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Abstract
For graphs F , G and H , let F → (G, H) signify that any red-blue edge coloring
of F contains either a red G or a blue H , hence the Ramsey number R(G, H) is
the smallest r such that Kr → (G, H). Define Kt as the surplus clique of (G, H) if
Kr \ Kt → (G, H), where r = R(G, H). For any graph G with s(G) = 1, we shall
show that the maximum order of surplus clique of (G, Pn) is exactly � n

2 � for large n.
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1 Introduction

For a graph G = (V , E), we write v(G) = |V | and e(G) = |E | as usual. Let α(G)

and χ(G) be the independence number and the chromatic number of G, respectively.
Furthermore, denote by s(G) the chromatic surplus of G that is the minimum size of
a color class in a proper χ(G)-coloring of vertices of G.

For vertex disjoint graphs G and H , denote by G+H the join of G and H obtained
by additional edges connecting V (G) and V (H) completely. LetG∪H be the disjoint
union of G and H , and nG the vertex disjoint copies of G. Call B(k)

m = Kk + mK1
book consisting of m complete graphs Kk+1 that share a common Kk , in which the
common Kk is called the base of the book. We shall write B(2)

m as Bm that is the first
non-trivial book for k = 2. As usual, denote by Tn the tree of n vertices, in which Pn
is a path and K1,n−1 is a star of n vertices particularly. Let Cn be a cycle of n vertices.
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If V (G) ⊆ V (Kr ), let Kr \G be the graph obtained from Kr by deleting the edges
of G from Kr , hence Kr \ K1 = Kr . If H is a subgraph of G and V (H) ⊆ V (G), we
denote by G − H the subgraph of G induced by V (G) \ V (H).

For graphs F , G and H , let F → (G, H) signify that any red-blue edge coloring
of F contains either a red G or a blue H . The Ramsey number is defined as

R(G, H) = min{r | Kr → (G, H)}.

It is easy to see that if v(F) < R(G, H), then F �→ (G, H). Call F a Ramsey graph
of (G, H) if F → (G, H) and v(F) = R(G, H). So Kr is a Ramsey graph of (G, H)

with r = R(G, H). However, some subgraph L of Kr may be “surplus" in sense that
Kr\L → (G, H).

Since r = R(G, H) is the minimum order of Kr such that Kr → (G, H), one can
ask how add a new vertex v and edges to connect v with some vertices of Kr−1 such
that the resultant graph is a Ramsey graph of (G, H). Let Kr−1 � K1,t be the graph
obtained from Kr−1 and an additional vertex v that is adjacent to t vertices of Kr−1.
Hook and Isaak (2011) defined the star-critical Ramsey number as follows.

Definition 1 Hook and Isaak (2011) Let G and H be graphs. The star-critical Ramsey
number R∗(G, H) is defined as

R∗(G, H) = min{t | Kr−1 � K1,t → (G, H)},

where r = R(G, H).

The idea of surplus subgraphs initiated from (Wang and Li 2020;Wang et al. 2021),
in which the star-critical Ramsey number R∗(G, H) is defined as

R∗(G, H) = max{t | Kr \ K1,t → (G, H)}, (1.1)

in which r = R(G, H) and R∗(G, H) is the maximum size of surplus star in Kr .
Clearly, R∗(G, H) + R∗(G, H) = R(G, H) − 1. Many star-critical Ramsey num-

bers R∗(G, H) and R∗(G, H) for various pairs G and H have been determined, see,
e.g, (Haghi et al. 2017; Hao and Lin 2018; Hook 2015; Hook and Isaak 2011; Jayawar-
dene et al. 2021; Li and Li 2015; Liu and Chen 2021; Wang and Li 2020; Wang et al.
2021; Wu et al. 2015; Zhang et al. 2016).

However, unlike R∗(G, H) that is defined for star only, the definition of R∗(G, H)

can be extended by replacing the surplus star K1,t in (1.1) with another graph. For
example, we can define path-critical Ramsey number as max{t | Kr \ Pt → (G, H)}.

After publications of (Wang and Li 2020; Wang et al. 2021), the authors are sug-
gested to rename the critical Ramsey number defined in (Wang and Li 2020; Wang
et al. 2021) to avoid confusion with the star-critical Ramsey number defined earlier in
(Hook and Isaak 2011). We now give the following definition.

Definition 2 LetG and H be graphs. DefineRamsey surplus clique number Rω(G, H)

as the maximum size of surplus clique of (G, H), namely,

Rω(G, H) = max
{
t | Kr \ Kt → (G, H)

}
, (1.2)
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where r = R(G, H).

It is easy to define other Ramsey surplus numbers by replacing the surplus Kt in (1.2).
For example, in addition to (1.1) and (1.2), we can define Ramsey surplus path number
Rπ (G, H) and Ramsey surplus matching number Rμ(G, H) by replacing Kt in (1.2)
with path Pt and matching Mt , respectively. In this note, we consider the Ramsey
surplus clique numbers in form Rω(G, Pn).

Burr (1981) called a connected graph H to be G-good if v(H) ≥ s(G) and

R(G, H) = (χ(G) − 1)(v(H) − 1) + s(G).

The following result of Chvátal (1977) says that Tn is Km-good for any positivem and
n as

R(Km, Tn) = (m − 1)(n − 1) + 1.

Among trees Tn , paths are of particular interest. Erdős et al. (1985) showed that Pn
is G-good if n is large. Furthermore, Pokrovskiy and Sudakov (2017) proved that Pn
is G-good if n ≥ 4v(G), which improved the lower bound of n in Pei and Li (2016)
as a linear form on v(G).

Lemma 1 Pokrovskiy and Sudakov (2017) Let G be a graph. If n ≥ 4v(G), then Pn
is G-good.

The Ramsey surplus clique number Rω(C4, Pn) was determined in Wang and Li
(2020) to be � n

2 � for n ≥ 4. In this note, we obtain Rω(G, Pn) as � n
2 � for graph in form

of K1 + G. We first give a general upper bound Rω(G, Pn) ≤ � n
2 � for sufficiently

large n, and then we determine some reasonable magnitudes for n such that the upper
bound becomes an equality.

Our main results are as follows.

Theorem 1 Let G be a connected graph with v(G) ≥ 2. Then

Rω(G, Pn) ≤
⌈n
2

⌉
+ r − (χ(G) − 1)(n − 1) − s(G),

where r = R(G, Pn). Particularly, if Pn is G-good, then

Rω(G, Pn) ≤
⌈n
2

⌉
. (1.3)

Let M(G) be the maximum number of vertices in a color class among all proper
vertex coloring of G with χ(G) colors. We shall prove the following result for n ≥
9χ(G)M(G) + 1, but we only write it in a weaker form as n ≥ 9v2(G) as we believe
that n can have a lower bound of linear on v(G) similar to that in Lemma 1.

Theorem 2 Let G be a graph with s(G) = 1. If n ≥ 9v2(G), then

Rω(G, Pn) =
⌈n
2

⌉
.
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The lower bounds of n in following results are reasonable for casesG ∈ {Km, B(k)
m },

in which G �= K1,m as k ≥ 2 in Theorem 4.

Theorem 3 If integers m, n ≥ 2, then Rω(Km, Pn) = ⌈ n
2

⌉
.

Theorem 4 Let m ≥ 1, k ≥ 2 and n ≥ 4(m + k) be integers. Then

Rω(B(k)
m , Pn) =

⌈n
2

⌉
.

It is natural to propose the following problem.

Problem 1 Determine general graph G such that (1.3) becomes an equality for large
n.

2 Proofs of themain results

For a red-blue edge colored G, denote by GR and GB the subgraphs of G induced
by the red edges and blue edges, respectively. For subset S ⊆ V (G), denote by G[S]
the subgraph of G induced by S. For subgraph H ⊆ G and v ∈ V (G), denote
by NH (v) the set of neighbors of v in H . Let N R

H (v) and N B
H (v) be the sets of all

red and blue neighbors of v in H in a red-blue edge colored G, respectively. Hence
dR
H (v) = |N R

H (v)| and dB
H (v) = |N B

H (v)|. Therefore dH (v) = dR
H (v) + dB

H (v).
For the figures in this paper, red edges are solid line and blue edges are long dashed

line. Short dashed lines represent sets. If all the edges between two sets are red (or
blue), a solid (or long dashed) line is drawn between the sets.

Proof of Theorem 1. Let � = �n/2� + r − (χ(G) − 1)(n − 1) − s(G), where r =
R(G, Pn). For convenience, let χ = χ(G) and s = s(G).

Consider the graph F = Kr \ K�+1. Note that

F = Kr−�−1 + (� + 1)K1.

Color the edges of F by red and blue. Denote by R and B the subgraphs induced by
red edges and blue edges, respectively.

B = (χ − 2)Kn−1 ∪ Ks−1 ∪ (Kn/2�−1 + (� + 1)K1).

Then color the rest edges of F by red. We can see that B contains no Pn , since the
order of the longest path of each component of B is at most n − 1. Furthermore, since
χ(R) = χ and s(R) = s − 1, R contains no G. Then we can deduce that

Rω(G, Pn) ≤
⌈n
2

⌉
+ r − (χ(G) − 1)(n − 1) − s(G),

completing the proof. ��
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Before proceeding to the proof of Theorem 2, we need the following result, in which
G is a star K1,m .

Lemma 2 Parsons (1974) Let m ≥ 2. If n ≥ 2m − 1, then

R(K1,m, Pn) = n.

Lemma 3 Let integers m ≥ 2 and n ≥ 6m + 1. Then Rω(K1,m, Pn) = �n/2�.
Proof By Theorem 1, we only need to prove the lower bound. Let r = R(K1,m, Pn) =
n. Denote by G ′ = Kr\K�n/2� = Kn/2� + �n/2�K1. Set X = Kn/2� and Y =
�n/2�K1.

Assume that G ′ contains neither a red K1,m nor a blue Pn , and we shall find a
contradiction. Let P� = v1v2 . . . v� be a longest blue path in G ′.

Case 1. If (V (G ′)\V (P�))∩V (X) �= ∅, wemay assume that u ∈ (V (G ′)\V (P�))∩
V (X). Note that u can not be adjacent to two consecutive vertices in P by blue,
otherwise we get a longer path. So dR

P (u) ≥ ��/2�. Note that � ≥ n/2� + 1 as
R(K1,m, Pn/2�+1) = n/2� + 1. Thus

dR
P (u) ≥ n/2� + 1

2
≥ m,

yielding a red K1,m with central vertex u.
Case 2. If (V (G ′) \ V (P�)) ∩ V (X) = ∅, then V (G ′) \ V (P) ⊆ V (Y ). We may

assume V (G ′) \ V (P) = {y1, . . . , yt }. Then either at least one of the {v1, v�} belongs
to V (X), or there exist two consecutive vertices vi−1, vi such that vi−1, vi ∈ V (X)

since |V (P) ∩ V (X)| ≥ |V (P) ∩ V (Y )|.
Suppose v1 ∈ V (X). So v1y j is red for any j = 1, . . . , t and dR

P (v1) ≤ m − t − 1,
implying that t ≤ m − 1 and

dB
P (v1) ≥ � − 1 − (m − t − 1) = � − m + t .

Thus we get at least � − m + t − 1 new paths with new end vertices. So at least
� −m + t − 1− (�n/2� − t) new end vertices belong to V (X), which are adjacent to
{y1, . . . , yt } by red completely. Since � = n − t and

� − m + t − (�n/2� − t) ≥ n − m − �n/2� ≥ m,

we get a red K1,m with some central vertex yi .
Suppose vi−1, vi ∈ V (X), then v1vi and vi−1v� are red, otherwise we get a new

Ps with end vertex vi−1 ∈ V (X) or vi ∈ V (X), which is proved above. So we may
assume v1, v� ∈ V (Y ).

Note that dR
P (v1) ≤ m − 1. So dB

P (v1) = dB
X (v1) ≥ n/2� − (m − 1). Thus we

get at least n/2� − m new paths with vi−1, vi still being two consecutive vertices
in these new paths since v1vi is red. Therefore at least

n/2�−m
2 new end vertices are

adjacent to vi−1 or vi by red as the index of new end vertex can be larger than i or
smaller than i − 1. Since n/2�−m

2 ≥ m, we get a red K1,m with central vertex vi−1 or
vi , completing the proof. ��
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Fig. 1 The edge coloring between part vertices of V (Pi ) and V (P j )

Lemma 4 Let G be a graph. If n ≥ 9χ(G)M(G) + 1, then

Rω(K1 + G, Pn) =
⌈n
2

⌉
.

Proof By Theorem 1, we only need to prove the lower bound. Let k = χ(G). Letm be
the largest size of k color classes ofG. ByLemma1, r = R(K1+G, Pn) = k(n−1)+1
for n ≥ 4(v(G) + 1). Denote by H = Kr\K�n/2� = Kr−�n/2� + �n/2�K1. Set
X = Kr−�n/2� and Y = �n/2�K1. We may assume that H contains neither a blue Pn
nor a red K1 + G. We shall find a contradiction.

Choose the blue paths P1, P2, · · · , Pt in H as follows: ∪t
j=1V (P j ) = V (H), P1

is a longest blue path in H , and, if t > 1, Pi+1 is a longest blue path in the graph
induced by V (H) \ ∪i

j=1V (P j ) for 1 ≤ i ≤ t − 1. Denote by s j the numbers of

vertices on the path P j . So s1 ≥ s2 ≥ . . . ≥ st . Note the fact that t ≥ k+1. Otherwise
if t ≤ k, then s1 ≥ r/k ≥ n, yielding a blue Pn . Furthermore, the graph induced by
V (H) \ ∪k−1

j=1V (P j ) contains no red K1 + G, and then we have

sk ≥
(
r − ⌈ n

2

⌉ − (k − 1)(n − 1)
)

− 1

k
+ 1 ≥ n − 1

2k

since R(K1 + G, Pn) = k(n − 1) + 1 and s j ≤ n − 1 for j = 1, . . . , k − 1.

Fix an orientation of each P j and denote by P j = p j
1 p

j
2 . . . p j

s j for j = 1, . . . , k.
Note that each pi� with 1 ≤ � ≤ �s j/2� and si −�s j/2�+1 ≤ � ≤ si for 1 ≤ i ≤ j−1
is adjacent to V (P j ) by red edges only, as shown in Fig. 1. Otherwise we shall get a
longer blue path than Pi , implying that most edges among these blue paths are red.
Then we shall show that actually, all of the existing edges among these blue paths can
only be red.
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Fig. 2 The case that V (P j ) induces a red K1,m

For any path P j = p j
1 p

j
2 . . . p j

s j with j = 1, . . . , k, there must be a blue edge

between sets {p j
1 , . . . , p

j
2m} and {p j

s j−1, p
j
s j }. Otherwise if all edges between sets

{p j
1 , . . . , p

j
2m} and {p j

s j−1, p
j
s j } are red, then V (P j ) induces a red K1,m since at least

half of the vertices in {p j
1 , . . . , p

j
2m} and {p j

s j−1, p
j
s j } belong to V (X). Note that all

existing edges among sets

{p11, . . . , p1�sk/2�, p1s1−�sk/2�+1, . . . , p
1
s1},

{p21, . . . , p2�sk/2�, p2s1−�sk/2�+1, . . . , p
2
s2},

. . . . . . ,

{pk1, . . . , pksk }

are red, along with the red K1,m in the graph induced by V (P j ), we get a red K1 +G,
as shown in Fig. 2. Thus each path P j contains a blue cycle of length at least s j − 2m.

Denote by C j the blue cycle in P j . Note that each vertex in V (Ci ) is adjacent to
V (P j ) by red edges only, for any 1 ≤ i < j ≤ k. Otherwise we shall get a longer
path than Pi , contradicting to the fact that Pi is a longest path in the graph induced
by V (H) \ ∪i−1

�=1V (P�). Thus for any 1 ≤ i < j ≤ k, vertices of V (Pi ) are adjacent
to V (P j ) by red edges only, as shown in Fig. 3.

If there is a vertex u ∈ V (H)\∪k
�=1V (P�) that is adjacent to each P j by red edges

only for 1 ≤ j ≤ k, then we get a red K1+G with central vertex u. So wemay assume
that for any vertex v ∈ V (H) \ ∪k

�=1V (P�), there exists some i , 1 ≤ i ≤ k such that
dB
Pi (u) ≥ 1. Consider any vertex v ∈ V (H) \ ∪k

j=1V (P j ), then v must be adjacent
to k − 1 blue paths by red edges only. Otherwise suppose vui and vu j are blue with
ui ∈ V (Pi ) and u j ∈ V (P j ) for i < j . Then similarly, we can get a longer blue path
than Pi , contradicting to the fact that Pi is a longest path in the graph induced by
V (H)\ ∪i−1

�=1 V (P�).
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Fig. 3 The edge coloring between V (Pi ) and V (P j )

Renew each set V (P j ) to Q j by adding blue neighbors of V (P j ) in V (H) \
∪k

�=1V (P�). Note that each vertex in Q j is adjacent to Qi by red edges only for
1 ≤ i, j ≤ k and i �= j . By pigeonhole principle, there must be a Q j with |Q j | ≥ n.
If the graph induced by Q j contains a red K1,m , then we get a red K1 + G. So if
there is no red K1,m in the graph induced by Q j , then by Lemma 3, we get a blue Pn ,
completing the proof. ��
Proof of Theorem 2. Since s(G) = 1, we know that there is a vertex v in G such that
Gv = G − {v} has χ(Gv) = χ(G) − 1. By Lemma 4, we have n ≥ 9χ(G)M(G) ≥
9χ(Gv)M(Gv), and thus Rω(K1 + Gv, Pn) = � n

2 �. Then, from Kr \ K�n/2� →
K1 + Gv , we know Kr\K�n/2� → G as K1 + Gv contains G, and the assertion
follows. ��

We shall separate the main proof of Theorem 3 into several lemmas.

Definition 3 For any integers n,m ≥ 2, let r = R(Km, Pn) = (n−1)(m−1)+1. For
i = 1, 2, . . . ,m − 1, define the graph Hi = Ksi + qi K1, where si and qi are integers
with 0 ≤ qi ≤ �n/2� − 1, si + qi = n − 1 and

∑m−1
i=1 qi = �n/2� − 1. Define the

graph G to be Kr−1 \ K�n/2�−1 with a red-blue edge coloring such that

GB =
m−1⋃

i=1

Hi

and GR is the complement graph of GB in G.

Lemma 5 For integers n ≥ 2 and t ≥ n/2� + 1, let G be a red-blue edge colored
graph with G = X + Y , where X = Kt and Y = (�n/2� − 1)K1. If each vertex
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x ∈ V (X) has dB
G (x) ≥ n − 1, and each vertex y ∈ V (Y ) has dB

G (y) ≥ n/2�, then
G must contain a blue Pn.

Proof Denote by Pn = p1 p2 . . . pn . We shall embed Pn in GB . Embed p1 in V (Y ),
and then embed p2 in V (X) since dB

G (p1) ≥ n/2�. Then we shall always conduct
the following principle in each step: If dB

Y (pi ) ≥ 1, then we shall embed pi+1 in
V (Y ) for i = 2, . . . , n − 1. Namely, we embed V (Pn) in Y as much as possible.
Let P� = p1 p2 . . . p�, which is the longest path that we can embed in GB . If � ≥ n,
then we are done. Suppose � ≤ n − 1. If p� ∈ V (X), then we can find a blue
neighbor of p� outside P� since dB

G (p�) ≥ n− 1, yielding a contradiction. So we may
assume p� ∈ V (Y ). As p� can only be adjacent to vertices in V (X), we can divide
V (P�) ∩ V (X) into sets A and B such that

A = {pi |pi ∈ V (X), pi+1 ∈ V (X)}, B = {pi |pi ∈ V (X), pi+1 ∈ V (Y )}.

Note that any vertex in A can not be adjacent to p� in GB since it will violate the
principle. Therefore p� can only be adjacent to vertices in B. Since |B| ≤ |Y | − 1 ≤
�n/2� − 2, we have

dB
X−P�

(p�) ≥ n/2� − (�n/2� − 2) ≥ 1.

Then we can find a longer path P�+1, completing the proof. ��
Lemma 6 For a red-blue edge colored G = Kr−�n/2� + (�n/2� − 1)K1, where r =
R(Km, Pn), if G is (Km, Pn)-free, then G must be the graph described in Definition
3.

Proof It is trivial for m = 2 as s1 = n − �n/2� and q1 = �n/2� − 1, yielding
GB = Ks1 + q1K1 and GR is empty. So we may assume m ≥ 3. Let X = Kr−�n/2�
and Y = (�n/2� − 1)K1.

There must be a vertex x1 ∈ V (X) such that dR
G (x1) ≥ (n − 1)(m − 2). Suppose

to the contrary that for each vertex x ∈ V (X), dR
G (x) ≤ (n − 1)(m − 2) − 1. Then we

have

dB
G (x) ≥ (n − 1)(m − 1) − 1 − [(n − 1)(m − 2) − 1] ≥ n − 1.

Note that for any vertex y ∈ V (Y ), dR
X (y) ≤ (n − 1)(m − 2). Otherwise there is a red

Km−1 or a blue Pn in G[N R
X (y)]. Along with vertex y, we get a red Km . Thus

dB
G (y) = dB

X (y) ≥ (n − 1)(m − 1) + 1 −
⌈n
2

⌉
− (n − 1)(m − 2) ≥

⌊n
2

⌋
.

So by Lemma 5, we can find a blue Pn .
Define subgraphG1 ⊆ G such that V (G1) ⊆ N R

G (x1) and v(G1) = (n−1)(m−2).
Note that G1 contains neither a red Km−1 nor a blue Pn . Denote by H1 = G−G1 and
V (H1) = S1 ∪ Q1 with S1 ⊆ V (X) and Q1 ⊆ V (Y ). Let s1 = |S1| and q1 = |Q1|.
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Note that s1 + q1 = n − 1. Similarly, we can show that there must be a vertex
x2 ∈ V (G1) ∩ V (X) such that dR

G1
(x2) ≥ (n − 1)(m − 3).

We shall continue the following procedure. In Step j with 2 ≤ j ≤ m − 3, define
subgraphG j ⊆ G j−1 such that V (G j ) ⊆ N R

G j−1
(x j ) and v(G j ) = (n−1)(m− j−1).

Note that G j contains neither a red Km− j nor a blue Pn . Let G j = X j + Y j with
X j = Kr−�n/2�−s1−...−s j−1 andY j = (�n/2�−1−q1−. . .−q j−1)K1.Wemay assume
that there must be a vertex x j+1 ∈ V (X j ) such that dR

G j
(x j+1) ≥ (n− 1)(m − j − 2).

Otherwise if for each vertex v ∈ V (X j ), dR
G j

(v) ≤ (n − 1)(m − j − 2) − 1, then we
have

dB
G j

(v) ≥ (n − 1)(m − j − 1) − 1 − [(n − 1)(m − j − 2) − 1] ≥ n − 1.

Note that for any vertex y ∈ V (Y j ), we have dR
G j

(y) = dR
X j

(y) ≤ (n−1)(m− j −2).

Otherwise we can find a red Km− j−1 or a blue Pn in the graph induced by N R
X j

(y).

Along with vertices x1, . . . , x j and y, we get a red Km . Thus dB
X j

(y) is at least

(n − 1)(m − j − 1) −
(⌈n

2

⌉
− 1 − q1 − . . . − q j−1

)
− (n − 1)(m − j − 2),

which implies

dB
G j

(y) = dB
X j

(y) ≥
⌊n
2

⌋
.

Since v(G j ) ≥ (n− 1)(m − j − 1) ≥ n, by Lemma 5, we can find a blue Pn . So there
must be a vertex x j+1 ∈ V (X j ) such that dB

G j
(x j+1) ≥ (n − 1)(m − j − 2).

Define subgraph G j+1 ⊆ G j such that V (G j+1) ⊆ N R
G j

(x j+1) and v(G j+1) =
(n − 1)(m − j − 2). Note that G j+1 contains neither a red Km− j−1 nor a blue Pn .
Denote by Hj = G j −G j+1 and V (Hj ) = S j ∪Q j with S j ⊆ V (X) and Q j ⊆ V (Y ).
Let s j = |S j | and q j = |Q j |. Note that s j + q j = n − 1.

In the last step, namely Stepm−2. Similarly, we have graphGm−2 with v(Gm−2) =
n − 1, sets Sm−2 and Qm−2 with sm−2 = |Sm−2| and qm−2 = |Qm−2|. Graph Gm−2
contains no red edge, otherwise there is a red Km alongwith x1, . . . , xm−2. Set Sm−1 =
V (Gm−2) ∩ V (X) and Qm−1 = V (Gm−2) ∩ V (Y ). Select vertex xm−1 ∈ Sm−1.

Now consider the coloring of edges among Sm−2, Qm−2, Sm−1 and Qm−1. All the
edges between V (Hm−2) and Sm−1 are red. Otherwise if there is a blue edge uw with
u ∈ V (Hm−2) and v ∈ Sm−1, then we get a blue Pn . All the edges between Sm−2
and Qm−2 are blue. Otherwise there is a red edge uw, and we get a red Km with
V (Km) = {x1, x2, . . . , xm−3, u, w, xm−1}. Similarly, all the edges between Qm−1
and Sm−2 are red, see Fig. 4

Continue this backwards procedure. In Step k, 2 ≤ k ≤ m − 3, all edges between
V (Hm−k−2) and Sm−k−1 are red. Otherwise if there is a blue edge uw with u ∈
V (Hm−k−2) and v ∈ Sm−k−1, then we get a blue Pn . All the edges between Sm−k−2
and Qm−k−2 are blue. Otherwise if there is a red edge uw, then we get a red Km
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Fig. 4 The edge coloring of G

with V (Km) = {x1, x2, . . . , xm−k−2, u, w, xm−k, . . . , xm−1}. Similarly, all the edges
between Qm−k−1 and Sm−k−2 are red, completing the proof. ��
Proof of Theorem 3. We only need to prove the lower bound. Consider the red-blue
edge coloring of G = Kr−1\K�n/2�−1 = Kr−�n/2� + (�n/2� − 1)K1, where r =
R(Km, Pn). Assume that G is (Km, Pn)-free, otherwise we are done. By Lemma 6,
G must be the graph described in Definition 3. Now we consider an extra vertex v0.
As there is no blue Pn , v0 is adjacent to V (X) by red edges completely, yielding a red
Km . ��

Rousseau and Sheehan (1978) gave the following result.

Lemma 7 Rousseau and Sheehan (1978) Let m and n be positive integers. If n >

(6m + 7)/4, then

R(Bm, Pn) = 2n − 1.

We shall prove the Rω(B(k)
m , Pn) by induction on k ≥ 2, for which the following

result is needed as the initial step that gives a better bound for n than that fromTheorem
1 for the case k = 2.

Theorem 5 Let integers m ≥ 1 and n ≥ (8m + 4)/3. Then Rω(Bm, Pn) = �n/2�.
Proof We only need to prove the lower bound. Let r = R(Bm, Pn) = 2n − 1. Denote
by G = Kr\K�n/2� = Kr−�n/2� + �n/2�K1. Set X = Kr−�n/2� and Y = �n/2�K1.

Assume that G contains neither a red Bm nor a blue Pn , and we shall find a contra-
diction. Let P� = v1v2 . . . v� be a longest blue path in G. Then there is no blue edge
between {v1, v�} and V (G − P�), otherwise we will get a longer blue path than P�.
As X contains no red Bm and

v(X) = 2n − 1 − �n/2� = n +
⌊n
2

⌋
− 1 ≥ 2

(⌊3n − 1

4

⌋)
− 1,
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we have

� ≥
⌊3n − 1

4

⌋
≥ 2m

for sufficiently large n. Thus 2m ≤ � ≤ n − 1.
Case 1. If v1, v� ∈ V (X), we have v(G − P�) ≥ 2n − 1 − (n − 1) ≥ n, implying

that v1 and v� share n common red neighbors outside P�. If v1v� is red, then we can
get a red Bm . Thus v1v� is blue, yielding a blue cycle C�. For 1 ≤ i ≤ �, vi can be
seen as the end vertex of P�, and vi is adjacent to V (G− P�) by red edges only. Since

|V (X) ∩ V (G − P�)| ≥ 2n − 1 −
⌈n
2

⌉
− (n − 1) ≥ m,

G − P� has at least m vertices in V (X). So the graph induced by V (P�) contains
no red edge, otherwise we get a red Bm . Since |V (X) ∩ V (P�)| ≥ ��/2� ≥ m, the
graph induced by V (G − P�) contains no red edge. Note that v(G − P�) ≥ n and
|V (G − P�) ∩ V (Y )| ≤ �n/2�, yielding a blue Pn .

Case 2. If v1 ∈ V (X) and v� ∈ V (Y ), since |V (X) ∩ V (G − P�)| ≥ m as
mentioned, v1 and v� share at least m common red neighbors outside P� in X . Thus
v1v� is blue, yielding a blue cycle C�. For 1 ≤ i ≤ �, vi is adjacent to V (G − P�) by
red edges only. Similarly, the graph induced by V (P�) contains no red edge, and the
graph induced by V (G − P�) contains no red edge either. Note that v(G − P�) ≥ n
and |V (G − P�) ∩ V (Y )| ≤ �n/2�, yielding a blue Pn .

Case 3. If v1, v� ∈ V (Y ), then v2, v�−1 ∈ V (X). There is no blue edge between
{v2, v�−1} and V (X) ∩ V (G − P�), otherwise we will get a new Ps as in Case 1 or
Case 2. Set U = {v1, v2, v�−1, v�}. Note that there is no blue edge between U and
V (X) ∩ V (G − P�).

Since |V (X)∩V (G−P�)| ≥ m asmentioned, v2v�−1 is blue.Nowweget a newblue
P�−1 = v1v2v�−1v�−2 . . . v3. There is no blue edge between v3 and V (X)∩V (G−P�),
otherwise we will get a new P� as in Case 2. Similarly, we can get a new P�−1 =
v�v�−1v2v3 . . . v�−2, and there is no blue edge between v�−2 and V (X)∩ V (G − P�).
Renew set U = {v1, v2, v3, v�−2, v�−1, v�}. Note that there is no blue edge between
U and V (X) ∩ V (G − P�).

So v2v�−2 and v3v�−1 are blue, otherwise we get a red Bm . Then we get two new
paths P�−1 = v1v2v3v�−1v�−2 . . . v4 and P�−1 = v�v�−1v�−2v2v3 . . . v�−3. Renew
setU = {v1, v2, v3, v4, v�−3, v�−2, v�−1, v�}. Note that there is no blue edge between
U and V (X) ∩ V (G − P�).

Continue this procedure and renew set U until U = V (P�). We can deduce that
there is no blue edge between V (P�) and V (X) ∩ V (G − P�), and the graph induced
by V (P�) contains no red edge. So the graph induced by V (X)∩ V (G − P�) contains
no red edge.

Set U1 = {vi |vi ∈ V (X) ∩ V (P�)}, V1 = {vi |vi ∈ V (Y ) ∩ V (P�)}, U2 = {vi |vi ∈
V (X)∩V (G− P�)}, and V2 = {vi |vi ∈ V (Y )∩V (G− P�)}, whereU1∪U2 = V (X)

and V1 ∪ V2 = V (Y ). Note that |U1| ≥ |V1| − 1, since U1 ∪ V1 induces a blue path
P�. If |U1| ≥ |V1|, then we can find a new blue path P� with one of the end vertices

123



Journal of Combinatorial Optimization (2023) 46 :2 Page 13 of 14 2

belonging to V (X) as in Case 2. If |U1| = |V1| − 1, then

|U1| =
⌊�

2

⌋
≤

⌊n − 1

2

⌋

and

|U1| + |U2| = 2n − 1 −
⌈n
2

⌉
,

which implies

|U2| ≥ 2n − 1 −
⌈n
2

⌉
−

⌊n − 1

2

⌋
≥ n − 1.

So U2 induces a new blue P� as in Case 1, completing the proof. ��
Proof of Theorem 4. By Lemma 1, for any integers k ≥ 1, m ≥ 1 and n ≥ 4(m + k),
R(B(k)

m , Pn) = k(n − 1) + 1. We only need to proof the lower bound. Let r =
R(B(k)

m , Pn) = k(n− 1)+ 1. Denote by G = Kr\K�n/2� = Kr−�n/2� + �n/2�K1. Set
X = Kr−�n/2� and Y = �n/2�K1.

Now we shall prove by induction on k. It holds for k = 2 by Theorem 5. So we
may assume it holds for k − 1 with k ≥ 3, that is,

K(k−1)(n−1)+1 \ K�n/2� → (B(k−1)
m , Pn).

For any vertex x ∈ V (X), . we have

dR
G (x) ≤ (k − 1)(n − 1).

Otherwise if there is a vertex v ∈ V (X) such that dR
G (v) ≥ (k − 1)(n − 1) + 1, then

by induction, N R
G (v) induces a red B(k−1)

m or a blue Pn , hence a red B(k)
m or a blue Pn

along with v. So for any vertex x ∈ V (X), we have

dB
G (x) ≥ k(n − 1) − (k − 1)(n − 1) = n − 1.

For any vertex y ∈ V (Y ), we have

dR
G (y) = dR

X (y) ≤ (k − 1)(n − 1),

otherwise we get a red B(k−1)
m or a blue Pn , hence a red B(k)

m or a blue Pn along with
y. Thus for any vertex y ∈ V (Y ), we have

dB
G (y) = dB

X (y) ≥ k(n − 1) + 1 −
⌈n
2

⌉
− (k − 1)(n − 1) =

⌊n
2

⌋
.

So by Lemma 5, we can find a blue Pn . ��
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