included in some feasible solutions, the partial inverse problem on P is to find a new
weight vector w∗, so that T ′ can be extended into an optimal solution with respect
to w∗ and the gap between w and w∗ is minimized. Researchers usually use the
Manhattan distance (l1-norm), Euclid distance (l2-norm), Chebyshev distance (l∞-
norm) and Hamming distance to measure the gap. A partial inverse problem is called
as capacitated, if for any element e ∈ E , −l(e) ≤ w∗(e) − w(e) ≤ u(e), where
l, u : E → R+ ∪ {0} are decreasing and increasing bound vectors, respectively. Note
that when partial solution is a feasible solution, a partial inverse problem degenerates
into an inverse problem.

For the partial inverse combinatorial optimization problems, researchers (Ben-Ayed
and Blair, 1990; Hansen et al., 1992) firstly studied the partial inverse linear program-
ming problem, and showed that this problem is strongly NP-Hard by studying the
relationship between it and bi-level linear programming. Then, a lot of specific partial
inverse problems have been studied. For the partial inverse assignment problem, Yang
(2001) firstly proved that this problem with capacitated constraint under the Man-
hattan distance is APX-hard, and then Yang and Zhang (2007a) presented a strongly
polynomial time algorithm to solve this problem under the Manhattan distance. For
the partial inverse minimum cut problem, Yang (2001) firstly proved that this prob-
lem with capacitated constraint under the Manhattan distance is APX-hard, and then
Gassner (2010) showed that this problem under the Manhattan distance is also NP-
Hard. For the partial inverse sorting problem, Yang and Zhang (2007b) showed that
this problem under the Manhattan distance, Euclid distance and Chebyshev distance
can be solved in polynomial time. For the special case when the partial solution has
only one element, Lai and Orlin (2003) proved that under the Chebyshev norm, deci-
sion versions of the partial inverse shortest path problem on acyclic graphs, the partial
inverse assignment problem, the partial inverse minimum cost arc (or vertex) disjoint
cycle problem, and the partial inverse minimum cut problem are all NP-Complete.

As a classical problem in combinatorial optimization, the partial inverse problems
of spanning tree have attracted widely attention from researchers. Researchers firstly
studied the inverse maximum spanning tree problem (IMST), a special case of partial
inverse maximum spanning tree problem (PIMST). For IMST under the Manhattan
distance, Zhang et al. (1997) obtained the first strongly polynomial-time algorithm
to solve it. Then, Sokkalingam et al. (1999) introduced a O(n3)-algorithm to solve
it, where n is the number of vertices in the graph. In 2000, Ahuja and Orlin (2000)
improved the complexity of this problem to O(n2 log n). For IMST under the Cheby-
shev distance, Sokkalingam et al. (1999) showed that it can be solved in O(n2) time.
In 2003, Hochbaum (2003) summarized the above two problems, and proposed new
algorithms to solve them, respectively. For IMST under the Hamming distance, He
et al. (2005) firstly showed that IMST with capacitated constraint (CIMST) can be
solved in O(n3m) time for the weighted sum type, where m is the number of edges
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in the graph. Then, Zhang et al. (2006) proposed an algorithm with running time
O(n3m logm) to solve CIMST for the weighted bottleneck type.

For the CPIMST, Cai et al. (2008) considered this problem with l ≡ 0, and showed
that it can be solved in strongly polynomial-time under any norm. In 2016, Li et al.
(2016) generalized the above method to CPIMST with u ≡ 0 under the Chebyshev
norm. Then, Li et al. (2018) considered CPIMST with u ≡ 0 under the l p-norm, they
proved that it is APX-Hard when the partial solution has at least two edges, and it can
be solved in strongly polynomial-time when the partial solution has only one edge. For
CPIMST under the Hamming distance, Li et al. (2019) showed that it is APX-Hard
for the weighted sum type and it can be solved in O(m log2 m) time for the weighted
bottleneck type. Recently, Li et al. (2020) proposed approximation algorithms for
CPIMST under the weight l p-norm and the weighted sum Hamming distance, and
showed the approximation ratios are p

√
k and k, respectively, where k is the number

of edges in the partial solution.
Besides the maximum spanning tree problem, some partial inverse problems on

other spanning tree problems have also been studied by researchers, such as min–max
spanning tree problem and max+sum spanning tree problem, etc. For these prob-
lems, researchers mainly considered their inverse problems. Yang and Zhang (2007c)
firstly studied inverse min–max spanning tree problem (IMMST) under the Manhat-
tan distance and the Chebyshev distance, and showed that IMMST can be solved in
strongly polynomial time. Liu andWang (2009); Liu andYao (2008) proposed strongly
polynomial-time algorithms to solve IMMST under the weighted bottleneck Ham-
ming distance, sum Hamming distance and their mixed distance. Guan et al. (2015)
firstly studied inverse max+sum spanning tree problem (IMSST) under the Chebyshev
norm, and showed that it can be solved in strongly polynomial-time. Then, Guan et
al. showed that IMSST can be solved in strongly polynomial time under the weighted
bottleneck Hamming distance, and IMSST under the weighted sum Hamming dis-
tance is NP-Hard (Guan et al., 2017). Finally, Guan et al. considered IMSST under
the Manhattan distance and presented a column generation algorithm to solve its dual
problem (Guan et al., 2018). For partial inverse problems, there are not many results
on these problems at present. In 2020, Tayyebi and Sepasian (2020) proved that par-
tial min–max spanning tree problem (PIMMST) under the Manhattan distance can be
solves in O(m2n2 log n) time.

In this paper, we study PIMMST and a its variant under the weighted bottleneck
Hamming distance and show these two problems can be solved in strongly polynomial-
time.

The paper is organized as follows. The definition of PIMMST under the weighted
bottleneck Hamming distance and some useful basic results are introduced in Sect. 2.
In Sect. 3, we consider PIMMSTwith the value of optimal tree restriction and propose
a strongly polynomial-time to solve it. Then, we present two algorithms for PIMMST
in Sect. 4. In detail, by obtaining the candidate set of the values of optimal tree, we
firstly propose an algorithm with running time O(m2 logm). Then, by characterizing
a necessary and sufficient condition for feasible solutions of this problem, we propose
a simpler algorithm with running time O(m logm). In Sect. 5, we make a conclusion.

123



27 Page 4 of 18 Journal of Combinatorial Optimization (2023) 46 :27

Fig. 1 a An instance of
PIMMST; b the unique optimal
solution of this instance

2 Preliminary

In this section, the definitions of min–max spanning tree and PIMMST under the
weighted bottleneck Hamming distance are presented, and some useful notations and
basic results are introduced.

Given a connected graphG = (V , E) and an edge weight vectorw, a spanning tree
is a min–max spanning tree (MMST) if its weight is the smallest among all spanning
trees, where the weight of a spanning tree T is the maximum weight of all edges
in T , i.e., w(T ) = maxe∈T w(e). Clearly, every minimum spanning tree is a min–
max spanning tree, but the opposite is not true. In 1978, Camerini (1978) presented a
linear-time algorithm to solve MMST.

Definition 1 Given a connected graph G = (V , E), a forest F , an edge weight vector
w, and a norm function c : E → R+, the goal of Partial inverse min–max spanning
tree problem (PIMMST) under the weighted bottleneck Hamming distance is to find
a new weight vector w∗ satisfying:

(1) F is included in a min–max spanning tree of G with respect to w∗;
(2) ‖w∗ − w‖WBH = maxe∈E {c(e) · H(w(e), w∗(e))} is minimum,

where H(·) is the Hamming distance, that is, if w(e) = w∗(e), H(w(e), w∗(e)) = 0;
otherwise, H(w(e), w∗(e)) = 1.

For an instance I = (G, F, w, c) of PIMMST, we call a new weight vector w′ a
feasible solution if it meets the first constraint, and a spanning tree T an optimal tree
if T is min–max with respect to an optimal solution and F ⊆ E(T ).

In the study of PIMST, the separation property of weight vector plays a very impor-
tant role. Specifically, for any instance of this problem, there is always an optimal
solution w∗ such that w∗(e) ≤ w(e) for any edge e ∈ F and w∗(e) ≥ w(e) for any
edge e /∈ F . Unfortunately, instances of PIMMST often do not have such properties.
Figure 1 illustrates an example of above statement. The left figure is an instance of
PIMMST under the weighted bottleneck Hamming distance, in which the two dash
edges form the partial solution F and the two parameters on each edge e represent its
weight w(e) (the first value in parentheses) and norm c(e) (the second value in paren-
theses), respectively. The right figure is the unique optimal solution of this instance. It
can be seen that the weight of edge v1v2 increases from 4 to 6, which does not satisfy
the separation property. The main reason is that, for a min–max spanning tree, if the
weights of some non-maximum edges on the tree are increased to the weight of the
tree, it is still a min–max spanning tree.

123



Journal of Combinatorial Optimization (2023) 46 :27 Page 5 of 18 27

Fortunately, although PIMMSTcannot satisfy the first half (e ∈ F) of the separation
property, it still satisfies the second half (e /∈ F) of the property. To show this, we
firstly introduce some useful notations. Let G = (V , E) be a connected graph, and w
be any edge weight vector of G. Define E≥

w,r as the subset of E with weight of edge
at least r , that is, E≥

w,r = {e ∈ E |w(e) ≥ r}. Let T be a spanning tree of G. For any
edge e ∈ E(T ), define C(T , e) as the set of edges connecting the two components of
T − e, called the fundamental cut with respect to T and e. Clearly, T − e + e′ is also
a spanning tree of G for any edge e′ ∈ C(T , e).

The following lemma gives a necessary and sufficient condition for a spanning tree
T of G to be min–max.

Lemma 1 Let G = (V , E) be a connected graph, and w be an edge weight vector of
G. A spanning tree T of G is a min–max with respect to w if and only if G − E≥

w,r is
disconnected, where r = w(T ) = maxe∈E(T ) w(e).

Proof Let G ′ = G − E≥
w,r . For the necessity, suppose to the contrary that G ′ is

connected. This implies that G ′ has a spanning tree T ′ with w(T ′) < r . Since T ′ is
also a spanning tree of G, this contradicts that T is a min–max spanning tree.

For the sufficiency, since G ′ is disconnected, it implies that every spanning tree of
G has at least on edge in E≥

w,r . Hence, w(T ′) ≥ r = w(T ) for any spanning tree T ′,
that is, T is min–max. ��

It should be mentioned that Guan and Zhang have provided similar conclusions for
general bottleneck optimization problems, which can be found in Lemma 1 of Guan
and Zhang (2007).

Theorem 1 not only proves that an optimal solution satisfies the second half of the
separation property, but also gives its properties on the partial solution F .

Theorem 1 Let I = (G, F, w, c) be an instance of PIMMST under the weighted
bottleneckHammingdistance. Then, there exists an optimal solutionw∗ andanoptimal
tree T ∗, such that

(1) for any e ∈ F, if w∗(e) �= w(e), then w∗(e) = w∗(T ∗);
(2) for any e /∈ F, w∗(e) ≥ w(e).

Proof For the first part, let’s consider a new weight vector wo as follows,

wo(e) =
{
w∗(T ∗), e ∈ F and w∗(e) �= w(e),
w∗(e), otherwise.

We can see that wo(T ∗) = w∗(T ∗), and E≥
w∗,w∗(T ∗) ⊆ E≥

wo,wo(T ∗) since F ⊆ E(T ∗).
By Lemma 1, we can conclude that T ∗ is also a min–max spanning tree with respect
to wo. Furthermore, ‖wo − w‖WBH ≤ ‖w∗ − w‖WBH since the two weight vectors
differ only for the edges e with w∗(e) �= w(e). Hence, wo is an optimal solution
satisfying the first part.

For the second part, we prove it by contradiction. For any optimal solution w∗,
suppose that there always exists an edge e /∈ F with w∗(e) < w(e). In other words,
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Ew∗,u f �= ∅, where Ew∗,u f = {e /∈ F |w∗(e) < w(e)}. Among all the optimal
solutions, we choose the one with the smallest |Ew∗,u f |. Let e′ ∈ Ew∗,u f and

wo =
{
w(e′), e = e′,
w∗(e), e �= e′.

Since the two weight vectors w∗ and wo differ only for the edge e′. we can see that

‖wo − w‖WBH ≤ ‖w∗ − w‖WBH and Ewo,u f = Ew∗,u f \ {e′}.

Hence, if wo is a feasible solution of I , this will contradicts with the optimality of w∗
or the choice of w∗. We shall prove the feasibility of wo through the following two
cases.

Case 1: e′ /∈ E(T ∗). In this case, wo(T ∗) = w∗(T ∗). If e′ /∈ E≥
w∗,w∗(T ∗), then

E≥
w∗,w∗(T ∗) ⊆ E≥

wo,wo(T ∗). If e
′ ∈ E≥

w∗,w∗(T ∗), then

wo(T
∗) = w∗(T ∗) ≤ w∗(e′) < w(e′) = wo(e

′).

It implies that e′ ∈ E≥
wo,wo(T ∗) and E≥

w∗,w∗(T ∗) = E≥
wo,wo(T ∗). Thus, E

≥
w∗,w∗(T ∗) ⊆

E≥
wo,wo(T ∗) holds. By Lemma 1, we can see that T ∗ is a min–max spanning tree

containing F with respect to wo.
Case 2: e′ ∈ E(T ∗) (e′ ∈ E(T ∗)\ F). Let e′′ = argmin{wo(e)|e ∈ C(T ∗, e′)} and

T ′ = T ∗ − e′ + e′′. Since e′ /∈ F , T ′ is a spanning tree containing F . If wo(e′′) =
wo(T ′), by the definition of e′′, we can see that wo(e) ≥ wo(e′′) = wo(T ′), for any
edge e ∈ C(T ∗, e′). This implies that C(T ∗, e′) ⊆ E≥

wo,wo(T ′), and T ′ is min–max
with respect to wo by Lemma 1. If wo(e′′) < wo(T ′), then wo(T ′) ≤ w∗(T ∗) since
T ′−e′′ = T ∗−e′. For any edge e ∈ E≥

w∗,w∗(T ∗),wo(e) = w(e) > w∗(e) = w∗(T ∗) ≥
wo(T ′) if e = e′; and wo(e) = w∗(e) ≥ w∗(T ∗) ≥ wo(T ′), otherwise. This implies
that E≥

w∗,w∗(T ∗) ⊆ E≥
wo,wo(T ′). By Lemma 1, we can see that T ′ is a min–max spanning

tree containing F with respect to wo. ��

3 PIMMSTwith value of optimal tree constraint

In this section,wewill introduce a variant of PIMMST, the partial inverse optimal value
problem on min–max spanning tree (PIOV_MMST). By studying PIOV_MMST and
giving the algorithm for this problem, we will obtain the first algorithm for PIMMST
in the Sect. 4. In the previous work, there are some related results for this variant
on inverse minimum spanning tree (IOV_MMST). Zhang et al. (2020) presented an
algorithm for it under the Chebyshev norm with running time O(mn), andWang et al.
(2021) presented an algorithm for it under the bottleneck Hamming distance with
running time O(mn log n).

At the beginning, we give the definition of PIOV_MMST under the bottleneck
Hamming distance.
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Definition 2 Given an instance I = (G, F, w, c) of PIMMST and a real number r∗,
the goal of PIOV_MMST under the weighted bottleneck Hamming distance is to find
a new weight vector w∗ satisfying:

(1) F is included in amin–max spanning tree T ∗ ofGwith respect tow∗ andw∗(T ∗) =
r∗;

(2) ‖w∗ − w‖WBH = maxe∈E {c(e) · H(w(e), w∗(e))} is minimum.

Easy to see that PIOV_MMST is obtained by adding the value of optimal tree
constraint on PIMMST.

3.1 Decision version of PIOV_MMST

To deal with the PIOV_MMST, we firstly consider the decision version of
PIOV_MMST. Let I = (G, F, w, c; r∗) be an instance of PIOV_MMST under the
bottleneck Hamming distance, and a positive real number R. The decision version
of I with R is to ask whether there exists a feasible weight vector w′ such that
‖w′ − w‖WBH ≤ R.

The following theorem shows that the decision version of PIOV_MMST can be
transformed into a feasibility problem of a specific weight vector.

Theorem 2 Let I = (G, F, w, c; r∗, R) be an instance of decision version of
PIOV_MMST under the weighted bottleneck Hamming distance. Then, the answer
of I is “True” if and only if wR is a feasible solution of I ′ = (G, F, w, c; r∗) of
PIOV_MMST, where

wR(e) =
{
r∗, c(e) ≤ R,
w(e), otherwise.

(1)

Proof The sufficiency can be deduced from ‖wR − w‖WBH ≤ R. So, we will prove
the necessity in the following.

Suppose that the answer of I is “True”, this means that there is a new weight vector
w′ such that F can be extended into a min–max spanning tree T ′ with respect to w′
and w′(T ′) = r∗, and ‖w′ − w‖WBH ≤ R. Now, we shall show that wR(T ′) = r∗
firstly. Clearly, wR(T ′) ≤ r∗ since for any edge e ∈ E(T ′), wR(e) = r∗ if c(e) ≤ R
and wR(e) = w(e) = w′(e) ≤ w′(T ′) = r∗ otherwise. Let eM = argmaxe∈T ′ w′(e).
Then w′(eM ) = r∗. If c(eM ) ≤ R, we have wR(eM ) = r∗; otherwise, wR(eM ) =
w(eM ) = w′(eM ) = r∗ since ‖w′ − w‖WBH ≤ R. Hence, we can obtain that
wR(T ′) = r∗.

Then, we shall show that T ′ is also min–max with respect to wR . For any edge
e ∈ E≥

w′,w′(T ′), we can see that wR(e) ≥ r∗, since wR(e) = r∗ if c(e) ≤ R and

wR(e) = w(e) = w′(e) ≥ r∗ otherwise. This implies that E≥
w′,w′(T ′) ⊆ E≥

wR ,wR(T ′).
Hence, by Lemma 1, we can see that T ′ is min–max with respect to wR . ��

By Theorem 2, we propose Alg. 1 to solve the decision version of PIOV_MMST.

Theorem 3 Alg. 1 is a linear-time algorithm for decision version of PIOV_MMST
under the weighted bottleneck Hamming distance.
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Algorithm 1 Decision version of PIOV_MMST under the WBH
Require: An instance I = (G, F, w, c; r∗, R) of decision version of PIOV_MMST.
Ensure: “True” or “False”.
1: Calculate wR by Eqn. (1);
2: Use the min–max spanning tree algorithm by Camerini (1978) on G and wR to obtain T ;
3: if wR(T ) = r∗ and maxe∈F wR(e) ≤ r∗ then
4: return “True”;
5: else
6: return “False”;
7: end if

Proof Clearly, Line 1 and Line 2 both cost O(m) time and Line 3 costs O(|F |) time.
Hence, the running time of Alg. 1 is O(m).

For the correctness, if wR(T ) = r∗ and maxe∈F wR(e) ≤ r∗, it means that the
weight of amin–max spanning tree ofG with respect towR is r∗, andwR(e) ≤ wR(T )
for any edge e ∈ F∪E(T ). Since subgraphG ′ = (V , F∪E(T )) is connected, there is
a spanning tree T ′ ofG ′ containing F andwR(T ′) ≤ wR(T ). Thus, T ′ is alsomin–max
withwR(T ′) = r∗ andwR is feasible. By Theorem 2, the answer should be “YES”. If
wR(T ) �= r∗, it means that the weight of a min–max spanning tree of G with respect
to wR is not equal to r∗. So, the answer should be “No”. If maxe∈F wR(e) > r∗, it
implies that any spanning tree T ′ containing F has wR(T ′) ≥ maxe∈F wR(e) > r∗.
Thus, the answer should be “No”. ��

3.2 Algorithm for PIOV_MMST

According to the results of the decision version, the key point to solving PIOV_MMST
is to obtain the candidate set of the optimal value. From the characteristics
of the weighted bottleneck Hamming distance, it is easy to see that if I =
(G, F, w, c; r∗, R1) is true, then I = (G, F, w, c; r∗, R2) is also true, for any
R2 > R1; and the optimal value of any I = (G, F, w, c; r∗) is equal to c(e) for some
edge e. Hence, we can present the following strongly polynomial-time algorithm to
solve PIOV_MMST by combining Alg. 1 with Binary Search Method.

Remark 1 The running time ofAlg. 2 is O(m logm). In detail, Line 1 costs O(m logm)

time and Line 11 costs O(m) time. In Lines 2-10, the while-loop has O(logm) iter-
ations (Binary Search Method) and each iteration costs O(m) time. Thus, Lines 2-10
costs O(m logm) time. The whole running time is O(m logm) + O(m logm) +
O(m) = O(m logm).

3.3 PIOV_MMSTwith capacitated constraint

In this section, we consider the PIOV_MMST with capacitated constraint
(CPIOV_MMST) under the weighted bottleneck Hamming distance. CPIOV_MMST
is obtained from PIOV_MMST by adding the capacitated constraint, that is, for any
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Algorithm 2 PIOV_MMST under the weighted bottleneck Hamming distance
Require: An instance I = (G, F, w, c; r∗) of PIOV_MMST.
Ensure: An optimal solution w∗

r∗ and the optimal value Rr∗ .
1: Order the edges in E as c(e1) ≤ c(e2) ≤ ...... ≤ c(em );
2: Set l := 1 and u := m; \\ Binary search to find the optimal value
3: while l < u do
4: Set i := �(l + u)/2�;
5: if Alg. 1 on (G, F, w, c; r∗, c(ei )) returns “True” then
6: u = i ;
7: else
8: l = i + 1;
9: end if
10: end while
11: Calculate wc(eu ) by Eqn. (1);
12: return w∗

r∗ = wc(eu ) and Rr∗ = c(eu).

edge e ∈ E ,

−l(e) ≤ w∗(e) − w(e) ≤ u(e),

where l and u are two non-negative weight vectors, called as lower and upper bound
vector, respectively.

As the PIOV_MMST, we can obtain the following result for the decision version
of CPIOV_MMST.

Theorem 4 Let I = (G, F, w, c, l, u; r∗) be an instance of CPIOV_MMST under the
weighted bottleneck Hamming distance, and R be a positive real number. There is
a feasible solution w′ of I with ‖w′ − w‖WBH ≤ R if and only if wR is a feasible
solution of I , where ER,r∗ = {e ∈ E |c(e) ≤ R and w(e)− l(e) ≤ r∗ ≤ w(e)+u(e)},
and

wR(e) =
{
r∗, e ∈ ER,r∗ ,
w(e), otherwise.

(2)

Proof The sufficiency can be deduced from ‖wR − w‖WBH ≤ R. Now, let’s prove
the necessity.

Let T ′ be a min–max spanning tree with respect to w′ satisfying F ⊆ E(T ′)
and w′(T ′) = r∗. Firstly, we shall show that wR(T ′) = r∗. For any e ∈ E(T ′), if
e ∈ ER,r∗ , then wR(e) = r∗; otherwise, we can see that c(e) > R or c(e) ≤ R and
w(e) + u(e) < r∗. If c(e) > R, then wR(e) = w(e) = w′(e) ≤ w′(T ′) = r∗; if
c(e) ≤ R andw(e)+u(e) < r∗, thenwR(e) = w(e) < r∗. Thus, we can conclude that
wR(T ′) ≤ r∗. Let’s choose an edge eM ∈ E(T ′) with w′(eM ) = r∗. If eM ∈ ER,r∗ ,
then wR(eM ) = r∗; otherwise, we can see that c(e) > R and wR(eM ) = w(eM ) =
w′(eM ) = r∗. Hence, we can obtain that wR(T ′) = r∗.

Then, we shall show that T ′ is also min–max with respect to wR . For any edge
e ∈ E≥

w′,w′(T ′), if e ∈ ER,r∗ , then wR(e) = r∗; otherwise, we can see that c(e) > R
or c(e) ≤ R and w(e) − l(e) > r∗. If c(e) > R, then wR(e) = w(e) = w′(e) ≥ r∗;
if c(e) ≤ R and w(e) − l(e) > r∗, then wR(e) = w(e) > r∗. This implies that
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E≥
w′,w′(T ′) ⊆ E≥

wR ,wR(T ′). Hence, by Lemma 1, we can see that T ′ is min–max with
respect to wR . ��

Based on Theorem 4, we canmodifyAlg. 1 andAlg. 2 to solve the relative problems
of CPIOV_MMST.

Algorithm 1 ′ Decision version of CPIOV_MMST under the WBH
Require: An instance I = (G, F, w, c, l, u; r∗, R) of CPIOV_MMST
Ensure: “True” or “False”.
1: Calculate wR by Eqn. (2);
2: Use the min–max spanning tree algorithm by Camerini (1978) on G and wR to obtain T ;
3: if wR(T ) = r∗ and maxe∈F wR(e) ≤ r∗ then
4: return “True”;
5: else
6: return “False”;
7: end if

Algorithm 2 ′ CPIOV_MMST under the weighted bottleneck Hamming distance
Require: An instance I = (G, F, w, c, l, u; r∗) of CPIOV_MMST.
Ensure: An optimal solution w∗

r∗ and the optimal value Rr∗ .
1: Order the edges in E as c(e1) ≤ c(e2) ≤ ...... ≤ c(em );
2: Use Binary Search Method to find the minimum c(ei ) such that Alg. 1

′ on (G, F, w, c, l, u; r∗, c(ei ))
returns “True”;

3: Calculate wc(ei ) by Eqn. (2);
4: return w∗

r∗ = wc(ei ) and Rr∗ = c(ei ).

Remark 2 The running times of Alg. 1 ′ and Alg. 2 ′ are O(m) and O(m logm),
respectively.

4 PIMMST under the weighted bottleneck hamming distance

In this section, we will study PIMMST under the weighted bottleneck Hamming
distance, and propose two algorithms to solve it.

4.1 Algorithm based on PIOV_MMST

From Sect. 3, we obtain a strongly polynomial-time algorithm to solve PIMMST with
value of optimal tree constraint. Hence, if we can get the specific weight of optimal
trees or a candidate set of weight of optimal trees in polynomial scale, we can solve
this problem in strongly polynomial time. The following result gives a positive answer
for above question.
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Theorem 5 Let I = (G, F, w, c) be an instance of PIMMST under the weighted
bottleneck Hamming distance. There exists an optimal solution w∗ and an optimal
tree T ∗ such that w∗(T ∗) = w(e) for some edge e ∈ E.

Proof Let w∗ be an arbitrary optimal solution of I , and T ∗ be an optimal tree with
respect to w∗. Suppose to the contrary that w∗(T ∗) = r∗ �= w(e) for any edge e. Let
ē = argmine∈E w(e). We shall prove the result through the following two cases.

Case 1: r∗ < w(ē). It implies that for any edge e ∈ E(T ∗), w∗(e) ≤ r∗ < w(ē) ≤
w(e). Now, let’s consider a new weight vector

w′(e) =
{
w(ē), e ∈ E(T ∗),
w(e), otherwise.

Clearly, w′(T ∗) = w(ē) and T ∗ is a min–max spanning tree with respect to w′.
Furthermore,

‖w′ − w‖WBH = max
e∈E(T ∗)

c(e)H(w(ē), w(e))

≤ max
e∈E(T ∗)

c(e)H(w∗(e), w(e)) ≤ ‖w∗ − w‖WBH .

Hence, w′ is an optimal solution, T ∗ is an optimal tree and w′(T ∗) = w(ē).
Case 2: r∗ > w(ē). It implies there exist an edge e∗ such that w(e∗) < r∗ and

w(e) /∈ (w(e∗), r∗) for each edge e ∈ E . Now, let’s consider a new weight vector

w′(e) =
{
w(e∗), w(e∗) < w∗(e) ≤ r∗,
w∗(e), otherwise.

Firstly, We show that w′(T ∗) = w(e∗). For any e ∈ T ∗, if w∗(e) ≤ w(e∗), then
w′(e) = w∗(e) ≤ w(e∗); ifw∗(e) > w(e∗) (such edge always exists, sincew∗(T ∗) =
r∗ > w(e∗)), then w′(e) = w(e∗). Thus, w′(T ∗) = w(e∗).

Then, we shall show that T ∗ is also a min–max spanning tree with respect w′. For
any edge e ∈ E≥

w∗,w∗(T ∗), if w
∗(e) = w∗(T ) = r∗, then w′(e) = w(e∗) = w′(T ∗);

if w∗(e) > r∗, then w′(e) = w∗(e) > r∗ > w(e∗) = w′(T ∗). This implies that
E≥
w∗,w∗(T ∗) ⊆ E≥

w′,w′(T ∗). By Lemma 1, T ∗ is a min–max spanning tree with respect
w′.

Now, we can see that w′ is a feasible solution of I . Since, for any edge e with
w(e∗) < w∗(e) ≤ r∗, H(w′(e), w(e)) ≤ 1 = H(w∗(e), w(e)), we can obtain that

‖w′ − w‖WBH ≤ ‖w∗ − w‖WBH .

Hence, w′ is an optimal solution, T ∗ is an optimal tree and w′(T ∗) = w(e∗). ��
Combining this results with Alg. 2, we propose the following algorithm.

Remark 3 The running time of Alg. 3 is O(m2 logm). In detail, Line 1 costs
O(m logm) time and both of Line 5 and Line 6 cost O(m) time. About the For-loop, it
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Algorithm 3 PIMMST under the weighted bottleneck Hamming distance
Require: An instance I = (G, F, w, c) of PIMMST.
Ensure: An optimal solution w∗.
1: Sorting the weights of all edges in E with r1 < r2 < · · · < rt ;
2: for j = 1 to t do
3: Execute Alg. 2 with (G, F, w, c; r j ) to obtain Rr j ;
4: end for
5: Set R∗ := min1≤ j≤t Rr j and j∗ := argmin1≤ j≤t Rr j ;
6: Calculate wR∗ by Eqn. (1) with parameters r∗ = r j∗ ;
7: return w∗ = wR∗ .

has at most O(m) iterations and each iteration costs O(m logm) time. Thus, For-loop
costs O(m2 logm) time. The whole running time is O(m logm) + O(m2 logm) +
O(m) = O(m2 logm).

4.2 A better algorithm

In this subsection, we will give a simpler algorithm for PIMMST under the weighted
bottleneck Hamming distance with quasi-linear running time. To do this, we firstly
give a necessary and sufficient condition for determining whether there is a min–max
spanning tree including F . For any edge subset E ′, define w(E ′) = maxe∈E ′ w(e).

Lemma 2 Let G = (V , E) be a connected graph, F be a forest and w be an edge
weight vector. There exits a min–max spanning tree of G with respect to w containing
F if and only if G − E≥

w,w(F) is disconnected.

Proof Let G ′ = G − E≥
w,w(F). For the necessity, suppose to the contrary that G ′ is

connected. This implies that G ′ has a spanning tree T ′ with w(T ′) < w(F). Hence,
F cannot be contained in any min–max spanning tree of G with respect to w.

For the sufficiency, since G ′ is disconnected, then the weight of any spanning tree
of G is at least w(F). Let T be a min–max spanning tree of G with respect to w.
Consider the subgraph G ′′ = (V , T ∪ F), since G ′′ is connected, there is a spanning
tree TF containing F . Since w(T ) ≥ w(F), we can see that

w(TF ) ≤ w(T ∪ F) = max{w(T ), w(F)} ≤ w(T ).

Hence, TF is a min–max spanning tree of G with respect to w. ��
From Lemma 2, we can obtain the following result for the decision version of

PIMMST.

Theorem 6 Let I = (G, F, w, c) be an instance of PIMMST under the weighted
bottleneck Hamming distance, and R be a positive real number. There is a feasible
solution w′ of I with ‖w′ − w‖WBH ≤ R if and only if FR = ∅ or wR is a feasible
solution of I , where FR = {e ∈ F |c(e) > R}, and

wR(e) =
{
w(FR), c(e) ≤ R,
w(e), otherwise.

(3)
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Proof Let’s prove the sufficiency firstly. If wR is feasible, statement holds because
of ‖wR − w‖WBH ≤ R. If FR = ∅, it implies that c(e) ≤ R for each edge e ∈ F .
Consider a new weight vector

wm(e) =
{
w(ē), e ∈ F,
w(e), otherwise,

where ē = argmine∈E w(e). Clearly,

‖wm − w‖WBH = max
e∈F c(e)H(w(ē), w(e)) ≤ max

e∈F c(e) ≤ R.

Furthermore, by Lemma 2, wm is a feasible solution of I , since E≥
wm ,wm (F)

= E and

G ′ = G − E≥
wm ,wm (F)

is an empty graph.
Then, we shall show the necessity by proving the feasibility of wR when FR �= ∅.

For any edge e ∈ F , if c(e) ≤ R, wR(e) = w(FR); otherwise, wR(e) = w(e) ≤
w(FR). Thus, wR(F) = w(FR). For each edge e ∈ E≥

w′,w′(F), if c(e) ≤ R, we obtain
wR(e) = w(FR) = wR(F); otherwise, we have

wR(e) = w(e) = w′(e) ≥ w′(F) ≥ w′(FR) = w(FR) = wR(F).

This implies that E≥
w′,w′(F) ⊆ E≥

wR ,wR(F)
. Hence, by Lemma 2, wR is a feasible

solution of I . ��
ByTheorem6and the characteristics of theweighted bottleneckHammingdistance.

We can obtain the following quasi-linear time algorithm to solve PIMMST.

Algorithm 4 Simpler Algorithm for PIMMST under WBH
Require: An instance I = (G, F, w, c) of PIMMST.
Ensure: An optimal solution w∗ and the optimal value r∗.
1: Sort the norms of edges in E with c1 ≤ c2 ≤ · · · ≤ cm ;
2: UseBinarySearchMethod tofind theminimum c j such that FR is an empty set orG′ = G−E≥

wc j ,wc j (F)

is disconnected, where wc j is obtained by Eqn. (3);
3: return w∗ = wc j and r

∗ = c j .

Remark 4 The running time ofAlg. 4 is O(m logm). In detail, Line 1 costs O(m logm)

time. In Line 2, it has O(logm) iterations and each iteration costs O(m) time. Thus,
Line 2 costs O(m logm) time. Thewhole running time is O(m logm)+O(m logm) =
O(m logm).

4.3 PIMMSTwith capacitated constraint

Similar with PIMMST, we solve the decision version of CPIMMST firstly. Given
an instance I = (G, F, w, c, l, u) be an instance of CPIMMST under the weighted
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bottleneck Hamming distance, and a real number R > 0, define FR = {e ∈ F |c(e) >
R}, r1 = w(FR) and r2 = maxe∈F\FR (w(e) − l(e)). Note that r1 or r2 equals to -∞
if FR = ∅ or FR = F , respectively.

Theorem 7 There is a feasible solution w′ of I with ‖w′ − w‖WBH ≤ R if and only
if wR is a feasible solution of I , where r = max{r1, r2}, Er = {e /∈ F |c(e) ≤
R and w(e) < r} and

wR(e) =
{
min{r , w(e) + u(e)}, e ∈ (F \ FR) ∪ Er ,

w(e), otherwise.
(4)

Proof Firstly, we show wR satisfies the capacitated constraint. Clearly, for any edge
e ∈ (F \ FR) ∪ Er ,

wR(e) − w(e) = min{r , w(e) + u(e)} − w(e) ≤ u(e). (5)

If wR(e) = w(e) + u(e), we can see that wR(e) ≥ w(e) ≥ w(e) − l(e), that is,

− l(e) ≤ wR(e) − w(e). (6)

If wR(e) = r and e ∈ Er , this implies that wR(e) = r > w(e) and

− l(e) ≤ 0 < wR(e) − w(e). (7)

If wR(e) = r and e ∈ F\FR , this implies that w(e) − l(e) ≤ r2 ≤ r = wR(e), that
is,

− l(e) ≤ wR(e) − w(e). (8)

By Eqs. (5), (6), (7) and (8),wR satisfies the capacitated constraint. Furthermore, since
‖wR − w‖WBH ≤ R, the sufficiency is proved.

For the necessity, it is only to show that there is a min–max spanning tree with
respect towR containing F . To do this, we firstly prove thatwR(F) = r . For any edge
e ∈ F , if e ∈ FR , we can see that wR(e) = w(e) ≤ w(FR) = r1 ≤ r ; if e ∈ F\FR ,
then wR(e) = min{r , w(e) + u(e)} ≤ r . Thus, wR(F) ≤ r . Moreover, if r1 ≥ r2, it
implies that FR �= ∅. Let e∗ = argmaxe∈FR w(e). Then,

wR(e
∗) = w(e∗) = w(FR) = r1 = r .

If r1 < r2, it implies that F \ FR �= ∅. Let e∗ = argmaxe∈F\FR w(e) − l(e). Then,
r = r2 = w(e∗) − l(e∗) ≤ w(e∗) + u(e∗) and

wR(e
∗) = min{r , w(e∗) + u(e∗)} = r .

Hence, we can deduce that w(FR) = r .
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Next, we shall show that w′(F) ≥ r . For any edge e ∈ FR , since ‖w′ −w‖WBH ≤
R, we have w(e) = w′(e) ≤ w′(F). Thus,

r1 = w(FR) = max
e∈FR

w(e) ≤ w′(F).

For any edge e ∈ F \ FR , sincew′ is feasible, we havew(e)− l(e) ≤ w′(e) ≤ w′(F).
Thus,

r2 = max
e∈F\FR

w(e) − l(e) ≤ w′(F).

So, we can obtain that

w′(F) ≥ max{r1, r2} ≥ r .

Finally, we show that E≥
w′,w′(F) ⊆ E≥

wR ,wR(F)
. For any edge e ∈ E≥

w′,w′(F), if
e ∈ (F \ FR) ∪ Er , we can see that r ≤ w′(F) ≤ w′(e) ≤ w(e) + u(e) and

wR(e) = r .

If c(e) > R, we can obtain that

wR(e) = w(e) = w′(e) ≥ w′(F) ≥ r .

If c(e) ≤ R, e /∈ F and w(e) ≥ r , clearly

wR(e) = w(e) ≥ r .

As above, we can conclude that E≥
w′,w′(F) ⊆ E≥

wR ,wR(F)
. Furthermore, by Lemma 2,

there is a min–max spanning tree with respect to wR containing F . ��
By Theorem 7, we can obtain the following quasi-linear time algorithm to solve

CPIMMST.

Algorithm 4 ′ CPIMMST under the Weighted Bottleneck Hamming Distance
Require: An instance I = (G, F, w, c, l, u) of CPIMMST.
Ensure: An optimal solution w∗ and the optimal value r∗.
1: Sort the norms of edges in E with c1 ≤ c2 ≤ · · · ≤ cm ;
2: Use Binary Search Method to find the minimum c j such that G

′ = G − E≥
wc j ,wc j (F)

is disconnected,

where wc j is obtained by Eqn. (4);
3: return w∗ = wc j and r

∗ = c j .

Remark 5 The running time of Alg. 4 ′ is the same as that of Alg. 4, which is
O(m logm).
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Fig. 2 a An instance of CPIMMST; b The case of R = 3, the left figure shows the new weight vector w1
and the right one is the resulting graph after deleting E≥

w1,w1(F)
; c The case of R = 2, the left figure shows

the new weight vector w2 and the right one is the resulting graph after deleting E≥
w2,w2(F)

Now, we shall give an example of Alg. 4 ′. Figure 2a is an instance of CPIMMST, in
which the dash edge e3 form the partial solution F . The four numbers in parentheses
on each edge represent weight w(e), norm c(e), lower bound l(e) and upper bound
u(e), respectively. The process of Alg. 4 ′ is as follows.

Step 1: Sort the norms of edges in E with 1 < 2 < 3 < 4 < 5;
Step 2: Use Binary Search Method to find optimal value.

Substep 2.1: R1 = 3. In this case, FR = ∅, then r1 = −∞, r2 = 6−2 = 4 and
r = 4. Hence, Er = {e1, e2} and the new weight vector w1 = (4, 4, 4, 2, 4)
(left figure of Fig. 2b). Further, E≥

w1,w1(F)
= {e1, e2, e3, e5} and G ′ = G −

E≥
w1,w1(F)

(right figure of Fig. 2b) is disconnected. Thus, w1 is a feasible
solution.
Substep 2.2: R2 = 2. In this case, FR = {e3}, then r1 = 6, r2 = −∞ and
r = 6. Hence, Er = {e1, e2} and the new weight vector w2 = (6, 4, 6, 2, 4)
(left figure of Fig. 2c). Further, E≥

w2,w2(F)
= {e1, e3} and G ′′ = G− E≥

w2,w2(F)
(right figure of Fig. 2c) is connected. Thus, w2 is not a feasible solution.
Binary search complete, the optimal value is 3, and one optimal solution is
w1 = (4, 4, 4, 2, 4).

Step 3: Return w∗ = w1 and r∗ = 3.

5 Conclusion

In this paper, we study the partial inverse min–max tree problem under the weighted
bottleneck Hamming distance. Firstly, we deal with PIOV_MMST, a variant of
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PIMMST, and present an algorithm to solve it with running time O(m logm). Then,
we present two algorithms to solve PIMMST. The first one is based on the algo-
rithm for PIOV_MMST with running time O(m2 logm). The second one is a better
one with running time O(m logm). Finally, we generalize the algorithms to solve
CPIOV_MMST and CPIMMST with the same running time.
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