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Abstract
Graph partitioning is a classical NP problem. The goal of graphing partition is to
have as few cut edges in the graph as possible. Meanwhile, the capacity limit of the
shard should be satisfied. In this paper, a model for graph partitioning is proposed.
Then the model is converted into a mixed 0-1 linear programming by introducing
variables. In order to solve this model, we select some variables to design the vertex
relocation model. This work designs a variable selection strategy according to the
effect of vertex relocation on the number of local edges. For purpose of implementing
graph partitioning on large scale graph, we design an iterative algorithm to solve the
model by selecting some variables in each iteration. The algorithm relocates the shard
of the vertex according to the solution of the model. In the experiment, the method in
this paper is simulated and compared with BLP and its related methods in the different
shard sizes on the five social network datasets. The simulation results show that the
method of this paper works well. In addition, we compare the effects of different
parameter values and variables selection strategies on the partitioning effect.

Keywords Graph partitioning · 0-1 mixed linear programming · Iteration algorithm

1 Introduction

The graph partitioning problem is a classical graph theory and combinatorial opti-
mization problem. Meanwhile, the graph partitioning problem is NP-hard (Bui and
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Jones 1992), it is difficult for direct graph partitioning methods to obtain an optimal
solution in effective time. The graph partition model can be applied in many fields. In
social network (Boyd and Ellison 2007), graph partitioning algorithms are involved
in friend recommendation system. Every user in the system will be served by the
identified server. In order to reduce communication costs between different servers,
it is expected that friends who potentially know each other are served by the same
server. Friend recommendation problem can be transformed into a graph partitioning
problem. Each user is regarded as a vertex. The edges are generated according to
the user’s relationship. The partition capacity limit in the graph partitioning problem
is reflected in the capacity limit of the server. At the same time, it is expected that
more neighboring vertices are in the same server. Graph partitioning is also used to
design very large scale integrated circuit systems (VLSI) (Kahng et al. 2011). The
goal of the VLSI design is to reduce the complexity by dividing the VLSI into smaller
components and thus keeping the total length of all wires to be the shortest (Buluç
et al. 2016). Many data types arising from data mining applications can be modeled as
bipartite graphs. Many graph partitioning method are used to solve data mining (Zha
et al. 2001) problem.In machine learning and graph neural networks, graph partition-
ing algorithms are also applied. Cluster GCN (Chiang et al. 2019) divides the large
graph into subgraphs through the graph partitioning algorithm.

In this paper, We build a graph partitioning model with the goal of maximizing
the number of local edges while maintaining the partition capacity limit. The model
is converted into a mixed 0-1 linear programming by introducing variables. Then
we select some variables to design the vertex relocation model. This work designs
an iterative algorithm that selects some variables at each iteration and assigns new
shards to the vertices corresponding to these variables. The algorithm first uses hash
partitioning to obtain the initial partition of the graph. Vertices with high gain are given
priority to determine the relocated shard. Then the algorithm assigns the new shard of
vertex through the vertex relocationmodel.We compare the partitioning effect of BLP,
BLP-MC, BLP-KL and our method on five social network datasets. Our experiments
also show the effect of the algorithm under different parameters. On these datasets,
we also compare the effect of different number of shards. In the experiments, our
algorithms all performbetter than the comparison algorithms.Meanwhile, we compare
the effects of different parameter values on the partitioning effect and analyze different
variable selection strategies. Our main contributions in this work are summarized as
follows.

1. Construct a graph partitioning model and remove ′min′ from the objective func-
tion by introducing variables. The model is converted into a mixed 0-1 linear
programming.

2. Design an iterative algorithm that selects some variables at each iteration and relo-
cates corresponding vertices to new shards according to the variables’ value of the
solution. The algorithm can solve large scale graph partitioning problems.

3. Evaluate our algorithms on real-world datasets and compare the results with some
other methods such as BLP, BLP-MC and BLP-KL.

The paper is organized as follows: Sect. 2 summarizes related work on graph par-
titioning problem; Sect. 3 proposes a graph partitioning model based on local edge
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maximization and converts it into a mixed 0-1 linear programming by introducing
variables; Sect. 4 gives the iteration algorithm to solve the graph partitioning model;
Sect. 5 shows the numerical results obtained on datasets of different size and topology.
We analyze the influence of different variables selection strategies on the partition
results. Finally, we draw some conclusions in Sect. 6.

2 Related work

There is a large number of literature onmethods that solve graph partitioning problem,
including spectral partitioning (Pothen et al. 1990), geometric partitioning (Hunger-
shöfer andWierum 2002), streaming graph partitioning (Abbas et al. 2018), intelligent
optimization algorithm (Bruglieri and Cordone 2021), linear programing (Nip et al.
2022) and semi-define programing (Lisser and Rendl 2003).

For each vertex, the hash partitioning (Abbas et al. 2018) determines the shard
in which the vertex is located based on the vertex number and shard number. Hash
partitioning can be defined as the mapping function f (v) = hash (v)mod (k) .

The KL algorithm (Kernighan and Lin 1970) proposed by Kernighan and Lin is a
local search method. The selection strategy finds the swap of vertex assignments that
yields the largest decrease in the total number of cut edge. The algorithm considers ver-
tex swaps between 1

2K (K − 1) shard pairs. M. Fiduccia and M. Mattheyses propose
the Fiduccia-Mattheyses (FM) algorithm (Fiduccia and Mattheyses 1982) to improve
the KL algorithm. The difference with the KL algorithm is that the FM algorithm uses
a single vertex movement and introduces the bucket list data structure to reduce the
time complexity.

Fan and Pardalos (2010) present three equivalent 0-1 linear integer program-
ming reformulations. They also study the bipartite graph partitioning and hierarchy
partitioning and partitioning of bipartite graphs without reordering one vertex set.

Fan et al. (2011) introduce the two-stage stochastic graph partitioning problem and
present the stochastic mixed integer programming formulation for this problem with
finite explicit scenarios. They relax some binary varibles to continuous ones, and then
present an equivalent integer linear programming formulation.

Ugander and Backstrom (2013) propose the balanced label propagation algorithm
(BLP) based on linear programming. The idea of this method is inspired by the label
propagation principle, which is vertices tend to move to the shards with more neigh-
boring vertices. The algorithm first determines the vertices that tend to be migrated to
another shard. Then the verticeswith high gainswere prioritized formigration. It trans-
forms a maximally concave optimization problem into a linear programming problem.
The constraints of linear programming limit the number of adjustable vertices in the
shard. Finally, the vertex migration strategy is optimized through the solution of the
model.

Miyazawa et al. (2019) propose integer linear programming formulations to analyse
balanced connected k-partition problem. The first formulation contains only binary
variables and a potentially large number of constraints that are separable in polynomial
time. The other formulations are based on flows and have a polynomial number of
constraints and variables.
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Henzinger et al. (2020) present a novel meta-heuristic for the balanced graph parti-
tioning problem. Their approach is based on integer linear programs. They construct a
0-1 linear programming model by setting both vertices and edges as 0-1 variables. The
algorithm combines multilevel partitioning and integer programming. The selection
result of cutting edge is obtained by solving the model. By shrinking the vertices with-
out cutting edges, the graph is roughened, and the existing graph partitioning results
are improved by using multilevel partitioning method.

Deng and Suel (2021) studied the combination of graph partitioning initialization
algorithm and BLP improvement algorithm. They propose three methods of interrup-
tion, probability-based disruption, clustered constrained relocation, and round-robin
Kernighan-Lin swaps, to improve the BLP algorithm. They name the combination of
BLP and clustered constrained relocation as BLP-MC and define the combination of
BLP and round-robin Kernighan-Lin swaps as BLP-KL. In addition, random, SBM
and Metis are considered as initialization methods for graph partitioning. Then they
analyze the improvement degree of BLP and BLP improvement method to the initial
partition.

Moussawi et al. (2021) propose a multi-objective and scalable balanced graph
partitioning (B-GRAP) algorithm, based on Label Propagation approach. They define
a new initialization procedure and different objective functions to deal with either
vertex or edge balance constraints.

While mixed 0-1 integer linear programming is NP-hard (Karp 1972), there are
many researchs that can deal with large scale problems. Branch and bound (Lawler and
Wood 1966) and cut plane (Nemhauser and Wolsey 1988) are basic methods to solve
integer programming. Mitchell (1988) proposed Branch-and-Cut method combined
branch and bound and column generation Desaulniers et al. (2006). However, the
traditional integer programming method is not suitable for the model in this paper
because of the high computational complexity when the scale is large.

3 Mixed 0-1 linear programmingmodel for graph partitioning

3.1 Problem definition

Balanced graph partitioning of a graph G = (V , E) is a partition{V1, . . . , VK } of
V (G), where K is the shard number and |V | = n. Each shard (subset) in the partition
is subject to the following conditions:

1. Vi ∩ Vj = ∅,∀i �= j ,V1 ∪ V2 ∪ . . . ∪ Vk = V .
2. |Vi | = |Vj |, i = 1, 2, . . . , K , j = 1, 2, . . . , K . The balanced graph parti-

tioning with slack condition is: 2′.lm ≤ |Vi | ≤ um, i = 1, 2, . . . , k. where
lm = (1 − ε)

|V |
K , um = (1 + ε)

|V |
K . The goal of balanced graph partitioning is

that the number of local edges (with endpoints in the same shards) is maximized.
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3.2 The global graph partitioningmodel

Based on the definition of balanced graph partitioning, this work builds a graph par-
titioning model based on local edge maximization and converts it into a mixed 0-1
linear programming by introducing variables.

Notation
xit : Binary variable. Indicating whether the vertex i in shard Vt .

xit =
{
1 i ∈ Vt
0 otherwise

n: Constant. The number of vertices, n = |V |.
K : Constant. The number of shards.
N (i): Constant. The ordered set of the neighbor vertices of vertex i . N (i) =

{ j | j > i, e (i, j) ∈ E (G)}.
lm: Constant. Lower limit for the number of vertices in a shard, lm = (1 − ε)

|V |
K .

um: Constant. Upper limit on the number of vertices in a shard, um = (1 + ε)
|V |
K .

The vertex can only stay in one shard. For i = 1, 2, . . . , n,

K∑
t=1

xit = 1 (1)

Balanced graph partitioning requires an equal number of vertices in each shard. For
t = 1, 2, . . . , K ,

lm ≤
n∑

i=1

xit ≤ um (2)

According to the definition of the graph partitioning problem, our objective function
is to maximize the local edges in the graph. We can get the following model,

max
n∑

i=1

K∑
t=1

∑
j∈N (i)

min
{
xit , x jt

}

s.t .
K∑
t=1

xit = 1, i = 1, 2, . . . , n

lm ≤
n∑

i=1

xit ≤ um, t = 1, 2, . . . , K

xit ∈ {0, 1} , i = 1, 2, . . . , n, t = 1, 2, . . . , K

(3)

In order to remove ′min′ from the objective function, some variables are intro-
duced. yit = ∑

j∈N (i) min
{
xit , x jt

}
, By a simple derivation we can obtain yit =
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min
{
|N (i) |xit ,∑ j∈N (i) x jt

}
, yit is equivalent to the following four constraints,

yit ≤ |N (i) |xit , i = 1, 2, . . . , n, t = 1, 2, . . . , K (4)

yit ≤
∑
j∈N (i)

x jt , i = 1, 2, . . . , n, t = 1, 2, . . . , K (5)

yit ≥ 0, i = 1, 2, . . . , n, t = 1, 2, . . . , K (6)

yit ≥ |N (i) |xit +
∑
j∈N (i)

x jt − |N (i) |, i = 1, 2, . . . , n, t = 1, 2, . . . , K (7)

Naturally, the following model 2 is obtained.

max
n∑

i=1

K∑
t=1

yit

s.t .
K∑
t=1

xit = 1, i = 1, 2, . . . , n

lm ≤
n∑

i=1

xit ≤ um, t = 1, 2, . . . , K

yit ≤ |N (i) |xit , i = 1, 2, . . . , n, t = 1, 2, . . . , K

yit ≤
∑
j∈N (i)

x jt , i = 1, 2, . . . , n, t = 1, 2, . . . , K

yit ≥ 0, i = 1, 2, . . . , n, t = 1, 2, . . . , K

yit ≥ |N (i) |xit +
∑
j∈N (i)

x jt − |N (i) |, i = 1, 2, . . . , n, t = 1, 2, . . . , K

xit ∈ {0, 1} , i = 1, 2, . . . , n, t = 1, 2, . . . , K

(8)

Due to the difficulty in solving large scale integer programming, we cannot solve
Model 2 using the existing integer programming solver. So we consider to design the
iteration algorithm.

4 Iteration algorithm

4.1 The graph partitioningmodel based on selected variables

Model 2 is a 0-1 mixed linear programming model which is NP hard, cannot be solved
in polynomial time. The number of variables is 2K |V |, where the number of 0-1
variables is K |V |, the number of constraints is K + |V | + 4K |V |. When the total
number of vertices of the graph is large, the number of variables and constraints are
numerous, it is not feasible to solve in time. Designing the iterative algorithm, in each
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round, For all xit , choose a small number of them as decision variables. Determine yit
according to the chosen xit .

Notation
Sx : The set of variables selected. Sx = {xit |xit is selected}.
ns : The number of selected variables. ns = |Sx |
Sxc: The set of variables corresponding to the selected vertices and its current shard.

Sxc = {xis |i ∈ Vs, xit ∈ Sx }.
Sv: The set of vertices associated with variables in Sx . Sv = {i |∃t, xit ∈ Sx }.
Ss : The set of shards associated with variables in Sx . Ss = {Vs |xit ∈ Sx , i ∈ Vs}.
Syit : The set of selected variables corresponding to the neighbor vertices of vertex

i in shard Vt . Syit = {
x jt | j ∈ N (i)

} ∩ (Sx ∪ Sxc).
The goal of our model is to relocate vertices according to the chosen variables such

that the number of local edges is maximized. The vertices associated with the selected
variables are referred to as the selected vertices. Y1 is the number of local edges with
the selected vertices as endpoints.

Y1 =
∑

xit∈Sx∪Sxc

yit (9)

Y2 is the number of local edges when the selected vertex is an endpoint and the other
endpoint is not selected.

Y2 =
∑

xit∈Sx∪Sxc

∑
j∈N (i)∩Vt ,x jt /∈Sxc

xit +
∑
i /∈Sv

∑
x jt∈Sx∪Sxc, j∈N (i)

x jt (10)

Y3 is the number of local edges with unselected vertices as endpoints.

Y3 =
∑
i /∈Sv

∑
j∈N (i)∩Vt , j /∈Sv

1 (11)

Y1 + Y2 + Y3 is equal to the sum of all the local edges in the graph. The goal of
balanced graph partitioning is that the number of local edges is maximized. Based on
the selection of partial variables, we can derive the following model 3,

max Y1 + Y2 + Y3

s.t .
∑

xit∈Sx∪Sxc

xit = 1, i ∈ Sv

lm − |Vt | ≤
∑
xit∈Sx

xit −
∑

x ju∈Sx , j∈Vt ,u �=t

x ju ≤ um − |Vt |, t ∈ Ss

yit ≤ |Syit |xit , xit ∈ Sx , Syit �= ∅
yit ≤

∑
x jt∈Syit

x j t , xit ∈ Sx , Syit �= ∅

yit ≥ 0, xit ∈ Sx , Syit �= ∅
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yit ≥ |Syit |xit +
∑

x jt∈Syit
x j t − |Syit |, xit ∈ Sx , Syit �= ∅

xit ∈ {0, 1} , xit ∈ Sx , Szit �= ∅
(12)

4.2 Variables selection strategy

We use the gainit to represent the number of local edges increased after vertex i
relocated to shard Vt . In order to ensure that vertex relocation is considered among all
shard pairs. The selection strategy for variable xit is as follows: The variable selection
strategy is to preferentially select the variable with a large gain, and then consider all
shard pairs. If i ∈ Vs, then (Vs, Vt ) is said to be the shard pair associated with the
variable xit . We give the shard pair set associated with the selected variables set Sx ,

SP = {(Vs, Vt ) |∀xit ∈ Sx , i ∈ Vs} (13)

If i ∈ Vs , then xit is called the variable corresponding to the shard pair (Vs, Vt ). We
denote the set of variables associated with a shard pair is

SPVst = {xit |i ∈ Vs, xit ∈ Sx } (14)

Variables with bigger gain will bring greater returns, so we design a non-increasing
function of the number of variables in Sx to define the maximum number of variables
M between shard pairs.

M = M (|Sx |) (15)

4.3 Update parameter

With each iteration, we need to update the vertex gain, the upper and lower bounds
on the number of vertices in the shard. It only need to recalculate the gain of the
relocated vertices and their neighbor vertices, and update the lm, um values of the
shard involved in the vertex relocation.

4.4 Iteration vertex relocation algorithm

We use hash partitioning to assign each vertex an initial location. Then we calculate
the number of vertices in each shard of the graph in initial state, the gain from vertex
relocation, and the number of local edges. This paper select some of the variables
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Algorithm 1 Variables Selection
Input gain, Number of partitions K , Number of selected variables n
Output Selected variables set Sx
1: m = � n

K (K−1) 

2: Sort gain from largest to smallest
3: Sx = ∅, j = 0, SP = ∅, SPVst = ∅, ∀s, t
4: while |SP| ≤ K (K − 1) do
5: Find the xit corresponding to gain[ j], where i ∈ Vs
6: Identify variable M according to |Sx |.
7: if |SPVst | < M then
8: Add xit to SPVst
9: Add xit to Sx
10: else if (Vs , Vt ) /∈ SP then
11: Add (Vs , Vt ) to SP
12: end if
13: j++
14: end while

Algorithm 2 Update Parameters
Input lm, um, gain
Output Updated lm, um, gain
1: repeat
2: if xit = 1 and i ∈ Vs then
3: Shard Vs : um = um + 1, lm = lm + 1
4: Shard Vt : um = um − 1, lm = lm − 1
5: end if
6: until All xit are iterated
7: Update gain

Table 1 Graph dataset from the
stanford SNAP collection

Graph name Vertices Edges

FB combined 4039 88,234

FB athletes 13,866 86,858

FB companies 14,113 52,310

Youtube 1,134,890 2,987,624

LiveJournal 3,997,962 34,681,189

according to the variable selection strategy and build the 0-1 mixed linear program-
ming. On the based of the results of the model, the vertices corresponding to the
variables are relocated. We design the following vertex relocation algorithm (IVRA).

5 Experiments

We performed an evaluation over a number of social networks, with varying numbers
of shards. Social network real dataset Table 1is from the Stanford SNAP collection
(Leskovec and Krevl 2014). Due to the ring edges do not become cut edges, this work
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Algorithm 3 Iteration Vertex Relocation Algorithm (IVRA)
Input Graph G (V , E), Relaxation factor ε, Partition number K , Number of variables n
Output Partition{V1, V2, . . . , VK }
1: Hash Partition
2: Initial um, lm, gain, global_opt_local_edge_num
3: improvement_ f lag = True
4: while improvement_ f lag do
5: improvement_ f lag = False
6: Variables Selection
7: Construct and solve model 3
8: Vertex relocation according to the solution variables xit of model 3
9: if The solution objective value of model 3 more than global_opt_local_edge_num then
10: improvement_ f lag = True
11: global_opt_local_edge_num = The solution objective value of model 3
12: end if
13: Update Parameters
14: end while

removes the ring edges (edges where two endpoints overlap) from the datasets FBAth-
letes and FB Companies. All the graphs are undirected graphs. Our experiments were
implemented in C++ and Microsoft Visual Studio Professional 2019. Our algorithm
solves the model 3 with CPLEX Optimization Studio 20.1.

In the FB combined, we select 50 variables and 100 variables in each iteration
respectively, i.e. ns = 50 and ns = 100. In the FB Athletes and FB Companies, we
select 100 variables and 200 variables in each iteration respectively, i.e. ns = 100
and ns = 200. In the LiveJournal and Youtube, we select 1000 variables and 2000
variables in each iteration respectively, i.e. ns = 1000 and ns = 2000.We use CPLEX
to solve the 0-1 mixed linear programming in each iteration.

In algorithm 1, we determine the maximum number of variables M between shard
pairs according to the non-increasing function. For the function M (|Sx |) in algorithm
1, two different functions are selected for the experiment.

M = max

{
n

|Sx |m,m

}
(16)

M =
{
2m, |Sx | < n
m, |Sx | ≥ n

(17)

5.1 Experimental effect and comparison

We test the performance of our algorithm on the dataset of Table 1. In algorithm 1,
we use Eq.17 as the definition of variable M . The partition results of LiveJournal are
reported in Fig. 1 . In this figure, five different graph partitioning models, including
hash, BLP, BLP-MC, BLP-KL and our method are utilized for the experiments. BLP-
MC and BLP-KL are improved methods of the BLP algorithm proposed by Deng and
Suel (2021). BLP,BLP-MC,BLP-KLuse hash partitioning as initialization. Compared
with BLP, BLP-MC and BLP-KL algorithms, our algorithm (IVRA) has the largest
improvement on the partition result of hash initialization. Especially for 90 shards,
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Fig. 1 Performance comparison between the BLP and our algorithm in different shard size of LiveJournal,
Variable selection uses Eq.17 as the definition of variable M

Table 2 Comparison of the local edge ratio obtained by different methods in the Facebook combined.
Variable selection uses Equation 17 as the definition of variable M

Method/Shard number 3 5 7 9 11

Hash 0.333964 0.199016 0.139969 0.111034 0.090067

BLP 0.935898 0.883435 0.874549 0.877485 0.824002

BLP-MC 0.935898 0.88348 0.87464 0.877485 0.824195

BLP-KL 0.93592 0.909581 0.912857 0.899404 0.875955

IVRA(ns = 50) 0.963347 0.953635 0.951753 0.945429 0.930118

IVRA(ns = 100) 0.957409 0.950858 0.951515 0.93481 0.917651

Bold numbers represent the best results of all the comparison methods

IVRA(ns = 2000) is 28.45% better than BLP algorithm. Considering the shard num-
ber of 10, 30, 50, 70 and 90, the average improvement of IVRA(ns = 2000) compared
to BLP is 22.89%.

Table 2 shows the local edge ratio of different methods in Facebook combined.
IVRA(ns = 50) has the best partitioning result in these five methods. Especially
for 11 shards, IVRA(ns = 50) is 12.88% better than BLP algorithm. Considering
the shard number of 3, 5, 7, 9 and 11, the average improvement of IVRA(ns = 50)
compared to BLP is 8.07%.

Table 3 shows the local edge ratio in Facebook Athletes. IVRA(ns = 100) has the
best partitioning result on the shard number of 3, 5, 7, 9. When the shard number is
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Table 3 Comparison of the local edge ratio obtained by different methods in Facebook Athletes. Variable
selection uses Equation 17 as the definition of variable M

Method/Shard number 3 5 7 9 11

Hash 0.331567 0.200134 0.141847 0.111183 0.091128

BLP 0.773174 0.742487 0.687724 0.656691 0.670261

BLP-MC 0.773842 0.74289 0.688023 0.657106 0.670433

BLP-KL 0.784901 0.745217 0.69846 0.678255 0.702929

IVRA(ns = 100) 0.8567 0.795279 0.790568 0.761689 0.747209

IVRA(ns = 200) 0.851113 0.782528 0.784278 0.743581 0.752485

Bold numbers represent the best results of all the comparison methods

Table 4 Comparison of the local edge ratio obtained by different methods in FacebookCompanies. Variable
selection uses Equation 17 as the definition of variable M

Method/Shard number 3 5 7 9 11

Hash 0.332464 0.200092 0.141542 0.107873 0.09126

BLP 0.780186 0.728734 0.71377 0.678395 0.689944

BLP-MC 0.783218 0.730288 0.714097 0.678395 0.690538

BLP-KL 0.788321 0.746211 0.719161 0.698519 0.695104

IVRA(ns = 100) 0.833423 0.773683 0.758796 0.740859 0.726797

IVRA(ns = 200) 0.830277 0.774278 0.757012 0.729271 0.730806

Bold numbers represent the best results of all the comparison methods

11, IVRA(ns = 200) has the best partitioning result on these five methods. Especially
for 7 shards, IVRA(ns = 100) is 14.95% better than BLP algorithm. Considering
the shard number of 3, 5, 7, 9 and 11, the average improvement of IVRA(ns = 100)
compared to BLP is 12.07%.

Table 4shows the local edge ratio in FacebookCompanies. The largest improvement
is obtained with a shard number of 9, IVRA(ns = 100) is 9.21% better than BLP
algorithm. Considering the shard number of 3, 5, 7, 9 and 11, the average improvement
of IVRA(ns = 100) compared to BLP is 6.77%.

Table 5 shows the local edge ratio in Youtube. The largest improvement is obtained
with a shard number of 10, IVRA(ns = 1000) is 26.01% better than BLP algorithm.
Considering the shard number of 10, 30, 50, 70 and 90, the average improvement of
IVRA(ns = 1000) compared to BLP is 20.88%.

Our algorithmoutperformsBLP and its improved algorithms on all five datasets. On
the dataset of Facebook Athletes and Youtube, we find that the less selected varibles
has the better partitioning results when the shard number is small.

5.2 Variables selection strategy comparison

In algorithm 1, we propose two ways to define M . In the previous section we used
Eq.17, in this section we compare the effect of defining M using Eq.16. In algorithm

123



Journal of Combinatorial Optimization (2023) 45 :121 Page 13 of 17 121

Table 5 Comparison of the local edge ratio obtained by different methods in Youtube. Variable selection
uses Equation 17 as the definition of variable M

Method/Shard number 10 30 50 70 90

Hash 0.098640 0.032643 0.019643 0.014011 0.010824

BLP 0.605539 0.569444 0.513764 0.507491 0.474939

BLP-MC 0.612002 0.576813 0.520701 0.516207 0.48472

BLP-KL 0.688525 0.630836 0.597185 0.563218 0.51894

IVRA(ns = 1000) 0.763068 0.662252 0.617046 0.602648 0.585347

IVRA(ns = 2000) 0.756734 0.658552 0.606803 0.594505 0.589026

Bold numbers represent the best results of all the comparison methods

Fig. 2 Performance comparison between the BLP and our algorithm in different shard size of LiveJournal.
Variable selection uses Eq.16 as the definition of variable M

1, we use Eq.16 as the definition of variable M . The partition results of LiveJournal
are reported in Fig. 2. When the shard number is 10 and 50, it is better to choose 2000
variables. If the shard number is 30,70, and 90, it is better to choose 1000 variables.
Using Eq.16 as the definition of variable M . Our partitioning effect is also better than
BLP and its related algorithms. The largest improvement is obtained with a shard
number of 90, IVRA(Equation16, ns = 1000) is 30.45% better than BLP algorithm.
Considering the shard number of 10, 30, 50, 70 and 90, the average improvement of
IVRA(Equation16, ns = 1000) compared to BLP is 24.93%.
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Table 6 Comparison of the local edge ratio obtained by different methods in LiveJournal. Variable selection
uses Equation 16 as the definition of variable M compared with Equation 17

Method/Shard number 10 30 50 70 90

IVRA(Eq.16,ns = 1000) 0.816547 0.76199 0.732005 0.710772 0.694925

IVRA(Eq.16,ns = 2000) 0.818533 0.757519 0.734148 0.710398 0.692121

IVRA(Eq.17,ns = 1000) 0.802388 0.743998 0.722628 0.69681 0.685075

IVRA(Eq.17,ns = 2000) 0.811481 0.747364 0.717558 0.696284 0.684286

Bold numbers represent the best results of all the comparison methods

Table 7 Comparison the local edge ratio obtained by IVRA under different parameter n_s in Facebook
combined. Variable selection uses Equation 16 as the definition of variable M

Method/Shard number 3 5 7 9 11

IVRA(ns = 50) 0.957681 0.956117 0.953691 0.944103 0.923578

IVRA(ns = 100) 0.961953 0.951209 0.942324 0.924032 0.926842

Bold numbers represent the best results of all the comparison methods

Table 8 Comparison the local edge ratio obtained by IVRA under different parameter n_s in Facebook
Athletes. Variable selection uses Equation 16 as the definition of variable M

Method/Shard number 3 5 7 9 11

IVRA(ns = 100) 0.837451 0.783023 0.793459 0.740102 0.755284

IVRA(ns = 200) 0.859545 0.791259 0.796639 0.760837 0.748592

Bold numbers represent the best results of all the comparison methods

Table 6 compares the difference between Eq.17 and Eq.16 in algorithm 1. Variable
selection uses Eq.16 as the definition of variable M has a better partition effect in
LiveJournal.

In this section, we use Eq.16 as the definition of variable M in algorithm 1. Table
7shows the local edge ratio of different methods in Facebook combined. When the
shard number is 5 or 7, algorithm 1 using Eq.16 as the definition of variable M has a
better effect than Eq.17.

Table 8 shows the local edge ratio in Facebook Athletes. When the shard number is
3, 5, 7 or 9, choosing 200 variables per round gives a better partitioning effect. When
the shard number is 3, 7 or 11, algorithm 1 using Eq.16 as the definition of variable
M has a better effect than Eq.17.

Table 9 shows the local edge ratio in Facebook Companies.When the shard number
is 3, 5 or 7, choosing 100 variables per round gives a better partitioning effect. When
the shard number is 3, 5, 7 or 11, algorithm 1 using Eq.16 as the definition of variable
M has a better effect than Eq.17.

Table 10 shows the local edge ratio in Youtube. When the shard number is 10, 50,
70 or 90, choosing 1000 variables is better than choosing 2000 variables. When the
shard number is 30, 50, 70 or 90, algorithm 1 using Eq.16 as the definition of variable
M has a better effect than Eq.17.
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Table 9 Comparison the local edge ratio obtained by IVRA under different parameter n_s in Facebook
Companies. Variable selection uses Equation 16 as the definition of variable M

Method/Shard number 3 5 7 9 11

IVRA(ns = 100) 0.834996 0.783198 0.763074 0.726739 0.729367

IVRA(ns = 200) 0.833461 0.77445 0.761156 0.734528 0.740628

Bold numbers represent the best results of all the comparison methods

Table 10 Comparison the local edge ratio obtained by IVRA under different parameter n_s in Youtube.
Variable selection uses Equation 16 as the definition of variable M

Method/Shard number 10 30 50 70 90

IVRA(ns = 1000) 0.745737 0.668693 0.626537 0.612092 0.598746

IVRA(ns = 2000) 0.740052 0.671076 0.618283 0.610966 0.591716

Bold numbers represent the best results of all the comparison methods

In summary, algorithm 1 using Eq.16 as the definition of variable M has a better
effect than Eq.17 in the datasets of Livejournal, Facebook Athletes, Facebook Com-
panies and Youtube. Variable selection uses Eq.17 as the definition of variable M has
a better partition effect in Facebook combined.

6 Conclusion

The graph partitioning problem is a classical NP problem with many application
contexts. We propose a model of vertex relocation based on 0-1 mixed linear program-
ming.We design an iterative algorithm that selects some variables at each iteration and
assigns new shards to the vertices corresponding to these variables. We compare the
partitioning effect of BLP, BLP-MC, BLP-KL and our method on five social network
datasets. On these datasets, we also compare the effect of different number of shards.
In the experiments, compared with BLP and its improved algorithm, the effect of
our method has been significantly improved. We compare different variable selection
numbers and different variable selection strategies in the iterative algorithm. Due to
the different size of the graph and the shard number, choosing appropriate parameters
and variable selection strategies will further improve the partitioning effect.

The iterative algorithm solves the model by selecting some variables for optimiza-
tion in each round. The choice of variables has a crucial impact on the partition
results. For this reason, our future work will concern more reasonable method for vari-
ables selection strategy. For instance this could be obtained considering the structure
information of different networks.
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