
Journal of Combinatorial Optimization (2023) 45:132
https://doi.org/10.1007/s10878-023-01045-2

Maximizing the amount of data collected fromWSN based
on solar-powered UAV in urban environment

Chuanwen Luo1,2 · Junzhe Hu1,2 · Yunan Hou1,2 · Yi Hong1,2 · Yuqing Zhu3 ·
Deying Li4

Accepted: 8 May 2023 / Published online: 10 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Unmanned Aerial Vehicle (UAV) plays an increasingly role in data collection from
Wireless Sensor Networks (WSNs) with the advantages of its high mobility and flexi-
bility.However, the energy limitation ofUAVrestricts its application for data collection
tasks. To solve the problem, we install solar panel on UAV to acquire energy from
sunlight. This paper studies Data Collection Maximization based on Solar-powered
UAV (DCMS) problem in urban environment with lots of obstacles, where one UAV
equipped with solar panel is used to collect data fromWSN. The problem aims at opti-
mizing the flight trajectory of UAV such that the amount of data collected fromWSN
is maximized. We prove that the problem is NP-hard. To solve the DCMS problem,
we first propose three algorithms: Bypass Obstacles during Flight Algorithm (BOFA),
Auxiliary Graph Flight Path (AGFP), Construct Flight Plan in data collection Area
(CFPA). Their objectives are to bypass the obstacles, to obtain the flight path con-
necting all data collection areas in WSN, to optimize the flight trajectories of UAV
in the data collection areas, respectively. Afterwards, we propose an approximation
algorithm called DCMSA to solve the DCMS problem based on BOFA, AGFP, CFPA
algorithms. Finally, the proposed algorithm is verified by extensive simulations.
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1 Introduction

Wireless Sensor Networks(WSNs) are self-organizing, multi-hops distributed net-
works, where sensors are deployed in the detection area to sense the environment
information (Luo et al. 2021b). They have a large of applications, such as environment
monitoring, disaster monitoring, intelligent transportation and so on. In traditional
WSNs, the data stored in the sensors are transmitted back to the base station through
multi-hop routing, which depends on the battery energy carried by sensors. However,
since WSNs produce a amount of data as they are widely used in production and life,
the traditional way of collecting data will greatly consume the energy of WSNs and
reduce their service life. To overcome the above shortcomings, that Unmanned Aerial
Vehicles (UAVs) are used as data collectors to collect massive data in WSNs can not
be restricted by various ground conditions with the advantages of fast flight speed,
flexible flight routes and strong transportation capabilities.

Although UAVs have many advantages for data gathering in WSNs, their bat-
tery capacity limitation are considered as the crucial technical challenges for UAVs,
and which may make them unable to complete the data collection tasks in many
applications. In order to extend the working time of UAVs, many wireless charging
technologies are applied to replenish energy for UAVs in much literature, such as
solar charging (Thipyopas et al. 2019; Alsharoa et al. 2019), radio frequency (RF)
technology (Li et al. 2017), laser charging technology (L. Company 2012; Lahmeri
et al. 2020) and so on. However, since laser transmitters and RF chargers are needed
to deploy at specific locations in advance, UAVs need to fly at these locations for
replenishing energy, which will reduce the efficiency of UAVs and consume a large
amount of electric energy. Solar power as nature source can replenish energy for UAVs
without energy supply equipment and does not require additional energy and human
and material resources. Therefore, in this paper, we consider to use solar power to
replenish energy for UAVs when the UAVs are used to collect data from WSN.

However, since the charging efficiency of solar energy is low and the energy limita-
tion initially carried by UAV, we can not gather all data from WSN with the given
solar-powered UAV. Specifically, there are many obstacles to present obstructing
the communication between the UAV and sensors in urban environment. Therefore,
in this paper, we study the Data Collection Maximization based on Solar-powered
UAV(DCMS) problem, where the solar-powered UAV is used to collect data from
WSN deployed urban environment. In the problem, we not only consider the situation
that solar power is used to supplement energy for UAV, but also consider to avoid
obstacles when the UAV collects data from sensors during flight. The objective of the
problem aims at optimizing the flight trajectory of the solar-powered UAV to maxi-
mize the amount of data from sensors in urban environment before the energy of the
UAV is exhausted. The contribution of this paper can be summarized as below.

(1) We identify a data collection model of WSN based on solar-powered UAV by con-
sidering avoiding obstacles in urban environment, which is called Data Collection
Maximization based on Solar-powered UAV(DCMS) problem. Then we prove the
problem is NP-hard.
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(2) To solve the DCMS problem, we first prove that the optimal horizontal flight
speed is a function with respect to the flight altitude to minimize the net energy
consumption of UAV by considering solar charging. Then we propose three algo-
rithms: Bypass Obstacles during Flight Algorithm(BOFA), AuxiliaryGraph Flight
Path (AGFP), Construct Flight Plan in data collection Area (CFPA) to bypass the
obstacles, to obtain the flight path connecting all data collection areas in WSN, to
optimize the flight trajectories of UAV in the data collection areas, respectively.
Afterwards, we propose an approximation algorithm to solve the DCMS problem
based on the above algorithms.

(3) The extensive simulations are presented to illustrate the effectiveness of the pro-
posed algorithm for the DCMS problem.

The remainder of this paper is organized as follows. Section2 introduces related
works. Section3 introduces models and the problem definition. In Sect. 4, we propose
an approximation algorithm to solve the DCMS problem. Simulations are shown in
Sect. 5. Section6 concludes this paper.

2 Related works

This section will introduce the relevant research status and put forward the differences
of the problems studied in this paper. We classify the study problems into three differ-
ent types: data collection based on UAV, researches on solar-powered UAV, obstacle
avoidance of UAV.

2.1 Data collection based on UAV

In Gong et al. (2018), Gong et al. studied the time minimization problem of UAV by
considering both flying and communication of UAV. However, they only investigated
the scenario that the UAV collects data from the sensors on a stright line, which is
rare in reality and has many limitations. In Liu et al. (2018), the authors designed the
flight paths for single UAV and multiple UAVs to maximize the capacity of sensors,
but they assumed that the flight paths are fixed. However, in the actual scenario, the
UAVs with variable paths will play a higher efficiency in communication in the WSN.
In Luo et al. (2020), Luo et al. investigated the maximizing data collection proportion
problem to find the trajectory ofUAVsuch that theminimumdata collection proportion
of collected data to the stored data among all sensors is maximized. In Luo et al.
(2021a), Luo et al. designed detailed flight and hover plans for multiple UAVs for data
gathering from theWSN. Theyminimized the maximum flight time of UAVs such that
all data in theWSN is collected by the UAVs and transported to the base station. In Sun
et al. (2022), Sun et al. presented a new solar-powered fixed-wing UAV-assisted data
collection technique, where a fixed-wing UAV harvests solar energy to fly and collect
data from smart devices. They optimized the UAV’s three-dimensional trajectory to
maxmize the minimum of the data upload-ed from any of the smart devices.
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2.2 Researches on solar-powered UAV

In Kingry et al. (2018), Kingry et al. presented a prototype quadcopter UAV, which
carries a PV cell array. And they reported that the UAV can stay airborne for one to
2h by harvesting solar power. In Thipyopas et al. (2019), the authors developed a mall
solar-powered Unmanned Aerial Vehicle for environmental monitoring application
and aimed to achieve continuous flight endurance of 6h. The results showed that hybrid
solar powered UAV weight of 5.5kg is predicted for 6-h non-stop flight operation
from 9AM to 3PM under Thailand weather condition. In Fu et al. (2021), Fu et al.
investigated a solar-powered Unmanned Aerial Vehicle system, where UAV collects
data from Internet of Things Devices (IoTDs) on the ground and the three-dimensional
trajectory is optimized to maximize the total residual energy of the UAV. In Cong et al.
(2021), Cong et al. considered a generalUAV-enabledwireless communication system,
where the fixed-wing UAVwith thin-film solar cells is deployed to provide continuous
communication services for the ground users.

2.3 Obstacles avoidance of UAV

In Li et al. (2022), Li et al. proposed a dynamic obstacle avoidance path planning
strategy for UAV. They optimized the obstacle avoidance effect of the UAV by by
changing the UAV turning radius, changing the UAV heading, solving the UAV min-
imum deviation distance, reducing the UAV obstacle avoidance space. In Zhou et al.
(2022), Zhou et al. proposed a trajectory planning scheme and realized the unity of
obstacle avoidance and trajectory planning, where the UAV does not deviate from the
route after obstacle avoidance, and returns to the scheduled route nearby.

It is clear from previous discussions that there are many researches on UAV-based
data collection inWSN and solar-powered UAV and UAV flying in some environment
with obstacles. However, few people consider data collection based on solar-powered
UAV inWSN in urban environmentwith obstacles. Inspired by above literatures, in this
paper, we study the the data collection maximization problem based on solar-powered
UAV by considering obstacles in urban environment, in which we aim tomaximize the
data collection volume and enable the solar-powered UAV to return to the base station
before it runs out of energy. We not only consider the obstacle avoidence method, but
also optimize the trajectory of UAV for data gathering from WSN.

3 Models and definition

In this section, we give the models and definition for the problem.

3.1 Networkmodel

In this paper,we consider aWSNdeployed at urban environmentwheremanyobstacles
are located in. For simplicity, we assume that n sensors and m obstacles with known
location and size are deployed at a two-dimensional plane area A ⊆ �2. Let S =

123



Journal of Combinatorial Optimization (2023) 45 :132 Page 5 of 25 132

{s1, s2, · · · , sn} denote the set of sensors, where each sensor si ∈ S stores Vi units
of data. We use O = {o1, o2 . . . , om} to denote the set of the m obstacles in which
each obstacle is shaped as a cube. We use a solar-powered UAV u with source node
s0, initial energy E , vertical flight speed vl , horizontal flying speed v f and minimum
flying altitude H to serve as a mobile collector for gathering data from sensors in
WSN, where E is also the energy capacity of UAV.

We use (xsi , y
s
i ) to represent the coordinates for any si ∈ S ∪ {s0}. For arbitrary

o j ∈ O , let poj = (xoj , y
o
j , z

o
j ) denote its centre point and (loj , w

o
j , h

o
j ) represent the

size of o j , where loj represents the length of o j , wo
j denotes the width of o j and hoj

is the height of o j . As we all known, the UAV can’t fly close to the boundary of the
obstacle. Therefore, we set a fixed buffer distance doj between UAV and o j when the
UAV meets any o j ∈ O .

Assume that all sensors have the same communication radius R. For any si ∈ S, we
letΩ(si ) denote the communication area of si . The sensor si can transmit data to UAV
if and only if the UAV is in Ω(si ). The data collection area of UAV is a circular area
C(s′

i ) whose radius and center are respectively Rc = √
R2 − H2 and s′

i when u flies
at the altitude H . Let C = {C(s′

1),C(s′
2), · · · ,C(s′

n)}. The UAV can collect data from
sensors if and only if there does not exist obstacle between them. If H ≤ hoj +doj , then
the UAV must bypass o j from other three directions: right side, left side and upward
side. For simplicity, we assume that the UAV only can fly horizontally and vertically.
For any pair of si ∈ S and s j ∈ S, Ω(si ) and Ω(s j ) are disjoint with each other.

3.2 Communicationmodel

Only when the UAV is located inΩ(si ) and there is no obstacles between the UAV and
si can the UAV collect data from si . Therefore, in this paper, we adopt the Free Space
Path Loss (FSPL) model between UAV and sensors. Based on Gong et al. (2018) Luo
et al. (2021a), the data transmission rate from si to u can be described as

Cu(si ) =
{

1
2W log2(1 + γ0Pw

dα(si ,u)
), LoS

0, NLoS
(1)

where W denotes the channel bandwidth, d(si , u) denotes the Euclidean distance
between si and u, α is the path loss exponent and 2 ≤ α < 4, Pw represents the data
transmission power of si , γ0 = β0

σ 2 denotes the reference signal-to-noise ratio in which

β0 represents the channel gain at a reference distance d0 = 1m and σ 2 is the noise
variance.

3.3 Solar energy harvestingmodel

In this paper, we adopt the solar energy harvesting model in Fu et al. (2021). Ignoring
the influence of atmosphere, the power of UAV collected from sunlight when it flies
at altitude h can be expressed as
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Pc(h) = ηs AsGs(αs − βse
−h
δs ), (2)

where ηs represents the energy conversion efficiency, As denotes the area of the solar
panel,Gs is the average solar radiation, αs denotes the maximum value of atmospheric
transmittance, βs denotes the atmospheric extinction coefficient, and δs is the scale
height of the earth.

According to the Eq. (2), we can obtain that the higher the UAV flies, the more
power it can charge from the sunlight.

3.4 Propulsion power consumptionmodel

According to the propulsion power consumption model for rotating wing UAV pro-
posed inWang et al. (2019), we can obtain the consumption power ofUAV is a function
of flight speed v, and it can be expressed as

P(v) = P0

(
1 + 3v2

v2r

)
+ P1

(√
1 + v4

4v40
− v2

2v20

) 1
2

+ d0ρs Av3

2
, (3)

where P0 and P1 are two constants representing the blade profile power and induced
power in hovering status, vr denotes the tip speed of the rotor, v0 is the mean rotor
induced velocity in hover, d0 represents the fuselage drag ratio, s is the rotor robustness,
and ρ denotes the air density in units of kg/m3, A is rotor disk area.

Based on proof in Wu et al. (2020), we have the equation (3) is convex, i.e., there
exists an optimal speed v∗ to minimize the value of P(v). And the value of v∗ is given
as

v∗ = argmin
v≥0

P(v), (4)

3.5 Definition for the problem

In this subsection, we give the detailed definition of the Data CollectionMaximization
based on Solar-powered UAV (DCMS) problem as shown in Definition 1, whose
objective is to maximize the amount of data collected from WSN by solar-powered
UAV with limited initial energy.

In the Definition 1, we use Φ(U , Q, T , D f ) to denote the feasible flight plan of
UAV such that a part of data in WSN are collected and transported to the data center,
where U represents the flight tour of UAV, Q denotes the set of hovering points of
UAV to collect data from sensors, T is the set of hovering time of UAV at the hovering
points in Q, and D f is the amount of data collected from sensors when the UAV is
flying on U .

Definition 1 (DCMS) Given a set S = {s1, s2, . . . , sn} of n sensors in which each si
stores Vi units of data, a base station s0, a set O = {o1, o2 . . . , om} of m obstacles
with known location and size, a solar-powered UAV u with initial energy E , horizontal
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flight speed v f that varies with flight altitude h, vertical flight speed vl , minimumflight
altitude H for horizontal flying, the Data Collection Maximization based on Solar-
powered UAV (DCMS) problem aims at finding a flight plan Φ(U , Q, T , D f ) such
that

(1) U starts from and ends at s0,
(2) the UAV can collect data from si when it is within Ω(si ) and there is no obstacles

between it and si ,
(3) at any given moment, the energy of the UAV is greater than 0 and less than or

equal to E ,
(4) for any o j ∈ O , if o j is taller than H , then the UAV will by pass it from above or

left or right,
(5) for any hovering point hpi ∈ Q, the UAV collects data from si with thi ∈ T time,
(6) the amount of data collected by the UAV, D = Σhpi∈Qthi · Cu(si ) + D f is maxi-

mized.

Formally, problem DCMS can be formulated as

max Σhpi∈Q
1

2
thi W log2

(
1 + γ0Pw

dα(si , hpi )

)
+ D f (5)

s.t

0 ≤ Er
e ≤ E (6)

Theorem 1 The DCMS problem is NP-hard.

Proof If we set R = 0, E = +∞, Vi = 0 for each sensor si ∈ S, H = 0 and hoj = 0
for any o j ∈ O , then the DCMS problem can be reduced to the the well-known
Traveling Salesman Problem (TSP) since the UAV only needs to visit all sensors for
collecting data. Since the TSP problem is a special case of the DCMS problem and the
TSP problem has been shown to be NP-hard (?), the DCMS problem is also NP-hard.

�


Theorem 2 Let L and EL
net represent the horizontal flight distance and the net energy

consumption flying on L of UAV, respectively. There exists an optimal horizontal flight
speed v∗

f to minimize E
L
net which is a function with respect to the flight altitude h, i.e.,

v∗
f = ϕ(h).

Proof According to the definition, we can obtain

EL
net = P(v f )

L

v f
− Pc(h)

L

v f
, (7)
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By substituting P(v f ) and Pc(h) into equation (7), we have

EL
net =

⎛
⎜⎜⎝P0

(
1 + 3v2f

v2r

)
+ P1

⎛
⎜⎝

√√√√1 + v4f

4v40
− v2f

2v20

⎞
⎟⎠

1
2

+d0ρs Av3f

2
− ηs AsGs

(
αs − βse

−h
δs

))
L

v f
,

(8)

Based on Wu et al. (2020), the Eq. (8) can be reduced to

EL
net =

(
P0

(
1 + 3v2f

v2r

)
+ P1

v0

v f
+ d0ρs Av3f

2

−ηs AsGs

(
αs − βse

−h
δs

)) L

v f
,

(9)

The first derivative of EL
net with respect to v f is

(EL
net )

′ = L

v2f

(
3P0v2f

v2r
− 2P1v0

v f
+ Ad0ρsv

3
f

−P0 + ηs AsGs

(
αs − βse

−h
δs

))
,

(10)

Let g(v f ) = 3P0v2f
v2r

− 2P1v0
v f

+ Ad0ρsv3f − P0 + ηs AsGs(αs − βse
−h
δs ), the first

derivative of g(v f ) with respect to v f is

g′(v f ) = 6P0v f

v2r
+ 2P1v0

v2f
+ 3Ad0ρsv

2
f , (11)

Obviously, when v f > 0, g′(v f ) > 0. Therefore, g(v f ) increases strictly monotoni-
cally over the interval (0,+∞). As v f goes to 0, g(v f ) goes to −∞, and as v f goes
to +∞, g(v f ) goes to +∞. Thus, g(v f ) has a unique zero-point v∗

f on the interval

(0,+∞) that makes g(v f ) minimum. Therefore, EL
net is minimum when v f = v∗

f .
Therefore, we can obtain the following function

h = ψ(v∗
f ) = −δs ln

(
αs

βs
+ 1

ηs AsGsβs

(
3P0(v

∗
f )
2

v2r
− 2P1v0

(v∗
f )

+ Ad0ρs(v
∗
f )
3 − P0

))
,

(12)

Let χ(v f ) = 3P0v2f
v2r

− 2P1v0
v f

+ Ad0ρsv3f − P0, then χ(v f ) and g(v f ) have the same

monotonicity, and we can rewrite Eq. (12) as
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(a) Bypass oj on the left (b) Bypass oj on the right (c) Bypass oj on the upward

Fig. 1 Schematic diagram of obstacle o j bypassing methods of UAV

h = ψ(v∗
f ) = −δs ln

(
αs

βs
+ χ(v f )

ηs AsGsβs

)
, (13)

It is easy to observe that the Eq. (13) is strictlymonotonically decreasing in the interval
(0,+∞). According to the existence theorem of the inverse function, we have

v∗
f = ϕ(h) = ψ−1(h). (14)

�


Therefore, in the following proposed algorithm, we let v f = v∗
f to minimize the

net energy consumption of UAV when the UAV flies at a fixed altitude.

4 Researchmethods

In this section, we propose an approximation algorithm to solve the DCMS problem.
The algorithm consists of four phases.

The first phase to design a algorithm to bypass obstacles. The second phase is first
to construct the auxiliary graph based on the given network model. Then we compute
an flight path Uc of UAV based on the auxiliary graph to connect all data collection
areas in WSN when its energy is enough. Afterwards, for any si ∈ S, we compute
the two interconnect points sti and edi between Uc and Ω(si ). In the third phase, we
design the flight trajectory Υ (Ui , hpi , thi ) of UAV in Ω(si ) for any si ∈ S such that
all data of si is collected, where Ui is a path from sti to edi . Based on the first three
phases, we can obtain initial flight plan Φ(U , Q, T , D f ) when the energy of UAV is
enough, where U = ⋃

si∈S Ui ∪Uc.
In the fourth phase, we first compute the energy consumption Enet of UAV when

the UAV execute the flight plan Φ(U , Q, T , D f ). Then we compare Enet with E . If
Enet ≤ E , then the algorithm is exit and return the flight planΦ(U , Q, T , D f ) and D.
Otherwise, the algorithm delete the visited data collection areas on Φ(U , Q, T , D f )

whose the amount of data collected per unit energy consumption is minimum (Fig. 1).
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Algorithm 1 BOFA
Input: UAV u with flight height H , horizontal flight speed v∗

f and vertical flight speed v∗, poj =
(xoj , y

o
j , z

o
j ), (l

o
j , w

o
j , h

o
j );

Output: Po
j , E

bj
net ;

1: Compute the coordinates of corner points el jsc , e
l j
ec , e

r j
sc , e

r j
ec , e

u j
sc and eu jec ;

2: Plo
j = sp j → el jsc → el jec → ep j ;

3: Pro
j = sp j → er jsc → er jec → ep j ;

4: Puo
j = sp j → eu jsc → eu jec → ep j ;

5:Elbj
net = L(Ploj )

v∗
f

P(v∗
f ) − L(Ploj )

v∗
f

Pc(H);

6:Erbj
net = L(Proj )

v∗
f

P(v∗
f ) − L(Proj )

v∗
f

Pc(H);

7: Eubj
net = 2d(sp j ,e

u j
sc )

v∗ P(v∗) + d(sp j ,ep j )
v∗
f

(P(v∗
f ) − Pc(hoj + doj )) − 2

∫ d(sp j ,e
u j
sc )

v∗
0 Pc(H + v∗t)dt ;

8: Ebj
net = min{Elbj

net , E
rbj
net , E

ubj
net } and Po

j = arc(Ebj
net );

4.1 Algorithm to bypass obstacles

In this subsection, we propose an algorithm to bypass obstacles, which is calledBypass
Obstacles during Flight Algorithm (BOFA). For any o j ∈ O , we use sp j and ep j to
represent the positions where the UAV arrives and leaves o j , respectively. The BOFA
is used to design a path Po

j to bypass o j ∈ O , where Po
j starts from sp j to ep j . Let

L(Po
j ) be the length of P

o
j . We use Ebj

net to denote the net energy consumption of UAV
flying on Po

j .

Let el jsc and el jec denote the two corner points on the left of o j considering buffer

distance, respectively. We use er jsc and er jec to represent the two corner points on the
right of o j considering buffer distance, respectively. Let eu jsc and eu jec denote the two
corner points right above sp j and ep j , respectively.
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Algorithm 2 AGFP
Input: UAV u with flight height H , horizontal flight speed v∗

f , vertical flight speed v∗, s0 ∪ S, O , ant
numberμ, pheromone importance factor ς , total pheromone� , heuristic importance factor �, pheromone
volatile factor ξ , maximum number of iterations ε;
Output: Uc , L(Uc), G′(SC, EC,WC);

1: For any pair si , s j ∈ S, compute i p j
i and i pij ;

2: Compute SC = {sc0, sc1, ..., scn};
3: Compute EC = {(sc0, sc1), (sc0, sc2), (sc0, sc3), ..., (scn−1, scn)}
4: I O j

i =∅;
5: for any (sci , sc j ) ∈ EC do
6: for q from 1 to m do
7: if the edge (i p j

i , i pij ) bypasses oq , then

8: I O j
i = I O j

i ∪ oq , obtain Ebq
net by executing the Algorithm BOFA;

9: end
10: end
11: if I O j

i = ∅ then

12: Ei, j
net = d(i p ji ,i pij )

v∗
f

(P(v∗
f ) − Pc(H)), WC = WC ∪ {Ei, j

net };
13: else
14: Let k = |I O j

i | and obtain I O ′ j
i = {ol1 , ol2 , ..., olk };

15: Ei, j
net = (

d(i p ji ,spl1 )

v∗
f

+ d(eplk ,i pij )

v∗
f

+ Σk−1
q=1

d(eplq ,splq+1 )

v∗
f

)(P(v∗
f ) − Pc(H)) + Σk

q=1E
bq
net ;

16: WC = WC ∪ {Ei, j
net };

17: end
18: end
19: L(Uc) = +∞, for each edge ∈ EC , set the common initial pheromone value t0;
20: for count from 1 to ε do
21: for � from 1 to μ do
22: Randomly initialize the starting position of the �-th ant which is located at one of node scp ∈ SC ;
23: The set of nodes on G′(SC, EC,WC) that hasn’t been visited by �-th ant is NV� = SC ;
24: for τ from 1 to |SC | do
25: NV� = NV� \ {scp};
26: Calculate the transition probability Pro on NV� based on ς , �;
27: Update the location scp of �-th ant based on Pro;
28: end
29: end
30: for � from 1 to μ do
31: Compute the circuit C� and its length L(C�) of the �-th ant;
32: if L(C�) < L(Uc) do
33: Uc = C�, L(Uc) = L(C�);
34: end
35: end
36: for each edge ei ∈ EC do
37: Update pheromone value based on �i and ξi ;
38: end
39: end

The BOFA algorithm consists of three steps. In the first step, we compute the
coordinates of corner points el jsc, e

l j
ec, e

r j
sc , e

r j
ec, e

u j
sc and eu jec based on poj , sp j and

ep j ; In the second step, we obtain the flight paths Plo
j , P

ro
j and Puo

j of UAV, where

Plo
j = sp j → el jsc → el jec → ep j , Pro

j = sp j → er jsc → er jec → ep j and Puo
j =
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sp j → eu jsc → eu jec → ep j . In the third step, we compute the net energy consumption,

Elbj
net , E

rbj
net and Eubj

net of UAV when the UAV flies on Plo
j , P

ro
j and Puo

j , respectively.

Finally, we let Ebj
net = min{Elbj

net , E
rbj
net , E

ubj
net } and Po

j = arc(Ebj
net ).

4.2 Construct flight path Uc

In this subsection, we propose an algorithm to construct the auxiliary graph
G ′(SC, EC,WC) and obtain flight path Uc and its length L(Uc) based on G ′, where
SC denotes the node set, EC denotes the edge set andWC represents the set of weight
of edges in EC . The algorithm is called Auxiliary Graph Flight Path (AGFP), which
consists of the following three steps.

In the first step, we compute the intersection point i p j
i between C(s′

i ) and edge
(s′
i , s

′
j ) and the intersection point i pij between C(s′

j ) and edge (s′
i , s

′
j ).

In the second step, we construct the auxiliary graph G ′(SC, EC,WC). We first
compute the set SC = {sc0, sc1, . . . , scn} of points, where each sci is a virtual point
shrunk from C(s′

i ) and obtain the set EC that is set of edges made up of any two
points in SC , i.e., EC = {(sc0, sc1), (sc0, sc2), . . . , (scn−1, scn)}. Then, for any
edge (sci , sc j ) ∈ EC , we compute the set I O j

i of all obstacles passed by the edge

(i p j
i , i p

i
j ) and the ordered set I O ′ j

i in which all obstacles in I O j
i are ordered from

i p j
i to i pij . Afterwards, for arbitrary (sci , sc j ) ∈ EC , we compute the net energy

consumption Ei, j
net of UAV flying from i p j

i to i pij based on I O ′ j
i , and we use Ei, j

net to

denote the weight of the edge (sci , sc j ) and WC = WC ∪ {Ei, j
net }.

In the third step, we use Ant Colony Algorithm(ACA) to construct a hamiltonian
circuit Uc on G ′(SC, EC,WC). Let ε be the number of iterations of the algorithm
ACA. We initialize L(Uc) = +∞ and set the common initial pheromone value t0 for
each edge of EC . For any count from 1 to ε, we repeat executing the following steps.
Firstly, we randomly place μ ants on some nodes in SC (μ < |SC |), and let these
nodes be the starting positions of ants. Secondly, each ant selects the next node from
SC until all ants have visited all nodes on SC . We can obtain an initial hamiltonian
circuit C� and its length L(C�) for the �-th ant. Thirdly, we update pheromone value
based on �i and ξi , where �i and ξi are total pheromone and pheromone volatile
factor, respectively. Finally, for any � from 1 to μ, we compare L(C�) with L(Uc), if
L(C�) < L(Uc), then we set Uc = C� and L(Uc) = L(C�).
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Algorithm 3 CFPU
Input: v∗

f , v
∗, H , O , R, si , sti , edi , Γ ;

Output: Υ (Ui , hpi , thi ), Ei
net ;

1:Divide Ω(si ) into Γ parts based on R, and obtain Δi = {Δ1
i , Δ

2
i , ..., Δ

Γ
i };

2:Compute the ordered sets Osx
i = {oj1 , oj2 , ..., ojk1

}, Oxe
i = {oℵ1 , oℵ2 , ..., oℵk2

}, Ose
i =

{oı1 , oı2 , ..., oık3 }, and let Xi = s′
i , st

′
i = sti , ed ′

i = edi .
3:if s′

i ∈ oℵ1 then
4: if (loℵ1

+ doℵ1
)/2 − |xi − xoℵ1

| ≤ (woℵ1
+ doℵ1

)/2 − |yi − yoℵ1
| then

5: if xi ≤ xℵ1 , then Xi = (xℵ1 − (loℵ1
+ doℵ1

)/2, yi , H);
6: if xi > xℵ1 , then Xi = (xℵ1 + (loℵ1

+ doℵ1
)/2, yi , H);

7: else
8: if yi ≤ yℵ1 , then Xi = (xi , yℵ1 − (woℵ1

+ doℵ1
)/2, H);

9: if yi > yℵ1 , then Xi = (xi , yℵ1 + (woℵ1
+ doℵ1

)/2, H);
10: end
11:end
12: If sti ∈ oj1 , then obtain Po

j1
by executing the BOFA algorithm, st ′i = Po

j1
∩ ΔΓ

i ;
13: If edi ∈ oℵk2

then obtain Poℵk2
by executing the BOFA algorithm, ed ′

i = Poℵk2
∩ ΔΓ

i ;

14: Compute the paths PXi
st ′i

, P
ed ′

i
Xi

and P
ed ′

i
st ′i

based on st ′i , ed ′
i , Xi , Osx

i , Oxe
i and Ose

i ;

15: Compute the amount of data V Xi
st ′i

, V
ed ′

i
Xi

and V
ed ′

i
st ′i

collected on PXi
st ′i

, P
ed ′

i
Xi

and P
ed ′

i
st ′i

;

16:if V
ed ′

i
st ′i

< Vi then

17: Θi = Xi , Osθ
i = Osx

i , Oθe
i = Oxe

i , PΘi
st ′i

= PXi
st ′i

, P
ed ′

i
Θi

= P
ed ′

i
Xi

, VΘi
st ′i

= V Xi
st ′i

, V
ed ′

i
Θi

= V
ed ′

i
Xi

;

18: for k from 1 to Γ do
19: gk = (Xi , edi ) ∩ Δk

i ;
20: if gk /∈ Oxe

i then

21: Compute Osg
i , Oge

i , Pgk
st ′i
, P

ed ′
i

gk , V gk
st ′i
, V

ed ′
i

gk ;

22: If V gk
st ′i

+ V
ed ′

i
gk ≥ Vi , then Θi = gk , Osθ

i = Osg
i , Oθe

i = Oge
i , PΘi

st ′i
= Pgk

st ′i
, P

ed ′
i

Θi
= P

ed ′
i

gk ,

VΘi
st ′i

= V gk
st ′i
, V

ed ′
i

Θi
= V

ed ′
i

gk ;

23: end
24: end
25: Let Osθ

i = {o�1 , o�2 , ..., o�k4
}, Oθe

i = {o∂1 , o∂2 , ..., o∂k5
};

26: NEΘi
st ′i

= (L(PΘi
st ′i

) − ∑k4
q=1 L(Po

�q
)/v∗

f · (P(v∗
f ) − Pc(H)) + ∑k4

q=1 E
b�q
net ;

27: NE
ed ′

i
Θi

= (L(P
ed ′

i
Θi

) − ∑k5
q=1 L(Po

∂q
))/v∗

f (P(v∗
f ) − Pc(H)) + ∑k5

q=1 E
b∂q
net ;

28: if Θi = Xi then

29: hpi = Xi , thi =
Vi−(V

Xi
st ′i

+V
ed′
i

Xi
)

Cu (si )
, Ei

net = NEXi
st ′i

+ NE
ed ′

i
Xi

+ thi (P(0) − Pc(H));

30: else
31: hpi = ∅, thi = 0, Ei

net = NEΘi
st ′i

+ NE
ed ′

i
Θi

;

32: end
33: Ui = PΘi

st ′i
∪ P

ed ′
i

Θi
;

34:else
35: Ui = P

ed ′
i

st ′i
, hpi = ∅, thi = 0;

36: Ei
net = (L(P

ed ′
i

st ′i
) − ∑k3

q=1 L(Po
ıq ))/v

∗
f · (P(v∗

f ) − Pc(H)) + ∑k3
q=1 E

bıq
net ;

37: end
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4.3 Construct fight plan7(Ui, hpi, thi ) of UAV inÄ(si)

In this subsection, we propose an algorithm to construct the flight plan Υ (Ui , hpi , thi )

and compute the net energy consumption Ei
net of UAV in Ω(si ), which is called

Construct Flight Plan in data collection Area (CFPA). The algorithm consists of the
following five steps.

In the first step, we divide Ω(si ) into Γ parts based on R, and let Δi =
{Δ1

i ,Δ
2
i , . . . , Δ

Γ
i } denote the set of all hemispherical shells, where for any Δϑ

i ∈ Δi ,
the spherical equation is (x − xi )2 + (y − yi )2 + z2 = (ϑ R

Γ
)2(z ≥ 0).

In the second step, we compute the ordered sets Osx
i = {oj1 , oj2 , . . . , ojk1

},
Oxe
i = {oℵ1 , oℵ2 , . . . , oℵk2

}, and Ose
i = {oı1 , oı2 , . . . , oık3 }, where Osx

i , Oxe
i and

Ose
i represent all obstacles passed by the edge (sti , s′

i ) from sti to s′
i , edge (s′

i , edi )
from s′

i to edi and edge (sti , edi ) from sti to edi , respectively.
In the third step, we initially set Xi = s′

i , st
′
i = sti , ed ′

i = edi . We judge whether
the point s′

i is located in the first obstacle oℵ1 ∈ Oxe
i . If s′

i ∈ oℵ1 , then we update the
coordinates of Xi based on the following situations.

(1)
loℵ1+doℵ1

2 − |xi − xoℵ1
| ≤ woℵ1+doℵ1

2 − |yi − yoℵ1
|. If xi ≤ xℵ1 , then Xi = (xℵ1 −

loℵ1+doℵ1
2 , yi , H), otherwise, Xi = (xℵ1 + loℵ1+doℵ1

2 , yi , H).

(2)
loℵ1+doℵ1

2 − |xi − xoℵ1
| >

woℵ1+doℵ1
2 − |yi − yoℵ1

|. If yi ≤ yℵ1 , then Xi = (xi , yℵ1 −
woℵ1+doℵ1

2 , H), otherwise, Xi = (xi , yℵ1 + woℵ1+doℵ1
2 , H).

Afterwards, we update the coordinates of st ′i by determiningwhether the sti belongs
to oj1 ∈ Osx

i . If sti ∈ oj1 , then we compute Po
j1

by executing the BOFA algorithm,
and obtain st ′i = Po

j1
∩ ΔΓ

i . Finally, we update the coordinates of ed
′
i by determining

whether the edi belongs to oℵk2
∈ Oxe

i . If edi ∈ oℵk2
then we compute Poℵk2

by

executing the BOFA algorithm, and obtain ed ′
i = Poℵk2

∩ ΔΓ
i .

In the fourth step, we compute the paths PXi
st ′i

, P
ed ′

i
Xi

and P
ed ′

i
st ′i

based on st ′i , ed ′
i , Xi ,

Osx
i , Oxe

i and Ose
i , and compute the amount of data V Xi

st ′i
, V

ed ′
i

Xi
and V

ed ′
i

st ′i
collected

by UAV during flying on PXi
st ′i

, P
ed ′

i
Xi

and P
ed ′

i
st ′i

, respectively. Firstly, we compute the

avoid obstacle path Po
ı j for any oı j ∈ Ose

i by executing the Algorithm BOFA. Then we

compute the actual flight path P
ed ′

i
st ′i

of UAV from st ′i to ed ′
i by considering obstacles

in Ose
i based on the following four cases.

(1) sti = st ′i and edi = ed ′
i . Let P

ed ′
i

st ′i
= sti → Po

ı1 → Po
ı2 → . . . → Po

ık3
→ Xi .

(2) sti = st ′i and edi �= ed ′
i . Let P

ed ′
i

st ′i
= sti → Po

ı1 → . . . → spık3 → ed ′
i .

(3) sti �= st ′i and edi = ed ′
i . Let P

ed ′
i

st ′i
= sti → epı1 → . . . → Po

ık3
→ edi .

(4) sti �= st ′i and edi �= ed ′
i . Let P

ed ′
i

st ′i
= sti → epı1 → . . . → Po

ık3−1
→ spık3 → ed ′

i .
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Secondly, we compute the avoid obstacle path Po
j j
for any oj j ∈ Osx

i by executing

the Algorithm BOFA. Then we compute the actual flight path PXi
st ′i

of UAV from st ′i
to Xi by passing obstacles in Osx

i based on the following four cases.

(1) sti = st ′i and Xi = s′
i . Let P

Xi
st ′i

= sti → Po
j1

→ Po
j2

→ . . . → Po
jk1

→ Xi .

(2) sti = st ′i and Xi �= s′
i . Let P

Xi
st ′i

= sti → Po
j1

→ Po
j2

→ . . . → Po
jk1

.

(3) sti �= st ′i and Xi = s′
i . Let P

Xi
st ′i

= st ′i → epj1 → Po
j2

→ . . . → Po
jk1

→ Xi .

(4) sti �= st ′i and Xi �= s′
i . Let P

Xi
st ′i

= st ′i → epj1 → Po
j2

→ Po
j3

→ . . . → Po
jk1

.

Thirdly, we compute the avoid obstacle path Poℵ j
for any oℵ j ∈ Oxe

i by executing

the Algorithm BOFA. Then we compute the actual flight path P
ed ′

i
Xi

of UAV from Xi

to ed ′
i by passing obstacles in Oxe

i based on the following four cases.

(1) Xi = s′
i and edi = ed ′

i . We have P
ed ′

i
Xi

= Xi → Poℵ1
→ . . . → Poℵk2

→ edi .

(2) Xi �= s′
i and edi = ed ′

i . We have P
ed ′

i
Xi

= Xi → Poℵ2
→ . . . → Poℵk2

→ edi .

(3) Xi = s′
i and edi �= ed ′

i . We have P
ed ′

i
Xi

= Xi → Poℵ1
→ . . . → Poℵk2−1

→
spℵk2

→ ed ′
i .

(4) Xi �= s′
i and edi �= ed ′

i . Obtain P
ed ′

i
Xi

= Xi → Poℵ2
→ . . . → Poℵk2−1

→ spℵk2
→

ed ′
i .

Afterwards, we compute the amount of data V Xi
st ′i

, V
ed ′

i
Xi

and V
ed ′

i
st ′i

collected by UAV

during flying on PXi
st ′i

, P
ed ′

i
Xi

and P
ed ′

i
st ′i

, respectively. For any Δϑ
i ∈ Δi , we compute the

intersection points PXi
st ′i

∩Δϑ
i betweenΔϑ

i and PXi
st ′i

. Let I SXi
st ′i

= ⋃
Δϑ
i ∈Δi

(PXi
st ′i

∩Δϑ
i ).

For arbitraryΔϑ
i ∈ Δi , we compute the intersection points P

ed ′
i

Xi
∩Δϑ

i betweenΔϑ
i and

P
ed ′

i
Xi

. Let I S
ed ′

i
Xi

= ⋃
Δϑ
i ∈Δi

(P
ed ′

i
Xi

∩Δϑ
i ). For anyΔϑ

i ∈ Δi , we compute the intersection

points P
ed ′

i
st ′i

∩Δϑ
i betweenΔϑ

i and P
ed ′

i
st ′i

. Let I S
ed ′

i
st ′i

= ⋃
Δϑ
i ∈Δi

(P
ed ′

i
st ′i

∩Δϑ
i ). After that,

we obtain the ordered sets I S′Xi
st ′i

, I S
′ed ′

i
Xi

and I S
′ed ′

i
st ′i

by sorting I SXi
st ′i

from st ′i to Xi ,

I S
ed ′

i
Xi

from Xi to ed ′
i and I S

ed ′
i

st ′i
from st ′i to ed ′

i , respectively.

Finally, for any pair of points isg, isg+1 ∈ I S′Xi
st ′i

, we compute the flight time t sxg =√
(xisg−xisg+1 )2+(yisg−yisg+1 )2

v∗
f

+ |zisg+1−zisg |
v∗ ofUAVduring from isg to isg+1. Let V

Xi
st ′i

=

Σ
|I S′Xi

st ′i
|−1

g=1 t sxg Cu(si ). We compute the flight time t xeg =
√

(xisg−xisg+1 )2+(yisg−yisg+1 )2

v∗
f

+
|zisg+1−zisg |

v∗ of UAV for any pair of points isg, isg+1 ∈ I S
′ed ′

i
Xi

, during from isg to

isg+1. Let V
ed ′

i
Xi

= Σ
|I S′ed′

i
Xi

|−1

g=1 t xeg Cu(si ). For any pair of points isg, isg+1 ∈ I S
′ed ′

i
st ′i

,
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Fig. 2 Schematic diagram of UAV flight trajectory optimization: a Vi > V
Xi
st ′i

+ V
ed ′

i
Xi

, UAV flies from sti

to Xi and from Xi to edi , and hovers on Xi ; b V
ed ′

i
st ′i

< Vi ≤ V
Xi
st ′i

+ V
ed ′

i
Xi

, UAV flies from sti to Θi , and

from Θi to ed ′
i ; c Vi ≤ V

ed ′
i

st ′i
, UAV flies from st ′i to edi directly

we compute the flight time t seg =
√

(xisg−xisg+1 )2+(yisg−yisg+1 )2

v∗
f

+ |zisg+1−zisg |
v∗ of UAV

during from isg to isg+1. Let V
ed ′

i
st ′i

= Σ
|I S′ed′

i
st ′i

|−1

g=1 t seg Cu(si ).

In the fifth step, we compute Υ (Ui , hpi , thi ) and Ei
net by considering the following

two scenarios. The optimization result of UAV flight trajectory is shown in Fig. 2.

(1) V
ed ′

i
st ′i

< Vi . We initially set Θi = Xi , Osθ
i = Osx

i , Oθe
i = Oxe

i , PΘi
st ′i

= PXi
st ′i

,

P
ed ′

i
Θi

= P
ed ′

i
Xi

, VΘi
st ′i

= V Xi
st ′i

, V
ed ′

i
Θi

= V
ed ′

i
Xi

. For any k from 1 to Γ , we repeat

executing the following steps.

1) Let gk = (Xi , edi ) ∩ Δk
i . If gk /∈ Oxe

i , then we compute the obstacles set Osg
i

and Oge
i passed by the edge (st ′i , gk) from st ′i to gk and edge (gk, ed ′

i ) from gk

to ed ′
i , respectively, compute the flight paths Pgk

st ′i
and P

ed ′
i

gk of UAV from st ′i to
gk and from gk to ed ′

i , respectively, and compute the amount of data V gk
st ′i

and

V
ed ′

i
gk collected by UAV during flying on Pgk

st ′i
and P

ed ′
i

gk , respectively.

2) IfV gk
st ′i

+V
ed ′

i
gk ≥ Vi , thenwe setΘi = gk ,Osθ

i = Osg
i ,Oθe

i = Oge
i , PΘi

st ′i
= Pgk

st ′i
,

P
ed ′

i
Θi

= P
ed ′

i
gk , VΘi

st ′i
= V gk

st ′i
, V

ed ′
i

Θi
= V

ed ′
i

gk .

Afterwards, we let Osθ
i = {o�1 , o�2 , . . . , o�k4

} and Oθe
i = {o∂1 , o∂2 , . . . , o∂k5

}
denote the ordered set of obstacles. Then, we compute the net energy con-

sumption NEΘi
st ′i

=
L(P

Θi
st ′i

)−∑k4
q=1 L(Po

�q
)

v∗
f

(P(v∗
f ) − Pc(H)) + ∑k4

q=1 E
b�q
net and

NE
ed ′

i
Θi

= L(P
ed′
i

Θi
)−∑k5

q=1 L(Po
∂q

)

v∗
f

(P(v∗
f ) − Pc(H)) + ∑k5

q=1 E
b∂q
net . Finally, we can
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obtain Ui = PΘi
st ′i

∪ P
ed ′

i
Θi

. If Θi = Xi , then hpi = Xi , thi =
Vi−(V

Xi
st ′i

+V
ed′
i

Xi
)

Cu(si )
,

Ei
net = NEXi

st ′i
+ NE

ed ′
i

Xi
+ thi (P(0) − Pc(H)) and Ui is shown in Fig. 2a, other-

wise, hpi = ∅, thi = 0, Ei
net = NEΘi

st ′i
+ NE

ed ′
i

Θi
and Ui is shown in Fig. 2b.

(2) Vi ≤ V
ed ′

i
st ′i

. We set Ei
net =

L(P
ed′
i

st ′i
)−∑k3

q=1 L(Po
ıq )

v∗
f

(P(v∗
f ) − Pc(H)) + ∑k3

q=1 E
bıq
net ,

Ui = P
ed ′

i
st ′i

, hpi = ∅, and thi = 0, where Ui is shown in Fig. 2c.

4.4 Algorithm for the DCMS problem

In this subsection, we propose an approximation algorithm to solve the DCMS prob-
lem, which is called DCMSA. The algorithm consists of the following two steps.

Algorithm 4 DCMSA
Input: E , s0 ∪ S, v∗

f , v
∗, H , O , R;

Output: Φ(U , Q, T , D f ), D;
1: Use the AGFP algorithm to obtain virtual graph G′(SC, EC,WC) andUc based on s0 ∪ S and O and
let Uc = scρ0 → scρ1 → ... → scρn → scρ0 ;
2: Use the CFPU algorithm to obtain
Υ (Ui , hpi , t

h
i ) and Ei

net for any si ∈ S;

3: U = ⋃
si∈S Ui ∪Uc , Q = ⋃

si∈S hpi , T = ⋃
si∈S t

h
i ;

4: Enet = Σn
i=1E

ρi
net + Σn−1

i=0 E
ρi ,ρi+1
net + E

ρn ,ρ0
net ;

5: Let S′ = {sρ0 , sρ1 , · · · , sρn } be the ordered set of sensors visited by U from s0 to s0;
6: while Enet > E do
7: for each sρi ∈ S′\{sρ0 } do
8: Λρi = Vρi

E
ρi−1,ρi
net +E

ρi ,ρi+1
net +E

ρi
net−E

ρi−1,ρi+1
net

;

9: end
10: Λmin = min{Λρ1 , Λρ2 , ...,Λρ|S′ |−1

}, sρx = arc(Λmin), S′ = S′ \ {sρx };
11: Uc = Uc \ {(scρi−1 , scρi ), (scρi , scρi+1 )}, Uc = Uc ∪ {(scρi−1 , scρi+1 )};
12: Use the CFPU algorithm to obtain Υ (Uρi−1 , hpρi−1 , t

h
ρi−1

), Υ (Uρi+1 , hpρi+1 , t
h
ρi+1

), E
ρi−1
net ,

E
ρi+1
net ;

13: U = ⋃
si∈S′\{sρ0 } Ui ∪Uc , Q = ⋃

si∈S′\{sρ0 } hpi , T = ⋃
si∈S′\{sρ0 } thi ;

14: Let S′ = {sρ0 , sρ1 , · · · , sρ|S′ |−1
} be the ordered set of sensors visited by U from s0 to s0, Uc =

scρ0 → scρ1 → ... → scρ|S′ |−1
→ scρ0 ;

15: Enet = Σ
|S′|−1
i=1 E

ρi
net + Σ

|S′|−2
i=0 E

ρi ,ρi+1
net + E

ρ|S′|−1,ρ0
net ;

16: end
17: D = Σsi∈S′\{sρ0 }Vi ;
18: D f = D − Σhpi∈Q

1
2 t

h
i W log2(1 + γ0Pw

dα(si ,hpi )
);

In the first step, we compute initialU , Q, T and Enet . First of all, we use the AGFP
algorithm toobtain a virtual graphG ′(SC, EC,WC) andUc basedon s0∪S andO , and
letUc = scρ0 → scρ1 → . . . → scρn → scρ0 . Then, for any si ∈ S, we use the CFPU
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algorithm to obtain Υ (Ui , hpi , thi ) and Ei
net . Finally, we obtain U = ⋃

si∈S Ui ∪ Uc,

Q = ⋃
si∈S hpi , T = ⋃

si∈S t
h
i and Enet = Σn

i=1E
ρi
net + Σn−1

i=0 Eρi ,ρi+1
net + Eρn ,ρ0

net ;
In the second step, we update U , Q, T and Enet to obtain the flight plan

Φ(U , Q, T , D f ) and D. Firstly, we let S′ = {sρ0 , sρ1 , · · · , sρn } be the ordered set
of sensors visited by U from s0 to s0. Secondly, we repeat executing the following
steps when Enet > E .

1) For each sρi ∈ S′\{sρ0}, we compute Λρi = Vρi

E
ρi−1,ρi
net +E

ρi ,ρi+1
net +E

ρi
net−E

ρi−1,ρi+1
net

.

2) Let Λmin = min{Λρ1,Λρ2 , . . . , Λρ|S′ |−1
}, sρx = arc(Λmin), S′ = S′ \ {sρx }.

3) Set Uc = Uc \ {(scρi−1 , scρi ), (scρi , scρi+1)}, Uc = Uc ∪ {(scρi−1 , scρi+1)}.
4) Use the CFPU algorithm to obtain Eρi−1

net , Eρi+1
net , Υ (Uρi−1 , hpρi−1 , t

h
ρi−1

), Υ (Uρi+1 ,

hpρi+1 , t
h
ρi+1

).

5) Set U = ⋃
si∈S′\{sρ0 } Ui ∪Uc, Q = ⋃

si∈S′\{sρ0 } hpi , T = ⋃
si∈S′\{sρ0 } thi .

6) Let S′ = {sρ0 , sρ1 , · · · , sρ|S′|−1
} be the ordered set of sensors visited by U from s0

to s0, Uc = scρ0 → scρ1 → . . . → scρ|S′ |−1
→ scρ0 and Enet = Σ

|S′|−1
i=1 Eρi

net +
Σ

|S′|−2
i=0 Eρi ,ρi+1

net + E
ρ|S′ |−1,ρ0
net .

Finally, we can obtain D = Σsi∈S′\{sρ0 }Vi and D f = D − Σhpi∈Q 1
2 t

h
i W log2(1 +

γ0Pw

dα(si ,hpi )
).

5 Simulation

In this section, we evaluate the performance of the DCMSA algorihtm by extensive
simulation experiments on several key performance metrics under different settings.
We implement the code using MATLAB 2019b and Java programming.

All results are averaged over 100 random instances. Table 1 gives the values of
some constant parameters used in every instance.

5.1 An example for the DCMSA algorithm

As an example shown in Fig. 3, we set the configurations as n = 30, m = 40, R = 50
m, H = 40 m, E = 200,000 J, W = 800KB/s, 100 ≤ Vi ≤ 200 KB for any si ∈ S,
and the other parameters are shown in Table 1. After executing the DCMSA algorithm
for the instance, we can obtain the flight path U in the three dimensional space as
shown in Fig. 3a and its top view is shown as Fig. 3b, where the purple zones denote
the set of sensors, the cubes represent the set of obstacles, the red lines are the flight
paths of UAV.

5.2 Simulations for the DCMSA algorithm

In the following, we evaluate the impact of the different parameter settings on the Data
Collection Rate(DCR) that is the proportion of D obtained by DCMSA and

∑
si∈S Vi .
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Table 1 Some constant parameters

Notation Physical meaning Value

doj Buffer distance of o j in m 2

loj Length of o j in m [50,100]

wo
j Width of o j in m [50,100]

hoj Height of o j in m [30,150]

γ0 Reference SNR at transmission distance 1m in dB 80

ηs Energy conversion efficiency 0.4

As Solar panel area in m2 0.1

Gs Average solar radiation 1367

αs Maximum value of atmospheric transmittance 0.8978

βs Atmospheric extinction coefficient 0.2804

δs Scale height of the earth 8000

P0 Blade power 14.7517

P1 Induced power 41.5409

vr Tip speed of the rotor blade 80

v0 The average rotor-induced velocity 5.0463

d0 The fuselage drag ratio 0.5009

ρ Air density in kg/m3 1.225

s Rotor solidity 0.1248

A Rotor disc area in m2 0.1256

Fig. 3 The flight of UAV for a given instance obtained by DCMA algorithm

In Fig. 4, we illustrate the performance of the DCMSA algorithm when we set the
detection area as 5000m × 5000m, m = 40, R = 100 m, W = 800KB/s, α = 2,
Pw = 10 W, 20 ≤ Vi ≤ 25 MB for any si ∈ S, E = 700,000 J, n =100, 150, 200,
250, 300 in Fig. 4a and change H from 10 to 100m. Figure4a measures the impact
of H on the DCR, which shows that the DCR decreases with the increasing of the
flight altitude H since the flight time of UAV in the data collection area of each sensor
becomes shorter and the data transmission rate decreases as H increases.

At the same time, since the UAV doesn’t have enough energy to collect all the
data in the WSN, the DCR decreases with the increasing of the number of sensors n.

123



132 Page 20 of 25 Journal of Combinatorial Optimization (2023) 45 :132

10 20 30 40 50 60 70 80 90 100
Flight Altitude (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

at
a 

C
ol

le
ct

io
n 

R
at

e 
(%

)

n=100
n=150
n=200
n=250
n=300

(a) Effects of n and H

10 20 30 40 50 60 70 80 90 100
Flight Altitude (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
at

a 
C

ol
le

ct
io

n 
R

at
e 

(%
)

Solar Energy
No Solar Energy

(b) Comparison results of DCR

Fig. 4 Simulations by changing H from 10 to 100m under different n
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(b) Comparison results of DCR

Fig. 5 Simulations by changing Vi from [5,10] to [45,50] MB under different W

In Fig. 4b, the DCR when the UAV is charged by solar is obviously better than that
without charging, and the average DCR of charging is 9.525% higher than that of
non-charging when n =100, as shown in Fig. 4b.

In Fig. 5, we illustrate the performance of the DCMA algorithm when we set the
detection area as 5000m×5000m,n = 100, R = 50m, Pw = 10W,m = 40, H = 40
m, α = 2, E = 700,000 J, W =200, 400, 600, 800, 1000KB/s and change Vi from
[5,10] to [45,50] MB for any si ∈ S. Figure5a shows that the DCR decreases with the
increasing of the data volume of sensors. This is because the UAV needs to consume
more energy on hovering points to collect as the amount of data increases. We also
observe that the DCR increases with the increasing of the value of the bandwidth. This
is because the efficiency of the data collection is improved, and the flight paths within
data collection area of sensors are optimized. The DCR when the UAV is charged by
solar is obviously better than that without charging, and the average DCR of charging
is 3.744% higher than that of non-charging whenW = 200KB/s, as shown in Fig. 5b.

In Fig. 6, we illustrate the performance of the DCMA algorithm as we set n = 100,
m = 40, R = 50 m, H = 40 m, W = 1000KB/s, Pw = 10 W, 20 ≤ Vi ≤ 25 MB for
any si ∈ S, E = 600,000 J, A =2000 × 2000m, 3000 × 3000m, 4000 × 4000m,
5000 × 5000m, 6000 × 6000m in Fig. 6a and change α from 2.0 to 2.9. We can find
that theDCRdecreaseswith the increasing ofα in Fig. 6a since as the data transmission
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(b) Comparison results of DCR

Fig. 6 Simulations by changing α from 2.0 to 2.9 under differentA

rate decreases, it needs more time on the hovering points to collect data, which will
consume additional energy. At the same time, since the flight energy consumption of
UAV increases as the size of the detection area increases, the DCR decreases with the
increasing of the area A. Figure6b shows that the DCR when the UAV is charged by
solar is obviously better than that without charging, and the average DCR of charging
is 5.771% higher than that of non-charging when A =2000 × 2000m.

5.3 Performance comparison of different algorithms

In this subsection, we compare the performance of our algorithm DCMSA with other
two algorithms MSTA and Greedy to verify the effective of the proposed algorithm.

TheMSTA algorithm consists of the following steps: (1) construct a auxiliary graph
G ′(SC, EC,WC) as shown in Algorithm 2; (2) construct a minimum spanning tree
T ′
G from G ′(SC, EC,WC); (3) obtain the hamiltonian circuit Uc by doubling all

edges of T ′
G ; (3) execute the Algorithms 3 and 4 successively to obtain the flight plan

Φ(U , Q, T , D f ) and D.
Initially, we set si = s0 and D = 0, where si represents the initial position of

UAV. The Greedy algorithm repeats the following steps until the remaining energy
of UAV can not arrive the next sensor and return to the base station:(1) compute the
amount of data collected per unit of energy Λ j = Vj

Ei, j
net+E j

net+E j,0
net

for each s j ∈ S;

(2) Λ j = max{Λk |sk ∈ S} and s j = arc(Λ j ); (3) update the energy of UAV as

E = E − (Ei, j
net + E j

net ), D = D + Vj , si = s j , and S = S\{s j };
In Fig. 7a, we compare the performance of three algorithms when we set the detec-

tion area as 4000m × 4000m, R = 50 m, Pw = 10 W, m = 40, H = 40 m,
W = 1000KB/s, α = 2, 100 ≤ Vi ≤ 200 KB for any si ∈ S, E = 250,000 J and
change n from 30 to 70. Figure7a shows that the proposed algorithm outperforms the
other two algorithms. We can find that the average performance of DCMSA algorithm
is about 11.522% higher thanMSTA algorithm, and about 7.915% higher than Greedy
algorithm.

123



132 Page 22 of 25 Journal of Combinatorial Optimization (2023) 45 :132

30 35 40 45 50 55 60 65 70
Number of Sensors

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
D

at
a 

C
ol

le
ct

io
n 

R
at

e 
(%

)
DCMSA
MSTA
Greedy

(a) Performance comparison of three algo-
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rithms with the different detection area A.

Fig. 7 Performance comparison of three algorithms by varying n, W , Vi ,A

In Fig. 7b, we compare the performance of three algorithms as we set the detection
area as 4000m × 4000m, n = 50, R = 50 m, Pw = 10 W, m = 40, H = 40 m,
α = 2, 25 ≤ Vi ≤ 30 MB for any si ∈ S, E = 500,000 J and change W from 100
to 1000KB/s. Figure7b shows that DCMSA algorithm is superior to the other two
algorithms. The average performance of DCMSA algorithm is about 5.448% higher
than MSTA algorithm, and about 8.006% higher than Greedy algorithm.

In Fig. 7c, we compare the performance of three algorithms when we set the detec-
tion area as 4000m × 4000m, n = 50, R = 50 m, Pw = 10 W, m = 40, H = 40
m, W = 500KB/s, α = 2, E = 350,000 J and change Vi from [5,10] to [45,50]
MB for any si ∈ S. Figure7c shows that DCMSA algorithm outperforms the MSTA
and Greedy algorithms. We can observe that the average performance of DCMSA
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algorithm is about 4.247% higher than MSTA algorithm, and about 4.083% higher
than Greedy algorithm.

In Fig. 7d, we compare the performance of three algorithms as we set n = 50,
R = 50 m, Pw = 10W,m = 40, H = 40 m,W = 800KB/s, α = 2, 200 ≤ Vi ≤ 300
KB for any si ∈ S, E = 300,000 J and change the detection area A from 4000m ×
4000m to 8000m× 8000m. Figure7d shows that DCMSA algorithm outperforms the
other two algorithms. The average performance of DCMSAalgorithm is about 9.476%
higher than MSTA algorithm, and about 4.352% higher than Greedy algorithm.

6 Conclusion

In this paper,we investigate theDataCollectionMaximization based onSolar-powered
UAV(DCMS) problem in a wireless sensor network with obstacles in urban environ-
ment, which focuses on finding an optimal flight plan to maximize the data collection
volume of UAV from WSN and enable the UAV to return to the base station before
running out its energy. Then we prove that the DCMS problem is NP-hard. To solve
the DCMS problem, we propose the BOFA algorithm to bypass obstacles, the AGFP
algorithm to compute the flight path connecting all data collection areas in WSN and
the CFPU algorithm to optimize the flight trajectory of UAV in data collection area
of each sensor. Finally, we propose an approximation algorithm DCMSA to solve
the DCMS problem based on the above proposed three algorithms, and verify the
effectiveness of the proposed algorithm with a large of simulations.
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