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Abstract
In this paper, we consider the single machine scheduling problem with release dates
and submodular penalties, in which each job can be either assigned to the machine or
rejected. The objective is to minimize the sum of the makespan of the processed jobs
and the penalty of the rejected jobs which is determined by a submodular function.
First, we present a simple algorithm for the off-line problem. Second, for the on-line
problem, we prove that there is no on-line algorithm with a constant competitive ratio
if the penalty submodular function is not monotone, and present an on-line algorithm
with a competitive ratio of 3 if the penalty submodular function is monotone. Finally,
we consider a special case of the on-line problem in which all jobs have the same
release date. We prove that there is no on-line algorithm with a competitive ratio of√

5+1
2 ≈ 1.618, and the competitive ratio of the on-line algorithm we presented is 2.
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1 Introduction

Scheduling problem is to find a minimum scheduling such that all jobs are processed
on the machines (Graham 1966). In real life, manufacturers often outsource jobs with
lower processing returns to obtain greater earnings, where the outsourcing cost of a
job is regarded as the penalty for rejecting this job. This problem is called scheduling
problem with rejection (Bartal et al. 2000), in which each job can be rejected, but
a rejection penalty is paid, and the objective is to minimize the total makespan of
accepted jobs and the penalty of rejected jobs.

The relationship between the number of rejected jobs and the penalties tends to
be submodular rather than linear (Zhang et al. 2018; Liu and Li 2020), where the
submodular function is a set function with the property of decreasing marginal return,
i.e.,

π(S) + π(T ) ≥ π(S ∪ T ) + π(S ∩ T ), ∀ S, T ⊆ J . (1)

Liu and Li (2020) considered the single machine scheduling problem with release
dates and submodular penalties, in which each job has a release time and the rejection
penalty is determined by a submodular function

In the above problems, information of all jobs is known in advance, however,
with the advent of the big data era, manufacturers must immediately and irrevocably
decide to either process or reject the job when it arrives, which is denoted as on-
line. For example, under the cloud computing framework, massive computing tasks
generated by users are uploaded to the cloud for computing. To ensure the quality
of service, the cloud must immediately decide whether to compute the task when it
arrives, where the task that is not computed must pay a rejection penalty. From the
perspective of maximization of profit, a cloud hopes that the tasks generated by the
users should be computed as much as possible. Thus, in this paper, we consider the
single machine scheduling problem with release dates and submodular penalties for
the off-line case and the on-line case, respectively, where each job is either rejected or
accepted and processed on the machine. The objective is to minimize the makespan of
the accepted jobs plus the rejection penalty of the rejected jobs, which is determined
by a submodular function.

1.1 Results and outline of the paper

In Sect. 2, we consider the off-line single machine scheduling problem with release
dates and submodular penalties and present a simple algorithm.

In Sect. 3, we consider the on-line single machine scheduling problem with release
dates and submodular penalties. First, we prove that there is no on-line algorithm
with a constant competitive ratio if the penalty submodular function is not monotone.
Second, we present an on-line algorithm with a competitive ratio of 3 if the penalty
submodular function is monotone. Finally, we consider a special case of the on-line
problem in which all jobs have the same release date. We prove that there is no on-line

algorithm with a competitive ratio of
√
5+1
2 ≈ 1.618, and the competitive ratio of the
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on-line algorithm we presented is 2. In Sect. 4, we conduct a simple simulation to
evaluate the performance of the on-line algorithm.

We conclude the paper and suggest some possible future research in the last section.

1.2 Related work

For off-line scheduling problem, we are given n jobs and m machines, where each
job has a processing time. The objective is to minimize the makespan of all jobs.
Graham (1966) proved that it is strongly N P-hard, and presented the classical (2 −
1/m)-approximation list scheduling (LS, for short) algorithm. Then, Graham (1969)
presented a 4/3-approximation algorithm. Hochbaum and Shmoys (1987) presented
the first polynomial time approximation scheme (PTAS). To the best of our knowledge,
Jansen et al. (2020) presented the best efficient polynomial time approximation scheme
(EPTAS). Jansen and Porkolab (2001) considered this problem when the number
of machines is given, and presented a fully polynomial-time approximation scheme
(FPTAS). Li et al. (2012) considered this problem on two machines, in which each job
and machine are labeled with the grade of service levels, and presented an EPTAS.

For off-line scheduling problemwith rejection, each job has a processing time and a
rejection penalty. The objective is to minimize the total makespan of accepted jobs and
the penalty of rejected jobs. Bartal et al. (2000) proposed a 2-approximation algorithm
and a PTAS. Ou et al. (2015) proposed a (3/2+ ε)-approximation algorithm, where ε

is a small given positive constant. Li et al. (2015) considered this problem under the
rejection constraint, and the objective is to minimize the makespan of the accepted
jobs and the total penalty of the rejected jobs is no more than a given bound. They
presented an FPTAS.

For off-line scheduling problem with rejection and release data, each job has a
release date, where jobs cannot be processed before their corresponding release dates.
Zhang and Lu (2016) proposed a 2-approximation algorithm. Then, Zhong and Ou
(2017) proposed a PTAS. When there are exactly two machines. Zhong et al. (2017)
proposed a (3/2+ε)-approximation algorithm. When the number of machines is one,
Zhang et al. (2009) proved that it is N P-hard, and presented a 2-approximation algo-
rithm, which was independently improved by He et al. (2016) and Ou et al. (2016).

For off-line scheduling problem with submodular penalties, the penalty is deter-
mined by a submodular function. Liu and Li (2021) considered the scheduling problem
with submodular penalties, and presented a (2 − 1/m)-approximation. Zhang et al.
(2018) considered the precedence-constrained scheduling with submodular penalties
on parallel machines, and proposed a 3-approximation algorithm. Zheng et al. (2022)
and Wang and Liu (2022) independently considered the parallel-machine scheduling
problemwith release dates and submodular penalties, and presented a 2-approximation
algorithm. Liu and Li (2020) considered the single machine scheduling problem with
release dates and submodular penalties, and proposed a 2-approximation algorithm.

For on-line scheduling problem, jobs arrive one by one, and each job has to be
immediately and irrevocably assigned using the arrived jobs. The performance of an
on-line algorithm is measured by the competitive ratio. For on-line scheduling prob-
lem, Graham (1966) presented the LS algorithm with a competitive ratio of 2− 1/m.
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Several algorithms have been published that have a better competitive ratio than the LS
algorithm. The possible competitive ratio for on-line scheduling problem is approxi-
mately 1.92 (Albers 1999; Fleischer andWahl 2000), whereas the best lower bound for
that problem is 1.88 by (Rudin 2001). For on-line scheduling problem with rejection,
Bartal et al. (2000) presented an on-line algorithm with the best-possible competitive
ratio of (

√
5 + 3)/2 ≈ 2.618. For on-line scheduling problem with rejection and

release data, Lu et al. (2011) provided an on-line algorithm with the best-possible
competitive ratio of 2 when the number of machines is one.

2 A simple algorithm for the off-line problem

In this section, we present a simple off-line algorithm for the off-line single machine
scheduling problem with release dates and submodular rejection penalties, inspired
the idea in (Zhang et al. 2009).

In the off-line single machine scheduling problem with release dates and submod-
ular rejection, we are given an instance (J , π), where J = {1, 2, . . . , n} is a job set,
and π(·) is a submodular penalty function. Each job j , is described by the processing
time p j and the release date r j , is either accepted and processed on the machine or
rejected. The off-line problem is to choose a set AJ ⊆ J of accepted jobs and reject the
remaining jobs on the machine. The objective is to minimize the sum of the makespan
of the accepted jobs and the penalty cost π(AJ ), where

AJ = J \ AJ is the complement of AJ ,

and we assume that π(·) can be computed in polynomial time for any subset S ⊆ J .
If rejection is not allowed, Lawler (1973) shows that this problem can be solved

using the earliest release date rule. Thus, we have the following lemma.

Lemma 2.1 ( Lawler (1973)) There exists an optimal solution such that the accepted
jobs are processed using the earliest release date rule.

Inspired the idea in (Zhang et al. 2009), our algorithm finds a job subset AJ ,t ⊆ J
for each t ∈ {0, 1, 2, . . . , n}, and outputs the job subset with the minimum objective
value, where t represents the maximum index of the job to be processed in the job
subset. Thus, for any t ∈ {0, 1, 2, . . . , n}, jobs in Bt = { j ∈ J | j > t} are all rejected,
and only jobs in J\Bt need to be considered for being either processed or rejected. To
determine the AJ ,t , an auxiliary function pπt (·) defined on all the subset of J \ Bt is
constructed as follows.

pπt (S) = p(S ∪ Bt ) + π(S ∪ Bt ), ∀ S ⊆ J \ Bt ,

where we define

p(J ′) =
∑

j : j∈J ′
p j , ∀J ′ ⊆ J .
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Lemma 2.2 pπt (·) is a submodular function.
Proof Since Bt = { j ∈ J | j > t}, for any two job sets S1, S2 ⊆ J \ Bt , we have

pπt (S1) + pπt (S2)

= p(S1 ∪ Bt ) + π(S1 ∪ Bt ) + p(S2 ∪ Bt ) + π(S2 ∪ Bt )

= p((S1 ∪ S2) ∪ Bt ) + p((S1 ∩ S2) ∪ Bt ) + π(S1 ∪ Bt ) + π(S2 ∪ Bt )

≥ p((S1 ∪ S2) ∪ Bt ) + p((S1 ∩ S2) ∪ Bt ) + π((S1 ∪ S2) ∪ Bt ) + π((S1 ∩ S2) ∪ Bt )

= pπt (S1 ∪ S2) + pπt (S1 ∩ S2),

where the inequality follows from the fact that π(·) is a submodular function. Thus,
pπt (·) is a submodular function. ��

Based on Lemma 2.2 and the algorithm designed in Iwata and Orlin (2009),

St := arg min
S:S⊆J\Bt

pπt (S)

i.e.,

pπt (St ) ≤ pπt (S), ∀S ⊆ J \ Bt . (2)

can be found in polynomial-time. Then, we defined AJ ,t = J \ (St ∪ Bt ) = St ∪ Bt ,
and the objective value is Z J ,t = rt + p(AJ ,t )+π(AJ ,t ), where r0 = 0. Output AJ =
argminAJ ,t Z J ,t . We provide the detailed the simple off-line algorithm in Algorithm
1.

Algorithm 1: off-line algorithm
1 Initially, let r0 = 0.
2 for t ∈ {0, 1, 2, . . . , n} do
3 Set Bt = { j ∈ J | j > t} and construct the auxiliary function pπt (·) as above.
4 Using the algorithm proposed by Iwata and Orlin (2009), find St := argminS:S⊆J\Bt pπt (S).

5 Set AJ ,t := St ∪ Bt and Z J ,t := rt + p(AJ ,t ) + π(AJ ,t ).

6 Let AJ := argminAt Z J ,t , and output AJ and its objective value Z J .

Let Z∗ be the optimal value. We have the following lemma.

Theorem 2.3 Z J ≤ 2Z∗.

Proof Let A∗ be an optimal solution and its objective value is Z∗. If the optimal
solution rejects all the jobs, A∗ = ∅, then AJ ,0 is exactly the optimal solution, which
implies that the theorem holds; otherwise, let tA∗ = max{ j | j ∈ A∗} be the maximum
index of the job in A∗, and

rtA∗ + π(A∗) ≤ C(A∗) + π(A∗) = Z∗, (3)
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where C(A∗) is the makespan of the jobs in A∗ using the earliest release date rule.
Since AJ ,tA∗ = StA∗ ∪ BtA∗ , we have

p(AJ ,tA∗ ) + π(AJ ,tA∗ ) = p(StA∗ ∪ BtA∗ ) + π(StA∗ ∪ BtA∗ )

= pπtA∗ (StA∗ )

≤ pπtA∗ (A∗ \ BtA∗ )

= p((A∗ \ BtA∗ ) ∪ BtA∗ ) + π((A∗ \ BtA∗ ) ∪ BtA∗ )

= p(A∗) + π(A∗)
≤ Z∗, (4)

where the fourth equality follows from BtA∗ = { j ∈ J | j > tA∗} ⊆ A∗, the first
inequality follows from inequality (2), and the second inequality follows from p(A∗) ≤
C(A∗).

Thus, the objective value of AJ generated by Algorithm 1 is

Z J ≤ Z J ,tA∗

= rtA∗ + p(AJ ,tA∗ ) + π(AJ ,tA∗ )

≤ 2Z∗,

where the first inequality follows from AJ ,t = argminAJ ,t Z J ,t , and the second
inequality follows from inequalities (3) and (4). ��

Next, we use an example to illustrate our algorithm and analysis of Theorem 2.3 is
tight:

Example 1 we are given an instance (J , π), where J = {1, 2, . . . , n}; r j = 0 and
p j = 1 for j ∈ {1, 2, . . . , n − 1}; rn = n − 1 and pn = 1; and the submodular
function π(·) is defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π(∅) = 0;
π({n}) = 2n − 1;
π(S) =

∑

j : j∈S
(1 + 1

n
), if n /∈ S;

π(S) = 2n − 1, otherwise.

It is easy to obtain that the optimal solution is to process all jobs, and the optimal value
is Z∗ = n.

Let AJ be the output job set generated by Algorithm 1, and AJ = argminAJ ,t

Z J ,t , where Z J ,t is the objective value of AJ ,t . When t ∈ {0, 1, 2, . . . , n − 1}, job
n is in Bt and n /∈ AJ ,t . This means, AJ ,t is empty set and its objective value is
Z J ,t = rt + p(AJ ,t )+π(AJ ,t ) = 0+ p(∅)+π(J ) = 2n; When t = n, AJ ,t contains
all jobs in J and the objective value of AJ ,t is Z J ,t = rn + p(AJ ,t ) + π(AJ ,t ) =
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n − 1 + p(J ) + π(∅) = 2n − 1. This means, AJ = AJ ,n = J , and its objective is
Z = Z J ,n = 2n − 1. Thus, we have

Z

Z∗ = 2n − 1

n + 1
−→ 2, when n → ∞.

3 The on-line problem

In this section,we consider the on-line singlemachine scheduling problemwith release
dates and submodular rejection penalties. First, we provide a formal problem state-
ment, and proved that the lower bound of this problem. Second, we present an on-line
algorithm. Finally, we consider a special case of this problem.

3.1 Low bound

We are given a single machine and a sequence of n jobs, J = {1, 2, . . . , n}, arriving
online and a submodular penalty function π(·), which is given as a value oracle. Each
job j in J , is described by the processing time p j and the release date r j , where we
assume that

r j ≤ r j ′ for any 1 ≤ j < j ′ ≤ n.

The job is to be either scheduled or rejected immediately and irrevocably at the time
of it arrivals. The on-line problem is to find a job subset AJ ⊆ J . The objective is to
minimize the sum of the makespan of the accepted jobs and the penalty cost π(AJ ),
where

AJ = J \ AJ is the complement of A,

Theorem 3.1 There is noon-line algorithmwith a constant competitive ratio for the on-
line problem if the penalty submodular functionπ(·) is not monotone, where monotone
function satisfies π(S) ≤ π(T ) for any S ⊆ T ⊆ J .

Proof We are given a sequence of two jobs, J = {1, 2}, arriving on-line, and a penalty
submodular function π(·) defined as follows,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π(∅) = 0;
π({1}) = P2 + 1;
π({2}) = 1;
π({1, 2}) = 1.

Job 1 arrives, where r1 = 0 and p1 = P . For any algorithmA, IfA rejects job 1, then
no job arrives, and we have ZA = π({1}) = P2 + 1 and Z∗ = r1 + p1 = P , where
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ZA is the objective value of job set generated by A and Z∗ is the optimal value. This
implies that

ZA
Z∗ = P2 + 1

P
> P.

If A processes job 1 on the machine, then job 2 arrives, where r2 = 1 and p2 = P .
The optimal solution is to reject all jobs and its objective value is Z∗ = π({1, 2}) = 1.
If A rejects job 2, we have ZA = 0 + P + π({2}) = P + 1; otherwise A processes
job 2 on the machine, we have ZA = 0+ P + P = 2P . These statements imply that

ZA
Z∗ ≥ P + 1

1
> P.

Since P is any positive number, the lemma holds. ��
Therefore, in the following part of this section, we assume that the penalty sub-

modular function is monotone.

3.2 An algorithm for the on-line problem

Then, we present an on-line algorithm based on the off-line algorithm. For any l ∈
{1, 2, . . . , n}, let Jl = {1, . . . , l} be the set of the first l jobs in J . When the job l
arrives, all information of the jobs in Jl is revealed. Thus, we can find a job set AJl
for instance (Jl , π) using the Algorithm 1.

Further analysis of the relationship between AJl and job l, we can get the following
lemmas. Let tAJl

= max{ j | j ∈ AJl }.
Lemma 3.2 For any t ∈ {0, 1, 2, . . . , l} and any S ⊆ Jl with Bt = { j ∈ Jl | j > t} ⊆
S, we have

rtAJl
+ p(AJl ) + π(AJl ) ≤ rt + p(S) + π(S).

In particular, for any S ⊆ J , we have

rtAJl
+ p(AJl ) + π(AJl ) ≤ rl + p(S) + π(S).

Proof Given an integer t ∈ {0, 1, 2, . . . , l}, for any S ⊆ Jl with Bt ⊆ S, since
AJl ,t = St ∪ Bt , we have

p(AJl ,t ) + π(AJl ,t ) = p(St ∪ Bt ) + π(St ∪ Bt )

= pπt (St )

≤ pπt (S \ Bt )

= p((S \ Bt ) ∪ Bt ) + π((S \ Bt ) ∪ Bt )

= p(S) + π(S),
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where St and AJl ,t are the job sets generated by the off-line algorithm for instance
(Jl , π), the last equality follows from Bt ⊆ S, and the inequality follows from inequal-
ity (2). Since AJl = argminAJl ,t

Z Jl ,t , the objective value of AJl is

rtAJl
+ p(AJl ) + π(AJl ) ≤ rt + p(AJl ,t ) + π(AJl ,t ) ≤ rt + p(S) + π(S),

for any set S with Bt ⊆ S. Since Bl = ∅ and

rtAJl
+ p(AJl ) + π(AJl ) ≤ rl + p(S) + π(S), ∀S ⊆ J .

��
Lemma 3.3 There exists an optimal solution A∗

Jl
satisfying l ∈ A∗

Jl
when l ∈ AJl .

Proof Assume that any optimal solution satisfying that job l is rejected, i.e., l /∈ A∗
Jl
,

where A∗
Jl
is an optimal solution. Since l ∈ AJl , then A∗

Jl
∪ AJl is not an optimal

solution, and

Z∗
Jl = C(A∗

Jl ) + π(A∗
Jl
)

< C(A∗
Jl ∪ AJl ) + π(A∗

Jl
∪ AJl )

≤ max{C(A∗
Jl ), rl} + p(AJl \ A∗

Jl ) + π(A∗
Jl

∪ AJl ), (5)

where Z∗
Jl
is the optimal value for instance (Jl , π), and C(A∗) is the makespan of the

jobs in A∗
Jl
using the earliest release date rule.

Case 1. if rl ≤ C(A∗
Jl
), by rearranging inequality (5), we have

p(AJl \ A∗
Jl ) > Z∗

Jl − C(A∗
Jl ) − π(A∗

Jl
∪ AJl )

= π(A∗
Jl
) − π(A∗

Jl
∪ AJl )

≥ π(A∗
Jl

∩ AJl ) − π(AJl ). (6)

where the second equality follows from inequality (1). Then,

p(AJl ) + π(AJl ) = p(AJl ∩ A∗
Jl ) + p(AJl \ A∗

Jl ) + π(AJl )

> p(AJl ∩ A∗
Jl ) + π(A∗

Jl
∩ AJl ),

where the inequality follows from inequality (6). This statement and rl ≥ rtA∗
Jl

imply

that

rl + p(AJl ) + π(AJl ) > rtA∗
Jl

+ p(AJl ∩ A∗
Jl ) + π(A∗

Jl
∩ AJl ),

which contradicts Lemma 3.2 by BtA∗
Jl

⊆ A∗
Jl

∩ AJl and tAJl
= max{ j | j ∈ AJl } = l,

where tA∗
Jl

= max{ j | j ∈ A∗
Jl
}.
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Case 2. if rl > C(A∗
Jl
), let tA∗

Jl
= max{ j | j ∈ A∗

Jl
}, then

rtA∗
Jl

≤ C(A∗
Jl ) < rl

and

Z∗
Jl ≥ rtA∗

Jl

+ π(A∗
Jl
) and Z∗

Jl < rl + p(AJl \ A∗
Jl ) + π(A∗

Jl
∪ AJl ), (7)

where the first inequality follows from inequality (3), and the second inequality follows
from inequality (5). Thus, we have

rl − rtA∗
Jl

> Z∗
Jl − p(AJl \ A∗

Jl ) − π(A∗
Jl

∪ AJl ) −
(
Z∗
Jl − π(A∗

Jl
)
)

= π(A∗
Jl
) − π(A∗

Jl
∪ AJl ) − p(AJl \ A∗

Jl )

≥ π(A∗
Jl

∩ AJl ) − π(AJl ) − p(AJl \ A∗
Jl )

= π(A∗
Jl

∩ AJl ) − π(AJl ) − (p(AJl ) − p(AJl ∩ A∗
Jl ))

= p(AJl ∩ A∗
Jl ) + π(A∗

Jl
∩ AJl ) − (p(AJl ) + π(AJl )),

where the first inequality follows from inequality (7), and the second inequality follows
from inequality (1). This implies that rl + p(AJl )+π(AJl ) > rtA∗

Jl

+ p(AJl ∩ A∗
Jl
)+

π(A∗
Jl

∩ AJl ), which contradicts Lemma 3.2.
Thus, the lemma holds. ��
Then,we introduce the on-line algorithm.When a new job j is arrives, the algorithm

works by assigning job j based on the job set AJj generated byAlgorithm1 for instance
(J j , π). If j ∈ AJj , job j is processed on the machine; otherwise, job j is rejected.
Then, we provide the detailed the on-line algorithm in Algorithm 2.

Algorithm 2:
1 Initially, set the makspan C = 0, j = 1, A = ∅ and R = ∅.
2 Assume that a job j arrives.
3 Using Algorithm 1, let AJ j be the output job set for instance (J j , π).

4 if j ∈ AJ j then
5 Process job j on the machine at time max{C, r j }, and set C := max{C, r j } + p j and

A := A ∪ { j}.
6 If no new job arrives, stop and output the current job set A and its value Z = C + π(A); otherwise,
set j := j + 1 and go to 2.

For any j ∈ {1, 2, . . . , n}, let Z∗
J j

be the optimal value for instance (J j , π) of the

off-line case, and let C j be the makespan when job j is assigned by Algorithm 2.

Lemma 3.4 C j ≤ Z∗
J j

, ∀ j ∈ {1, 2, . . . , n}.
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Proof Our proof is by mathematical induction. When j = 1, if AJ1 = {1}, then job
1 is processed on the machine by Algorithm 2, and C1 = r1 + p1 = Z∗

J1
by Lemma

3.3; otherwise, then job 1 is rejected by Algorithm 2, and C1 = 0 ≤ Z∗
J1
. Therefore,

we have C1 ≤ Z∗
J1
.

We prove that Cl ≤ Z∗
Jl
if Cl−1 ≤ Z∗

Jl−1
for any integer l > 1, and show this by

proving the following two cases.
Case 1. if l /∈ AJl , then job l is rejected by Algorithm 2, and

Cl = Cl−1 ≤ Z∗
Jl−1

≤ Z∗
Jl .

Case 2. if l ∈ AJl , then job l is processed on the machine by Algorithm 2, and

Cl = max{Cl−1, rl} + pl .

BasedonLemma3.3, there exists anoptimal solution A∗
Jl
for instance (Jl , π) satisfying

l ∈ A∗
Jl
, and the objective value of A∗

Jl
is

Z∗
Jl = C(A∗

Jl ) + π(A∗
Jl
)

= max{C(A∗
Jl \ {l}), rl} + pl + π(A∗

Jl
)

= max{C(A∗
Jl \ {l}) + π(A∗

Jl
), rl + π(A∗

Jl
)} + pl

≥ max{Z∗
Jl−1

, rl + π(A∗
Jl
)} + pl

≥ max{Cl−1, rl} + pl
= Cl , (8)

whereC(A∗
Jl
) is themakespan of job set A∗

Jl
using the earliest release date rule; the first

inequality follows from the fact that A∗
Jl

\{l} is a feasible job set for instance (Jl−1, π)

and Z∗
Jl−1

is the optimal value for instance (Jl−1, π); and the second inequality follows

from Cl−1 ≤ Z∗
Jl−1

and π(S) ≥ 0 for any S ⊆ J . ��

When a new job j arrives, let A j be the processed job set when job j is assigned
by Algorithm 2. For convenience, we define

R j = A j .

Lemma 3.5 π(R j ) ≤ 2Z∗
J j

, ∀ j ∈ {1, 2, . . . , n}.
Proof For instance (J j , π), let AJj be the job set generated by Algorithm 1, and its
objective is

rtAJ j
+ p(AJj ) + π(AJj ) ≤ 2Z∗

J j , (9)

where tAJ j
= max{ j | j ∈ AJj } and the inequality follows from Theorem 2.3.
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Case 1. if R j ∩ AJj = ∅, we have R j ⊆ AJj and

π(R j ) ≤ π(AJj ) ≤ 2Z∗
J j ,

where the first inequality follows from thatπ(·) ismonotone, and the second inequality
follows from inequality (9).

Case 2. if R j ∩ AJj �= ∅, let l be the job with the maximum index in R j ∩ AJj ,
then we have

rl ≤ rtAJ j
(10)

by tAJ j
= max{ j | j ∈ AJj }. Let AJl be the job set for instance (Jl , π) using Algorithm

1. Then, we prove the following inequalities in instance (Jl , π), and use

RJj = J j \ AJj instead of the AJj we used before.

In the the following proof, we define

S = Jl \ S for any S ⊆ Jl .

Since job l ∈ R j is rejected by Algorithm 2, we have l /∈ AJj . Based on Lemma
3.2, we have rtAJl

+ p(AJl ) + π(AJl ) ≤ rl + p(S) + π(S) for any S ⊆ Jl , where

tAJl
= max{ j | j ∈ AJl }. By rearranging the terms and let S = AJl ∩ RJj , we have

rl − rtAJl
≥ p(AJl ) + π(AJl ) −

(
p(AJl ∩ RJj ) + π(AJl ∩ RJj )

)

= p(AJl ) − p(AJl ∪ (Jl \ RJj ) + π(AJl ) − π(AJl ∩ RJj )

= −p((Jl \ RJj ) \ AJl ) + π(AJl ) − π(AJl ∩ RJj )

≥ −p(AJj \ AJl ) + π(AJl ∪ RJj ) − π(RJj )

where the last inequality follows from inequality (1) and Jl \ RJj ⊆ J j \ RJj = AJj .
By rearranging the terms, we have

π(AJl ∪ RJj ) ≤ p(AJj \ AJl ) + π(RJj ) + rl − rtAJl
≤ rl + p(AJj \ AJl ) + π(RJj ). (11)

If R j ∩ (AJj \ AJl ) = ∅, then we have

R j ⊆ J j \ (AJj \ AJl ) = RJj ∪ (AJj ∩ AJl ) ⊆ AJl ∪ RJj ,

and

π(R j ) ≤ π(AJl ∪ RJj ) ≤ rl + p(AJj \ AJl ) + π(RJj ) ≤ rtAJ j
+ p(A j ) + π(R j ) ≤ 2Z∗

J j
,
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where the first inequality follows from thatπ(·) ismonotone, and the second inequality
follows from inequality (11) and inequality (10); otherwise, let AJj = AJj \ AJl , and
repeat the above Case 2. Repeating at most n times, we can obtain that the equality
R j ∩ (AJj \ AJl ) = ∅ follows. ��

By Lemma 3.4 and Lemma 3.5, the following theorem is obvious.

Theorem 3.6 The competitive ratio of Algorithm 2 for the on-line problem is 3.

We complement this result by an example implying that the analysis of Theorem
3.6 is tight, and consider the following instance with n jobs, where r j = 0 and p j = 1
for j ∈ {1, 2, . . . , n − 1}, and rn = n − 1 and pn = 1. The submodular function π(·)
is a value oracle which is defined as follows (same to Example 1):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π(∅) = 0;
π({n}) = 2n − 1;
π(S) =

∑

j : j∈S
(1 + 1

n
), if n /∈ S;

π(S) = 2n − 1, otherwise.

Same to Example 1, the optimal solution is to process all jobs, and the optimal value
is Z∗ = n.

For any S ⊆ {1, 2, . . . , n − 1}, we have p(S) < π(S). For j ∈ {1, 2, . . . , n − 1},
since r j = 0, the output job set contains all jobs for instance (J j , π) using Algorithm
1. i.e., AJj = J j . This means, the output job set by Algorithm 2 is to contain the first
n jobs.

For instance (Jn, π), same as Example 1, AJn dose not contain job n, and the
output job set by Algorithm 2 is not contains job n, i.e., the objective value of A j is
Z = C(Jn−1) + π({n}) = n − 1 + 2n − 1 = 3n − 2. Thus, we have

Z

Z∗ = 3n − 2

n
−→ 3, when n → ∞.

3.3 A special case with the same release date

Then, we consider the special case of the on-line problem, where all the jobs have the
same release date.

Theorem 3.7 There is no on-line algorithm with a competitive ratio less than
√
5+1
2 ,

even when r j = 0 for any j ∈ J .

Proof We are given a sequence of two jobs, J = {1, 2}, arriving on-line, and a penalty
submodular function π(·) defined as follows,

⎧
⎨

⎩

π(∅) = 0;

π({1}) = π({2}) = π({1, 2}) =
√
5 + 1

2
.
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Job 1 arrives, where p j = 1. For any algorithm A, if job 1 is rejected by A, then

no job arrives, and ZA = π({1}) =
√
5+1
2 and Z∗ = r j + p1 = 1, where ZA is the

objective value of the job set generated byA and Z∗ is the optimal value. This implies
that

ZA
Z∗ ≥

√
5 + 1

2
.

If job 1 is processed on the machine by A, then job 2 arrives, where p2 = 10. The

optimal solution is to reject all jobs and its optimal value is Z∗ = π({1, 2}) =
√
5+1
2 .

If job 2 is rejected byA, then ZA = 0+1+π({2}) = 1+
√
5+1
2 =

√
5+3
2 . Otherwise,

job 2 is processed on the machine, and ZA = p1 + p2 = 11. These statements imply
that

ZA
Z∗ ≥

√
5+3
2√
5+1
2

=
√
5 + 1

2
.

Therefore, the lemma holds. ��
Theorem 3.8 When all jobs have the same release date, Algorithm 2 is a 2-competitive
on-line algorithm and the bound is tight.

Proof For any j ∈ {1, 2, . . . , n}, let A∗
J j
be the optimal solution for instance (J j , π),

and let Z∗
J j

be the optimal value. If A∗
J j

= ∅, since AJj ,0 = ∅ and AJj =
argminAJ j ,t

Z J j ,t , we have p(AJj )+π(AJj ) ≤ Z∗
J j
; otherwise, since all jobs have the

same release date, we can resort the index of jobs to satisfy j ∈ A∗
J j
. Similar to inequal-

ity (4), we have rtAJ j
+ p(AJj ) + π(AJj ) ≤ Z∗

J j
, where tAJ j

= max{ j | j ∈ AJj }.
Combining Lemma 3.4, the objective value of job set generated by Algorithm 2 is

C j + π(A j ) ≤ Z∗
j + rtAJ j

+ p(A j ) + π(AJj ) ≤ 2Z∗
j .

To show that the bound is tight, we consider the following instance with n jobs,
where r j = 0 for j ∈ {1, 2, . . . , n}, p j = 1 for j ∈ {1, 2, . . . , n − 1}, and pn = 3.
The submodular function π(·) is defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π(∅) = 0;
π({n}) = n;
π(S) =

∑

j : j∈S
(1 + 1

n
), if n /∈ S;

π(S) = n + 1, otherwise.

It can be verified that the optimal solution is to reject all jobs, and the optimal value
is Z∗ = n + 1. However, the output job set by Algorithm 2 is to contain the first n
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Fig. 1 Solution quality for n=10

Fig. 2 Performances of Algorithm 2 against the greedy algorithm

jobs, and its objective value is Z = 2n − 1. Thus, we have

Z

Z∗ = 2n − 1

n
−→ 2, when n → ∞. ��

4 Numerical experiments

The experimental study aims to present the practical performance of Algorithm 2, and
compare against a baseline method.

Datasets. The processing time and the release date of any jobs in datasets are
generated in an average distribution over a given range.
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Submodular penalty function. The penalty function required by the experiment
must be non-negative, monotonic, and submodular. We use the following submodular
function for experiments,

π(S) =
∑

J j∈S
π(J j ) − θ · (|S|2 − |S|), ∀S( �= ∅) ⊆ J ,

where θ ≥ 0 is a parameter.
Experiment procedures.We use IBM’s open-source tool Cplex to obtain the optimal

solution for the single machine scheduling problem with release dates and submod-
ular penalties. If we do not get the optimal solution within 5 min, we stop Cplex.
For comparison, we also run the greedy algorithm (Lu et al. 2011) which is the on-
line algorithm for the problem with linear penalties. The first experiment compares
Algorithm 2 the against the optimal solution generated by Cplex and the greedy algo-
rithm in small datasets using different parameter θ . The second experiment compares
Algorithm 2 against the greedy algorithm in the datasets with different number of jobs.

Implementation details. Implementation details. The whole experiment is imple-
mented on a single process with an Intel(R) Core(TM) i5-9300H CPU at 2.40GHz
and 8 GB RAM.

Numerical results. Figure 1displays the objective values ofAlgorithm2, theCPLEX
and the greed algorithm in a small datasets. Figure2 displays the performances ofAlgo-
rithm 2, and the greed algorithm in the datasets with different number of jobs. The
results first show that the theoretical analysis indeed matches the practical perfor-
mance. In addition, the gap between the objective values generated by Algorithm 2
and greedy algorithm is increasing as either θ or n increases, which is expected.

5 Conclusion

In this paper, we study the on-line single machine scheduling problem with release
dates and submodular rejection penalties. We prove that there is no on-line algorithm
with a constant competitive ratio if the penalty submodular function is not mono-
tone, and present an on-line algorithm with a competitive ratio of 3 when the penalty
submodular function is monotone. In particular, we consider the special case of this
problem, where all jobs have the same release date. We prove that there is no on-line

algorithm with a competitive ratio of
√
5+1
2 ≈ 1.618 even when the release date of

each job is 0, and the competitive ratio of the on-line algorithm is 2.
It is challenging to either find a greater lower bound or design an on-line algorithm

with a better competitive ratio. The information of jobs with the same release date can
be revealed when these jobs arrive, and the on-line-over-time case of this problem is
worth considering.
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