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Abstract
In this paper, we address the constrained parallel-machine scheduling problem with
divisible processing times and penalties (the CPS-DTP problem), which is a further
generalization of the parallel-machine scheduling problem with divisible processing
times (the PS-DTproblem). Concretely, given a setM ofm identicalmachines and a set
J of n independent jobs, each job has a processing time and a penalty, the processing
times of thesen jobs are divisible, andwe implement thesen jobs under the requirement
that each job in J must be either continuously executed on one machine with its
processing time, or rejected with its penalty that we must pay for. We may consider
three versions of the CPS-DTP problem, respectively. (1) The constrained parallel-
machine scheduling problem with divisible processing times and total penalties (the
CPS-DTTP problem) is asked to find a subset A of J and a schedule T for jobs in A
to satisfy the aforementioned requirement, the objective is to minimize the makespan

B Jianping Li
jianping@ynu.edu.cn

Runtao Xie
xieruntao7@163.com

Junran Lichen
J.R.Lichen@buct.edu.cn

Guojun Hu
huguojun@mail.ynu.edu.cn

Pengxiang Pan
pengxiang@ynu.edu.cn

Ping Yang
1573395725@qq.com

1 School of Mathematics and Statistics, Yunnan University, East Outer Ring South Road,
University Town, Chenggong District, Kunming 650504, People’s Republic of China

2 School of Mathematics and Physics, Beijing University of Chemical Technology, No.15, North Third
Ring East Road, Chaoyang District, Beijing 100029, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-023-01028-3&domain=pdf
http://orcid.org/0000-0003-1508-1440


98 Page 2 of 19 Journal of Combinatorial Optimization (2023) 45 :98

of such a schedule T for jobs in A plus the summation of penalties paid for jobs not in
A; (2) The constrained parallel-machine scheduling problemwith divisible processing
times andmaximum penalty (the CPS-DTMP problem) is asked to find a subset A of J
and a schedule T for jobs in A to satisfy the aforementioned requirement, the objective
is to minimize the makespan of such a schedule T for jobs in A plus maximum penalty
paid for jobs not in A; (3) The constrained parallel-machine scheduling problem with
divisible processing times and bounded penalty (the CPS-DTBP problem) is asked
to find a subset A of J and a schedule T for jobs in A to satisfy the aforementioned
requirement and the summation of penalties paid for jobs not in A is no more than a
fixed bound, the objective is to minimize the makespan of such a schedule T for jobs
in A. As our main contributions, we design three exact algorithms to solve the CPS-
DTTP problem, the CPS-DTMP problem and the CPS-DTBP problem, and these three
algorithms run in time O((n log n+nm)C), O(n2 log n) and O((n log n+nm) logC),
respectively, where C is the optimal value of same instance for the PS-DT problem.

Keywords Combinatorial optimization · Constrained parallel-machine scheduling ·
Divisible processing times · Penalties · Exact algorithms

1 Introduction

The classical scheduling problem (Graham 1966; Lenstra et al. 1977) is one of funda-
mental and well-studied problems in combinatorial optimization, and it is modelled
as follows. Given a set M = {a1, a2, . . . , am} of m identical machines and a set
J = {b1, b2, . . . , bn} of n independent jobs, where each job b j ∈ J has a processing
time, it is asked to schedule these n jobs in J on machines in M such that each job
b j ∈ J must be continuously executed only on one machine in M , the objective is to
minimize the makespan, i.e., the total timespan required to execute the jobs in J . This
scheduling problem has been widely and deeply considered in the literature, and it has
a wide range of applications in various domains, such as business management, com-
puter systems, transportation, aerospace, and medical and health. We use a notation
P||Cmax (Graham 1966; Lawler et al. 1993) to denote this scheduling problem.

The P ||Cmax problem is a stronglyNP-hard problem (Graham 1966; Lenstra et al.
1977), and we have known that there are many approximation algorithms to solve this
problem. Graham (1966) designed the list scheduling algorithm (the LS algorithm,
for short) for solving the P || Cmax problem, whose strategy is to arrange these jobs
on machines and assign a job, which is then executed, on the fastest machine that
is currently nearing completion, and this LS algorithm has an approximation ratio
2 − 1

m . When the number of machines is either two or three, i.e., either m = 2 or
m = 3, Faigle et al. (1989) proved that the LS algorithm (Graham 1966) is also an
exact algorithm for solving the on-line version of the P ||Cmax problem in polynomial
time O(n logm) that no improvement is possible. On the other hand, Graham (1969)
presented another longest processing time algorithm (the LPT algorithm, for short)
for solving the P || Cmax problem, whose strategy is first to sort all the jobs in non-
increasing order based on their processing times and secondly to execute all the jobs
on the machines, and assigns the next job to be executed on the fastest machine that is
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currently nearing completion. The LPT algorithm has an approximate ratio 4
3 − 1

3m ,
and this LPT algorithm is significantly better than the LS algorithm. Having based on
the correspondence between the bin packing problem and this problem, Coffman et al.
(1978) presented the MULTIFIT approximation algorithm for solving the P || Cmax
problem, and the same authors (Coffman et al. 1978) showed that the upper bound
of the MULTIFIT algorithm does not exceed 1.22 in the worst case. Hochbaum and
Shmoys (1987) proposed a first polynomial-time approximation scheme (PTAS, for

short) for the P || Cmax problem, and this PTAS runs in time O

(
( n

ε
)
( 1

ε2
)
)
for each

real number ε > 0.
Nevertheless, when some processing times of jobs in a schedule are too longer than

that of many practical situations, it may lead to need higher cost to execute all jobs
on machines. In order to overcome this situation of excessive cost for all jobs, some
researchers intend to give up a small amount of jobs, which have longer processing
times, to bear smaller penalty costs (as a numerical value) instead of such “longer” jobs
executed. Bartal et al. (2000) first proposed the parallel-machine scheduling problem
with rejection penalties (the PS-P problem, for short), which is a generalization of
the P || Cmax problem, and this new problem is modelled as follows. Given a set
M = {a1, a2, . . . , am} of m identical machines and a set J = {b1, b2, . . . , bn} of
n independent jobs, each job b j ∈ J has a processing time p j and a penalty e j ,
and we implement these n jobs under the requirement that each job in J must be
either scheduled only on one machine once to be executed without interruption with
its processing time, or rejected with its penalty that we must pay for. We are asked
to find a subset A ⊆ J and a schedule T for jobs in A such that each job b j ∈ A
has to be executed continuously on a machine and that each job b j ∈ J\A has to
be rejected, the objective is to minimize the makespan of such a schedule T for jobs
in A plus the summation of penalties paid for jobs not in A, i.e., min{Cmax(A, T ) +∑

b j∈J\A e j | A ⊆ J and T is a feasible schedule for jobs in A}, where Cmax(A, T ) is
the makespan of the schedule T for jobs in A, and we call such a schedule T for jobs
in A to be feasible if each job in A scheduled only on one machine once to be executed
without interruption with its processing time. Motivated by the notation P||Cmax, we
use a notation P | rej | Cmax(A, T ) + ∑

b j∈J\A e j to denote the PS-P problem.
For the PS-P problem, Bartal et al. (2000) designed a fully polynomial-time approx-

imation scheme (FPTAS, for short) for the fixed integerm and a PTAS for the arbitrary
integerm, respectively. In addition, using the strategy to reject the jobs, each of whose
penalty is not greater than the value of its processing time divided by the number
of machines, and executing the LS algorithm (Graham 1966) on all other jobs with
the shortest processing time, and then choosing the best one among all solutions, the
same authors (Bartal et al. 2000) provided a

(
2 − 1

m

)
-approximation algorithm for

solving the PS-P problem, and for the arbitrary integer m, this algorithm runs in time
O(n log n). On the other hand, He and Min (2000) presented the best possible on-
line algorithms for solving the on-line version of the PS-P problem on two or three
machines when the value of speed ratio is certain, and the same authors (He and Min
2000) showed the fact that this algorithm is optimal when the number of machines is
two and the speed ratio s ≥ (

√
5 + 1)/2, or the number of machines is three and the

speed ratio s ≥ 2. Furthermore, presenting an up-to-date survey of such results in this
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field, Shabtay et al. (2013) presented a survey to offer a unified framework for offline
scheduling with rejection, and they highlighted the close connection between schedul-
ing with rejection and other fields of research such as scheduling with controllable
processing times and scheduling with due date assignments.

Zhang et al. (2009) considered the parallel-machine scheduling problem with
bounded penalty (the PS-BP problem, for short), which is another generalization of
the PS-P problem, and it is modelled as follows. Given a set M = {a1, a2, . . . , am}
of m identical machines, and a set J = {b1, b2, . . . , bn} of n independent jobs, each
job b j ∈ J has a processing time p j and a penalty e j . Whenever a job in J is oper-
ated in a schedule, this job must be either scheduled only on one machine once to
be executed without interruption, or rejected with its penalty that we must pay for.
We are asked to find a subset A ⊆ J and a schedule T for jobs in A such that each
job b j ∈ A has to be continuously executed on one machine and each job b j ∈ J\A
has to be rejected, where the summation of penalties paid for jobs in J\A is no
more than B, i.e.,

∑
b j∈J\A e j ≤ B, the objective is to minimize the makespan of

a schedule T for jobs in A. Motivated by the notation P||Cmax, we use a notation
P | ∑

b j∈J\A e j ≤ B | Cmax(A, T ) to denote the PS-BP problem.
When the number ofmachines inM is fixed, Zhang et al. (2009) presented a pseudo-

polynomial-time dynamic programming algorithm and an FPTAS for solving the PS-
BP problem, respectively. Li et al. (2015) presented a 2-approximation algorithm in
strongly polynomial time and a PTAS for solving the PS-BP problem, and for the case
where m is a fixed constant, the same authors (Li et al. 2015) designed an FPTAS
for solving the PS-BP problem, which improved previous best running time from

O
(
nm+2

εm

)
(Zhang et al. 2009) to O

(
1

ε2m+3 + mn2
)
.

We have a heavy impression on the fact that Coffman et al. (1978) first considered
the bin packing problem with divisible item sizes (the BP-DS problem, for short), and
divisible item sizes are of interest because they arise naturally in certain applications,
such as memory allocation in computer systems, where device capacities and block
sizes are commonly restricted to powers of 2 (Knuth 1997). The sameauthors (Coffman
et al. 1978) showed that the first fit decreasing algorithm (the FFD algorithm) (Simchi-
Levi 1994) optimally solves theBP-DSproblem in time O(n log n), and they presented
other exact algorithms in polynomial time to solve related bin packing problems with
divisible item sizes. One interesting fact is that Coffman et al. (1987) simultaneously
considered in the same paper the parallel-machine scheduling problem with divisible
processing times (the PS-DT problem, for short), which is modelled as follows. Given
a set M = {a1, a2, . . . , am} of m identical machines and a set J = {b1, b2, . . . , bn}
of n independent jobs, each job b j ∈ J has a processing time p j , where processing
times of jobs in J are divisible, i.e., either pi | p j or p j | pi , for any two distinct jobs
bi and b j in J , we are asked to find a schedule T for jobs in J such that each job
b j ∈ J has to be executed without interruption only on onemachine, the objective is to
minimize the makespan of such a schedule T for jobs in J . And Coffman et al. (1987)
showed that the LPT algorithm, which is designed by Graham (1969) for solving
the P || Cmax problem, also optimally solves the PS-DT problem, whose complexity
is still the time O(n log n). Motivated by the notation P||Cmax, we use a notation
P | (pi , p j ) = min{pi , p j } | Cmax to denote the PS-DT problem.
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Zheng et al. (2018) considered the parallel-machine scheduling problem with
penalties under constraints (the PS-PC problem, for short), which is modelled as
follows. Given a set M = {a1, a2, . . . , am} of m identical machines, and a set
J = {b1, b2, . . . , bn} of n independent jobs, each job b j ∈ J has a processing
time p j and a penalty e j , where processing times of jobs are divisible, i.e., either
pi | p j or p j | pi , and in addition, we have ei/pi ≥ e j/p j whenever pi ≥ p j ,
it is asked for us to find a subset A ⊆ J and a schedule T for jobs in A such
that each job b j ∈ A is continuously scheduled only on one machine and that
each job b j ∈ J\A is rejected, the objective is to minimize the makespan of such
a schedule T for jobs in A plus the summation of penalties paid for jobs not in
A, i.e., min{Cmax(A, T ) + ∑

b j∈J\A e j | A ⊆ J and T is a feasible schedule for
jobs in A}. Zheng et al. (2018) designed an exact algorithm to solve the PS-PC
problem in time O(n2 log n). Motivated by the notation P||Cmax, we use a notation
P | (pi , p j ) = min{pi , p j }, ei/pi ≥ e j/p j | Cmax(A, T ) + ∑

b j∈J\A e j to denote
the PS-PC problem.

Motivated by parallel-machine scheduling, divisible processing times, penalties and
other related aforementioned problems, we address the constrained parallel-machine
scheduling problemwith divisible processing times and penalties (the CPS-DTP prob-
lem, for short),which is a further generalization of thePS-DTproblemandother related
problems. Concretely, given a set M = {a1, a2, . . . , am} of m identical machines and
a set J = {b1, b2, . . . , bn} of n independent jobs, each job b j ∈ J has a processing
time p j ∈ Z

+ and a penalty e j ∈ R
+, where processing times of jobs are divisible,

i.e., either pi | p j or p j | pi , for each pair bi , b j in J , it is asked for us to find a subset
A ⊆ J and a schedule T for jobs in A to satisfy the requirement that each job b j ∈ A
is scheduled only on one machine and each job b j ∈ J\A is rejected. We consider the
following three versions of the CPS-DTP problem, having three different objectives,
respectively, i.e.,

(1) The constrained parallel-machine scheduling problem with divisible processing
times and total penalties (the CPS-DTTP problem, for short) is asked to find a
subset A ⊆ J and a schedule T for jobs in A to satisfy the aforementioned
requirement, the objective is to minimize the makespan of such a schedule T
for jobs in A plus the summation of penalties paid for jobs not in A, i.e.,
min{Cmax(A, T ) + ∑

b j∈J\A e j | A ⊆ J and T is a feasible schedule for jobs
in A}.

(2) The constrained parallel-machine scheduling problem with divisible processing
times and maximum penalty (the CPS-DTMP problem, for short) is asked to find
a subset A ⊆ J and a schedule T for jobs in A to satisfy the aforementioned
requirement, the objective is to minimize the makespan of such a schedule for jobs
in A plus the maximum penalty paid for jobs not in A, i.e., min{Cmax(A, T ) +
emax(J\A) | A ⊆ J and T is a feasible schedule for jobs in A}, where emax(J\A) =
max{e j | b j ∈ J\A}.

(3) The constrained parallel-machine scheduling problem with divisible processing
times and bounded penalty (the CPS-DTBP problem, for short) is asked to find
a subset A ⊆ J and a schedule T for jobs in A to satisfy the aforementioned
requirement and the summation of penalties paid for jobs not in A is no more than
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the bound B, i.e.,
∑

b j∈J\A e j ≤ B, the objective is to minimize the makespan of
such a schedule for jobs in A, i.e., min{Cmax(A, T ) | A ⊆ J and T is a feasible
schedule for jobs in A}.
For convenience as some aforementioned notations, wemay denote the CPS-DTTP

problem by P | (pi , p j ) = min{pi , p j }, rej | Cmax(A, T ) + ∑
b j∈J\A e j , the CPS-

DTMP problem by P | (pi , p j ) = min{pi , p j }, rej | Cmax(A, T ) + max{e j | b j ∈
J\A} and the CPS-DTBP problem by P | (pi , p j ) = min{pi , p j },∑b j∈J\A e j ≤
B | Cmax(A, T ), respectively.

To the best of our knowledge, these three aforementioned problems have not been
considered in the literature, and we hope that there are more important applications for
these three problems in theories and in practices.We intend to design an exact algorithm
to solve the CPS-DTTP problem in pseudo-polynomial time, an exact algorithm to
solve the CPS-DTMP problem in strongly polynomial time and an exact algorithm to
solve the CPS-DTBP problem in polynomial time, respectively.

The remainder of this paper is organized into the following sections. In Sect. 2, we
provide some terminologies, notations and fundamental lemmas to ensure the correct-
ness of our exact algorithms. In Sect. 3, we design an exact algorithm to optimally solve
the CPS-DTTP problem, and this algorithm runs in time O((n log n+nm)C), whereC
is the optimal value of the same instance for the PS-DT problem. In Sect. 4, we provide
an exact algorithms to optimally solve the CPS-DTMP problem, and that algorithm
runs in time O(n2 log n). In Sect. 5, we present an exact algorithms to optimally solve
the CPS-DTBP problem, and that algorithm runs in time O((n log n + nm) logC),
where C is defined as mentioned above. In Sect. 6, we summarize our conclusions
and put forward some interesting related problems that will be worth to consider in
the future research.

2 Terminologies and key lemmas

In this section, we present some terminologies, notations and fundamental lemmas
in order to show our exact algorithms to optimally solve the CPS-DTTP problem,
the CPS-DTMP problem and the CPS-DTBP, respectively. In addition, according to
the requirements of computer science for input data, we may assume that the weight
functions are all positive integer functions. On the other hand, readers can find other
necessarymaterials in these references (Bernhard andVygen 2008; Pinedo 2012; Potts
and Strusevich 2009; Schrijver 2003).

In order to present exact algorithms to optimally solve our three problems, for con-
venience, we need to describe the parallel-machine scheduling problem with divisible
processing times (the PS-DT problem, for short) and the multiple knapsack problem
with divisible item sizes (the MKP-DS problem, for short), where the first is a special
version of the P || Cmax problem (Graham 1966) and the second is a special version
of the multiple knapsack problem (Kellerer et al. 2004), respectively.

From now on, we present some following related problems and key lemmas. At
first, we describe the parallel-machine scheduling problem with divisible processing
times (the PS-DT problem) in the following way.

123



Journal of Combinatorial Optimization (2023) 45 :98 Page 7 of 19 98

Problem 1 (the PS-DT problem (Coffman et al. 1987)) Given a set M =
{a1, a2, . . . , am} of m identical machines and a set J = {b1, b2, . . . , bn} of n indepen-
dent jobs, each job b j ∈ J having a processing time p j ∈ Z

+, where these processing
times are divisible, i.e., either pi | p j or p j | pi for any two different jobs bi and
b j in J , it is asked to schedule jobs in J on machines such that each job b j is only
continuously processed on one machine, the objective is to minimize the makespan,
i.e., the total timespan required to execute jobs in J .

For convenience, according to the content encountered in the sequel, we use I =
(M, J ; p, e) to denote an instance of either the CPS-DTTP problem or the CPS-
DTMP problem, and we sometimes use I = (M, J ; p, e; B) to denote an instance of
the CPS-DTBP problem, respectively. From either an instance I = (M, J ; p, e) or
an instance I = (M, J ; p, e; B) as mentioned above, we can construct an instance
τ(I ) = (M, J ; p) of the PS-DTproblemwith a processing time function p : J → Z

+.
In addition, given a subset A ⊆ J and a schedule T for jobs in A, we denoteCmax(A, T )

to be the makespan of such a schedule T for jobs in A, i.e., the timespan required
to execute jobs in A, respective to this schedule T , and e(J\A) = ∑

b j∈J\A e j ,
respectively. And we call a schedule T for jobs in A to be feasible if each job in
A scheduled only on one machine once to be executed without interruption with its
processing time. Furthermore, we remind e(φ) = 0, emax(φ) = 0 and emax(J ′) =
max{ei | bi ∈ J ′ ⊆ J }.

On the other hand, Graham (1969) presented the longest processing time algo-
rithm (the LPT algorithm) for solving the P || Cmax problem. In addition, Coffman
et al. (1987) considered the bin packing problem with divisible item sizes (the BP-DS
problem), and they showed in the same paper that the LPT algorithm (Graham 1969)
also optimally solves the PS-DT problem in polynomial time, which is restated in the
following

Lemma 1 (Coffman et al. 1987) The LPT algorithm in (Graham 1969), also denoted
by the algorithm APS−DT , optimally solves the PS-DT problem in time O(n log n),
where n is the number of jobs with divisible processing times.

Secondly, we describe the multiple knapsack problem with divisible item sizes (the
MKP-DS problem) in the following way.

Problem 2 (The MKP-DS problem (Detti 2009)) Given a set N of m knapsacks with
same capacity L and a set X = {x1, . . . , xn} of n items, each item x j ∈ X has a
size s j ∈ Z

+ and a profit v j ∈ R
+, where these n item sizes are divisible, i.e., either

si | s j or s j | si for any two distinct items xi and x j in X, it is asked to find a subset
X ′ ⊆ X and a scheme T for items in X ′ such that the items in X ′ are all packed
into m knapsacks under the constraints that the summation of sizes of items in each
knapsack does not exceed the capacity L, the objective is to maximize the value of
profits of assigned items in these m knapsacks, i.e.,max{∑xi∈X ′ vi | X ′ ⊆ X is chosen
to satisfy the aforementioned constraints}.

In the similarway,we use I = (N , X; s, v; L) to denote an instance of theMKP-DS
problem. In addition, we denote v(X ′) = ∑

x j∈X ′ v j for a subset X ′ ⊆ X .
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Detti (2009) designed an exact algorithm to solve theMKP-DS problem in strongly
polynomial time, whose structural descriptions in details can be found in (Detti 2009),
and we may provide the related conclusion in the following way.

Lemma 2 (Detti 2009) There is an exact combinatorial algorithm, denoted by the
algorithm AMK P−DS, to optimally solve the MKP-DS problem, and this algorithm
runs in time O(n log n+nm), where m is the number of knapsacks with same capacity
L and n is the number of items with divisible sizes, respectively.

At present, we intend to transfer an instance of either the CPS-DTTP problem or
the CPS-DTBP problem into an instance of the MKP-DS problem in the following
ways. Given an instance I = (M, J ; p, e) of the CPS-DTMP problem or an instance
I = (M, J , p, e; B) the CPS-DTBP problem and a fixed integer k, we can construct
an instance ρk(I ) = (N , X; s, v; k) of the MKP-DS problem, i.e., N is the set of m
knapsacks with same capacity k, each item x j ∈ X has its size s j ∈ Z

+ and its value
v j ∈ R

+, where s j = p j and v j = e j for each job b j ∈ J . In addition, whenever
we use the algorithm AMK P−DS (Detti 2009) on this instance ρk(I ) of the MKP-DS
problem, we can obtain the following result.

Lemma 3 (Detti 2009) Given an instance ρk(I ) of the MKP-DS problem, the algo-
rithm AMK P−DS can determine a subset X ′ ⊆ X, where the items in which can be
packed into m knapsacks under the constraints that the summation of sizes of items
in each knapsack does not exceed the capacity k, such that v(X ′) is maximized, and
this algorithm runs in time O(n log n + nm), where n is the number of jobs with
divisible processing times and m the number of these knapsacks with same capacity
k, respectively.

Using Lemma 3, we can indeed determine the following result.

Lemma 4 Given a set M = {a1, a2, . . . , am} of m identical machines and a set J =
{b1, b2, . . . , bn} of n independent jobs, each job b j ∈ J has a processing time p j ∈ Z

+
and a penalty e j ∈ R

+, where these processing times are divisible, i.e., either pi | p j or
p j | pi for any two different jobs bi and b j in J , and for any positive integer k, when we
execute the algorithmAMK P−DS (Detti 2009) on the instanceρk(I ), we can determine
a subset J ′ (⊆ J ), where the jobs in J ′ = {b j1, b j2 , . . . , b jt } constructed from the item
subset X ′ = {x j1, x j2 , . . . , x jt }, produced by the algorithm AMK P−DS (Detti 2009),
such that e(J ′) is maximized, and this algorithm runs in time O(n log n + nm).

For convenience, using Lemma 4, we may treat two sets X and J as the coincide
set, i.e., we may assume that the set X and the set J are both same set, implying that
wemay treat the subset X ′ = {x j1, x j2 , . . . , x jt } as the subset J ′ = {b j1 , b j2 , . . . , b jt },
which are produced in Lemma 4, and X ′ and J ′ are the same in the sequel sections.

3 An exact algorithm to solve the CPS-DTTP problem

In this section, we consider the constrained parallel-machine scheduling problemwith
divisible processing times and total penalties (the CPS-DTTP problem). Concretely,
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given an instance I = (M, J ; p, e) of the CPS-DTTP problem, we are asked to find a
subset A (⊆ J ) and a scheme T for jobs in A to satisfy the requirements in two parts,
i.e., (1) each job in A is continuously executed on one machine with its processing
time, and (2) each job not in A is rejected with its penalty that we must pay for, the
objective is to minimize the value h(A) = Cmax(A, T ) + e(J\A).

The strategy of our algorithm to solve the CPS-DTTP problem is presented in the
following ways.

(1) Given an instance I = (M, J ; p, e) of the CPS-DTTP problem, we construct
an instance τ(I ) = (M, J ; p) of the PS-DP problem, and then executing the
algorithmAPS−DT (Graham 1969) on this instance τ(I ), we may find an optimal
solution for the instance τ(I ) of the PS-DP problem, having its optimal value C ;

(2) Given an instance I = (M, J ; p, e) of the CPS-DTTP problem and a fixed integer
k, where k = 1, 2, . . . ,C , we construct an instance ρk(I ) = (N , X; s, v; k) of the
MKP-DS problem, and then executing the algorithm AMK P−DS (Detti 2009) on
that instance ρk(I ), we can find a schedule Tk for jobs in a subset Ak ⊆ J , where
each job in Ak can be executed on one ofm machines to satisfy the aforementioned
constraints, such that e(Ak) ismaximized, equivalently that e(J\Ak) isminimized;

(3) Choose the best one among all feasible schedules in (2), having the minimum
value of a makespan chosen plus the summation of penalties of all rejected jobs.

We design a following algorithm, denoted by the algorithmACPS−DTT P , to solve
the CPS-DTTP problem in the following ways.

Algorithm: ACPS−DTT P

Input: An instance I = (M, J ; p, e) of the CPS-DTTP problem;
Output: A subset Ak0 ⊆ J , a schedule Tk0 for jobs in Ak0 and the value h(Ak0) =
Cmax(Ak0 , Tk0) + e(J\Ak0).
Begin
Step 1 Given an instance I = (M, J ; p, e) of the CPS-DTTP problem, we con-
struct an instance τ(I ) = (M, J ; p) of the PS-DT problem, and then using the
algorithm APS−DT (Graham 1969) on this instance τ(I ), we can determine an
optimal solution and its optimal value C for the PS-DT problem;
Step 2 Denote A0 = φ, T0 = (φ, . . . , φ;φ), Cmax(A0, T0) = 0, and e(J\A0) =∑

b j∈J e j ;
Step 3 For k = 1 to C do:

3.1 Using the instance I = (M, J ; p, e) of the CPS-DTTP problem and a
fixed integer k, we construct an instance ρk(I ) = (N ,Y ; s, v; k) of the MKP-DS
problem as mentioned above;

3.2 Executing the algorithm AMK P−DS (Detti 2009) on the instance τk(I )
of the MKP-DS problem, we can determine a schedule Tk = (S1k , S2k , . . . , Smk ;
Ak), where Ak = ∪m

i=1Sik and jobs in Sik are all executed on the machine ai under
the constraints that the completion of each machine ai does not exceed the fixed
integer k, such that the value e(Ak) is maximized, equivalently, that e(J\Ak) is
minimized;

3.3 Denote Cmax(Ak, Tk) = k;
Step 4 Find a subset Ak0 ∈ {A0, A1, A2, . . . , AC } and a scheme Tk0 ∈
{T0, T1, T2, . . ., TC }, satisfying the following Cmax(Ak0 , Tk0) + e(J\Ak0) =
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min{Cmax(Ak, Tk) + e(J\Ak) | k = 0, 1, 2, . . . ,C}, and denote h(Ak0) =
Cmax(Ak0 , Tk0) + e(J\Ak0);
Step 5 Output “the subset Ak0 (⊆ J ), the schedule Tk0 for jobs in Ak0 and the value
h(Ak0) = Cmax(Ak0 , Tk0) + e(J\Ak0)”.
End

Using the algorithm ACPS−DTT P , we can determine the following result.

Theorem 1 The algorithm ACPS−DTT P is an exact algorithm to optimally solve the
CPS-DTTP problem, and this algorithm runs in pseudo-polynomial time O((n log n+
nm)C), where n is the number of jobs, m is the number of machines for an instance
I = (M, J ; p, e) of the CPS-DTTP problem, and C is the optimal value for the
instance τ(I ) = (M, J ; p) of the PS-DT problem.

Proof Given an instance I = (M, J ; p, e) of the CPS-DTTP problem, we may sup-
pose that there is an optimal solution for the instance I , i.e., there is an optimal
schedule T ∗ = (S∗

1 , S
∗
2 , . . . , S

∗
m; A∗) for jobs in a subset A∗ (⊆ J ) with the optimal

value h(A∗) = Cmax(A∗, T ∗) + e(J\A∗), where A∗ = ∪m
i=1S

∗
i , Cmax(A∗, T ∗) =

max{∑b j∈S∗
i
p j | i = 1, 2, . . . ,m}, e(J\A∗) = ∑

b j∈J\A∗ e j and the completion
time of jobs in each set S∗

i is not beyond Cmax(A∗, T ∗). And for the same instance I ,
the algorithmACPS−DTT P can produce a schedule Tk0 = (S1k0 , S2k0 , . . . , Smk0

; Ak0)

for jobs in Ak0 with the output value h(Ak0) = Cmax(Ak0 , Tk0) + e(J\Ak0), where
Ak0 = ∪m

i=1Sik0 . We shall prove h(A∗) = h(Ak0) in the sequel, whereC is the optimal
value of the instance τ(I ) = (M, J ; p) for the PS-DT problem and k0 ∈ {0, 1, 2, . . .,
C}.

Since we execute these n independent jobs in J on the m machines, where the pro-
cessing times of these n independent jobs are divisible, using the algorithm APS−DT

(Graham 1969), i.e., the LPT algorithm (seeing Lemma 1), we can obtain the min-
imum makespan for these jobs in J is C , this implies that the makespan of the
jobs in the optimal set A∗ (⊆ J ) is no more than C , in other words, the value
Cmax(A∗, T ∗) ∈ {0, 1, 2, . . . ,C}. For convenience, we denote k∗ = Cmax(A∗, T ∗).
According to Lemma 4, we obtain the fact that the algorithmAMK P−DS (Detti 2009)
at Step 2 can produce a subset Ak∗ ⊆ J , satisfying

(1) the jobs in Ak∗ are all executed on the m machines under the constraints that the
completion time of each machine in M does not exceed the value k∗, and

(2) the summation of profits in the instance ρk∗(I ) = (N ,Y ; s, v; k∗) (i.e., penalties
in the instance I = (M, J ; p, e)) of jobs in Ak∗ is maximized among all subsets
of J under the constraints in (1), i.e., e(Ak∗) = max{e(A) | the jobs in a subset A
(⊆ J ) are all executed on m machines and the makespan of jobs in A is no more
than the value k∗}.
At present, we obtain e(Ak∗) ≥ e(A) for each subset A (⊆ J ), where jobs in A

are executed onm machines such that the completion time of these machines does not
exceed the fixed integer k∗. In particular, we have e(Ak∗) ≥ e(A∗), where we have
A∗ ⊆ J .

Since e(J ) = e(Ak∗) + e(J\Ak∗) = e(A∗) + e(J\A∗), using the result e(Ak∗) ≥
e(A∗), we can have e(J\Ak∗) = e(J ) − e(Ak∗) ≤ e(J ) − e(A∗) = e(J\A∗). Then,
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we can obtain the following

h(Ak0) = Cmax(Ak0 , Tk0) + e(J\Ak0)

= min {Cmax(Ak, Tk) + e(J\Ak) | k = 0, 1, 2, . . . ,C}
≤ k∗ + e(J\Ak∗)

≤ k∗ + e(J\A∗)
= Cmax(A

∗, T ∗) + e(J\A∗)
= h(A∗)

where the second equality comes from Step 4 of the algorithm ACPS−DTT P , the
third inequality comes from the fact 0 ≤ k∗ ≤ C , the fourth inequality comes from
the fact e(J\Ak∗) ≤ e(J\A∗) and the fifth equality comes from the definition k∗ =
Cmax(A∗, T ∗).

By the minimality of the optimal solution A∗ ⊆ J for an instance I of the CPS-
DTTPproblem,we have thatCmax(Ak0 , Tk0)+e(J\Ak0)= Cmax(A∗, T ∗)+ e(J\A∗),
i.e., h(A∗) = h(Ak0), this implies that the schedule Tk0 for jobs in Ak0 (⊆ J ) produced
by the algorithmACPS−DTT P is also an optimal solution for an instance I of the CPS-
DTTP problem. This shows that the algorithm ACPS−DTT P indeed correctly solves
the CPS-DTTP problem.

The complexity of the algorithmACPS−DTT P can be determined as follows. (1) By
using the algorithm APS−DT (Graham 1969), Step 1 needs at most time O(n log n)

to compute the optimal value C of the instance τ(I ) = (M, J ; p) for the PS-DT
problem; (2) Step 2 needs atmost timeO(n) to compute e(J ); (3) For eachfixed integer
k ∈ {1, 2, . . . ,C}, the algorithmAMK P−DS (Detti 2009) needs time O(n log n+nm)

to find a subset Ak ⊆ J such that all jobs in Ak can be executed on m machines
under the aforementioned constraints and that e(Ak) is maximized, implying that Step
3 needs at most time O((n log n + nm)C) to execute C iterations; (4) Step 4 needs
time O(C) to find a subset Ak0 ∈ {A0, A1, A2, . . . , AC } and a scheme Tk0 ∈ {T0, T1,
T2, . . ., TC }, having minimum value h(Ak0) = Cmax(Ak0 , Tk0) + e(J\Ak0). Thus, the
running time of the algorithm ACPS−DTT P is in total O((n log n + nm)C), where C
is the optimal value for the instance τ(I ) = (M, J ; p) of the PS-DT problem.

This completes the proof of the theorem. ��

4 An exact algorithm to solve the CPS-DTMP problem

In this section, we consider the constrained parallel-machine scheduling problemwith
divisible processing times and maximum penalty (the CPS-DTMP problem ). Specifi-
cally, given an instance I = (M, J ; p, e) of the CPS-DTMP problem, we are asked to
determine a subset A (⊆ J ) and a scheme T for jobs in A to satisfy the requirements
in two parts, i.e., (1) each job in A is continuously executed on one machine with its
processing time, and (2) each job not in A is rejected with its penalty that we must pay
for, the objective is to minimize the value f (A) = Cmax(A, T ) + emax(J\A), where
emax(J\A) = max{e j | b j ∈ J\A}.
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We observe the following facts. In general, given an instance I = (M, J ; p, e) of
the CPS-DTMP problem, if A∗ (⊆ J ) is an optimal solution to this instance I , then
we can obtain the optimal value f (A∗) = Cmax(A∗, T ∗)+emax(J\A∗). According to
the definition of emax(J\A∗), this value emax(J\A∗) is exactly one of these n values
e j , where j = 1, 2, . . . , n. For convenience, we may denote this value emax(J\A∗) as
e∗, where e∗ ∈ {e1, e2, . . . , en}, such that Cmax(A∗, T ∗) + e∗ is minimized among all
feasible solutions to the instance I . In order to determine an optimal solution A∗ (⊆ J )
to the instance I with the minimum value Cmax(A∗, T ∗) + e∗, we may enumerate all
possibilities to find such a value e∗ from the set {e1, e2, . . . , en}, where the value
Cmax(A∗, T ∗) is obtained by solving some related instance τ(I ), constructed from the
instance I , of the PS-DT problem.

Motivated by the aforementioned facts, and executing the algorithmAPS−DT (Gra-
ham 1969) on an instance τ(I ) of the PS-DP problem, we use the following strategy
to design our algorithm for solving the CPS-DTMP problem.

(1) For convenience, construct a new ‘dummy’ job b0 with its processing time p0 = 0
and penalty e0 = 0;

(2) For each j = 0, 1, 2, . . . , n, choose this job b j and firmly reject it, and construct a
set A j = {bt ∈ J | et > e j }. In addition, using the set A j , construct a new instance
of the CPS-DTMP problem and an instance of the PS-DT problem, respectively,
then implement suitable algorithms to produce an optimal schedule and the value
of makespan on these instances;

(3) Choose the best one among these n + 1 feasible schedules, having the minimum
value of makespan for all accepted jobs plus maximum penalty of all rejected jobs.

We design a following algorithm, denoted by the algorithmACPS−DTMP , to solve
the CPS-DTMP problem is described in the following ways.

Algorithm: ACPS−DTMP

Input: An instance I = (M, J ; p, e) of the CPS-DTMP problem;
Output: A subset A j0 ⊆ J , a schedule Tj0 for jobs in A j0 and the value f (A j0) =
Cmax(A j0 , Tj0) + e j0 .
Begin
Step 1 Construct a new ‘dummy’ job b0 with its processing time p0 = 0 and
penalty e0 = 0;
Step 2 For j = 0 to n do:

2.1 Firmly reject the job b j , and construct a set A j = {bt ∈ J | et > e j };
2.2 Using an instance I , construct another instance I j = (M, A j ; p, e) of

the CPS-DTMP problem;
2.3 Using this instance I j of the CPS-DTMP problem, construct an instance

τ(I j ) = (M, A j ; p) of the PS-DT problem mentioned in Section 2;
2.4 Implementing the algorithm APS−DT (Graham 1969) on this instance

τ(I j ) = (M, A j ; p) of the PS-DT problem, find a schedule Tj for the subset A j

such that the makespan Cmax(A j , Tj ) for all jobs in A j is minimized;
2.5 Denote f (A j ) = Cmax(A j , Tj ) + e j ;

Step 3 Find a subset A j0 ∈ {A0, A1, A2, . . . , An} and a scheme Tj0 ∈ {T0, T1, T2,
. . ., Tn}, satisfying the following

f (A j0) = min{ f (A j ) | j = 0, 1, 2, . . . , n};
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Step 4 Output “the subset A j0 , the schedule Tj0 for jobs in A j0 and the value
f (A j0)”.
End

Using the algorithm ACPS−DTMP , we can determine the following result.

Theorem 2 The algorithm ACPS−DTMP is an exact algorithm for optimally solving
the CPS-DTMP problem, and this algorithm runs in time O(n2 log n), where n is the
number of jobs.

Proof Given an instance I = (M, J ; p, e) of the CPS-DTMP problem, we may
assume that there is an optimal solution for the instance I of the CPS-DTMP prob-
lem, i.e., there is a subset A∗ (⊆ J ) and a schedule T ∗ for jobs in A∗ with a value
f (A∗) = Cmax(A∗, T ∗) + emax(J\A∗) such that f (A∗) is minimized among all val-
ues in {Cmax(A, T ) + emax(J\A) | A ⊆ J and T is a feasible schedule for jobs in A},
where the jobs in each subset A of J can be scheduled on thesem machines, implying
that f (A∗) = Cmax(A∗, T ∗) + emax(J\A∗) = min{Cmax(A, T ) + emax(J\A) | A
is a subset (of J ) and T is a feasible schedule for jobs in A}. For convenience, if
A∗ = J , we denote e j∗ = emax(J\A∗), where b j∗ ∈ J\A∗ and et ≤ e j∗ for each job
bt ∈ J\A∗. And we remind to denote emax(φ) = 0.

For the same instance I , by using the algorithm APS−DT (Graham 1969) (seeing
Step 2 of the algorithm ACPS−DTMP ), the algorithm ACPS−DTMP produces a sub-
set A j0 (⊆ J ) and the output value f (A j0) such that f (A j0) = Cmax(A j0 , Tj0) +
emax(J\A j0) = min{Cmax(A j , Tj ) + emax(J\A j ) | j = 0, 1, 2, . . . , n}, where the
jobs in A j (⊆ J ) are all executed on m machines such that Cmax(A j , Tj ) is mini-
mized among all schedules for jobs in A j (for each j = 0, 1, 2, . . . , n). In particular,
we assume a ‘dummy’ job b0 whose rejection cost is less than the penalty of jobs in
J , i.e., e0 < e j for each job b j in J , we obtain the fact A0 = {bt ∈ J | et > e0} = J
when j = 0, i.e., no jobs in J is rejected in this case, and the jobs in the subset A0
(= J ) are all executed on m machines in this case. We shall prove f (A∗) = f (A j0)

in the sequel.
Without loss of generality, wemay assume that b j∗ is the jobwith the largest penalty

in the subset J\A∗, satisfying A j∗ = {bt | et > e j∗} = A∗. Using the algorithm
APS−DT (Graham 1969) on the set A j∗ , using Lemma 1, we can schedule each job
b j ∈ A j∗ on onemachine inM such that themakespan for all jobs in A j∗ isminimized,
i.e., Cmax(A j∗ , Tj∗) = min{Cmax(A j∗ , T ) | T is a feasible schedule for jobs in A j∗}.
This shows that Cmax(A j∗ , Tj∗) ≤ Cmax(A∗, T ∗) whenever T ∗ is a feasible schedule
for jobs in A j∗ .

Now, we obtain the following

f (A j0) = Cmax(A j0 , Tj0) + emax(J\A j0)

= min
{
Cmax(A j , Tj ) + emax(J\A j ) | j = 0, 1, 2, . . . , n

}
≤ Cmax(A j∗ , Tj∗) + emax(J\A∗)
≤ Cmax(A

∗, T ∗) + emax(J\A∗)
= f (A∗)
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where the third equality comes from the facts 0 ≤ j∗ ≤ n, and the fourth inequality
comes from the fact Cmax(A j∗ , Tj∗) ≤ Cmax(A∗, T ∗).

Thus, by the minimality of the optimal solution for an instance I of the CPS-DTMP
problem, we haveCmax(A j0 , Tj0) + emax(J\A j0) =Cmax(A∗, T ∗) + emax(J\A∗), i.e.
f (A j0) = f (A∗), implying that the subset A j0 with the value f (A j0)=Cmax(A j0 , Tj0)

+ emax(J\A j0) produced by the algorithmACPS−DT MP is also an optimal solution for
an instance I of the CPS-DTMP problem. This shows that the algorithmACPS−DTMP

indeed works correctly to solve the CPS-DTMP problem.
The complexity of the algorithm ACPS−DTMP can be determined as follows. (1)

Step 1 needs at most time O(n) to be executed; (2) For each j ∈ {0, 1, 2, . . . , n}, the
algorithmAPS−DT (Graham 1969) needs time O(n log n) to schedule all jobs in each
subset A j on these m machines such that Cmax(A j , Tj ) is minimized, implying that
Step 2 needs at most time O(n2 log n) to execute n + 1 iterations; (3) Step 3 needs
at most time O(n) to find a subset A j0 ∈ {A0, A1, A2, . . . , An} and a scheme Tj0
∈ {T0, T1, T2, . . ., Tn}, having minimum value f (A j0). Thus, the running time of the
algorithm ACPS−DTMP is in total O(n2 log n).

This completes the proof of the theorem. ��

5 An exact algorithm to solve the CPS-DTBP problem

In this section, we consider the constrained parallel-machine scheduling problemwith
divisible processing times and bounded penalty (the CPS-DTBP problem). Specifi-
cally, given an instance I = (M, J ; p, e; B), we hope to determine a subset A (⊆ J )
and a scheme T for jobs in A to satisfy the constraint that the summation of penalties
paid for the jobs not in A is no more than a bound B, i.e.,

∑
b j∈J\A e j ≤ B, the

objective is to minimize the makespan Cmax(A, T ).
We plan to combine the binary algorithm (Schrijver 2003) and other suitable algo-

rithms (Graham 1969; Detti (2009) to solve the CPS-DTBP problem in the following
ways. Given an instance I = (M, J ; p, e; B) of the CPS-DTBP problem and a fixed
number k, we construct an instance τ(I ) of the PS-DT problem and an instance ρk(I )
of the MKP-DS problem, and executing the algorithm APS−DT (Graham 1969) on
this instance τ(I ) of the PS-DT problem and then the algorithm AMK P−DS (Detti
2009) on that instance ρk(I ) of the MKP-DS problem, where the execution of the
second algorithm may be executed many times respect to the fixed constant k, we can
optimally solve the CPS-DTBP problem. The strategy of our algorithm is presented
in the following ways.

(1) If the summation e(J ) of penalties paid for jobs in J is not greater than B, then
jobs are all rejected, i.e., no job in J is executed on each of machines, and stop;

(2) If the summation e(J ) of penalties paid for jobs in J is greater than B, executing the
algorithm APS−DT (Graham 1969) on this instance τ(I ) of the PS-DT problem,
we find an optimal makespan C for jobs in J , implying that the optimal value for
the instance I = (M, J ; p, e; B) of the CPS-DTBP problem is between 1 and C .
Since we may assume that, according to the requirements of computer science for
input data, the twoweight functions p(·) and e(·) are positive integer functions, we
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intend to use the binary algorithm to find this optimal value. In details, given each
possible number k (we may guess an optimal makespan), where k = 1, 2, . . . ,C ,
we use the binary search algorithm in (Schrijver 2003) to find a subset Ak , where
the jobs in Ak can be executed on m machines to satisfy the completion time for
jobs not in Ak less or equal to k, such that e(Ak) is maximized, equivalently, that
e(J\Ak) is minimized;

(3) Choose the best one among all feasible schedules, having the minimum of
makespans to satisfy the constraint that the summation of penalties paid for jobs
not in Ak is less or equal to B.

We design a following algorithm, denoted by the algorithmACPS−DT BP , to solve
the CPS-DTBP problem is described in the following ways.

Algorithm: ACPS−DT BP

Input: An instance I = (M, J ; p, e; B) of the CPS-DTBP problem;
Output: A subset Ak0 ⊆ J , a schedule Tk0 for jobs in Ak0 and the value k0.
Begin
Step 1 Given an instance I = (M, J ; p, e; B) of the CPS-DTBP problem, we
construct an instance τ(I ) = (M, J ; p) of the PS-DT problem mentioned in
Section 2, and then executing the algorithm APS−DT (Graham 1969) on this
instance τ(I ), we find an optimal solution and its optimal value C for the instance
τ(I ) = (M, J ; p);
Step 2 If (e(J ) ≤ B) then

Output“the subset A0 = φ, and the makespan k0 = 0”, and STOP;
Else

Denote BL = 0 and BU = C ;
Step 3 Denote k0 = �(BL + BU )/2�;
Step 4 We execute the following two steps

4.1Given an instance I of theCPS-DTBPproblemand the number k0,we con-
struct an instance ρk0(I ) = (N ,Y ; s, v; k0) of theMKP-DS problem asmentioned
above;

4.2 Executing the algorithm AMK P−DS (Detti 2009) on this instance ρk0(I )
of the MKP-DS problem, we find a subset Ak0 (⊆ A) and then schedule all jobs
in Ak0 on these m machines, satisfying that the completion time (as the numerical
values of sizes of jobs) for jobs not in Ak0 is less or equal to k0, such that the value
e(Ak0) is maximized, equivalently that e(J\Ak0) is minimized;
Step 5 If (e(J\Ak0) ≤ B) then

Denote BU = k0;
Else

Denote BL = k0;
Step 6 If (BU − BL > 1) then

Go to Step 3;
Step 7 Output “the subset Ak0 , the schedule Tk0 for jobs in Ak0 and the value
k0 = BU ”.
End

Using the algorithm ACPS−DT BP , we can determine the following result.
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Theorem 3 The algorithm ACPS−DT BP is an exact algorithm for optimally solving
the CPS-DTBP problem, and this algorithm runs in polynomial time O((n log n +
nm) logC), where n is the number of jobs, m is the number of machines and C is the
optimal value for the same instance of the PS-DT problem.

Proof Given an instance I = (M, J ; p, e; B) of the CPS-DTBP problem, we may
assume that there is an optimal solution, i.e., a subset A∗ (⊆ J ) with value k∗ =
Cmax(A∗, T ∗) and a scheduleT ∗ for jobs in A∗, satisfying the constraint e(J\A∗) ≤ B,
such that the value k∗ is minimized among all values in {Cmax(A, T ) | A ⊆ J and
T is a feasible schedule for jobs in A}, where each of jobs in the subset A of J
can be scheduled only on one of m machines, implying that k∗ = Cmax(A∗, T ∗) =
min{Cmax(A, T ) | A is a subset (of J ), and T is a feasible schedule for jobs in A}.
We obtain k∗ ≥ 1 in this case. For the same instance I , the algorithm ACPS−DT BP

produces a subset Ak0 with a value k0 = Cmax(Ak0 , Tk0) to satisfy the constraint
e(J\Ak0) ≤ B. We shall prove k∗ = k0 in the sequel.

If the algorithm ACPS−DT BP produces the output solution A0 = φ with the value
k0 = 0 at Step 1, we have the fact e(J ) ≤ B, implying that these n jobs in J are all
rejected. In this case, it is easy for us to obtain k∗ = k0 (= 0) such that this solution
A0 = φ with the value k0 = 0 is an optimal solution. In the following arguments,
we may consider the case e(J ) > B, equivalently, there is at least one job that is
scheduled on one machine, implying that A∗ = φ and k∗ = 0.

For each k = 1, 2, . . . ,C , using the algorithm AMK P−DS (Detti 2009) at Step 4,
we can determine a subset Ak and a schedule to process all jobs in Ak on m machines
to satisfy the aforementioned constraint such that e(Ak) is maximized, equivalently,
e(J\Ak) is minimized. At Step 5, we determine whether e(J\Ak) ≤ B or not, in
details, we may assign the value k to be an upper bound BU if e(J\Ak) ≤ B and the
value k to be a lower bound BL otherwise. In otherwords, when k is an upper bound,we
obtain e(J\Ak) ≤ B, andwhen k is a lower bound,weobtain e(J\Ak) > B, i.e.,when
each feasible solution satisfies the aforementioned constraint, the value of this feasible
solution is between this lower bound BL and that upper bound BU . By the assumption
that penalties of job are all positive integers, we can obtain integer lower bound and
integer upper bound at each recursion of Step 6. At this time, when the difference
between an upper bound and a lower bound is exactly equal to 1 and k0 is exactly that
upper bound at present, we obtain the fact that this subset Ak0 satisfies the constraint
e(J\Ak0) ≤ B, and however, when an upper bound is k0−1, we obtain this subset Ak0
to satisfy e(J\Ak0−1) > B,which show that this subset Ak0 is not a feasible solution for
the CPS-DTBP problem. This shows that k0 is the smallest positive integer satisfying
the constraint e(J\Ak) ≤ B, indeed, k0 = min{k ∈ {1, 2, . . . ,C} | e(J\Ak) ≤ B}.

When we use the algorithm APS−DT (Graham 1969) to execute the jobs in J on
m machines at Step 1, we can obtain the optimal makespan C for the same instance
of the PS-DT problem mentioned in Sect. 2, and it is easy for us to know the fact
that the minimum makespan of jobs in the subset A∗ ⊆ J is no more than the value
C , this shows that Cmax(A∗, T ∗) ∈ {1, 2, . . . ,C}. Remind our assumption k∗ =
Cmax(A∗, T ∗). By using Lemma 4, the algorithm AMK P−DS (Detti 2009) at Step 4
produces a subset Ak∗ ⊆ J such that the jobs in Ak∗ are all processed on m machines
for a schedule and that the summation of penalties (these numerical values are treated
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as profits for the knapsack problem) is the largest one among all subsets of J to
satisfy the aforementioned constraint, implying that e(Ak∗) ≥ e(A∗), because A∗ in
an optimal solution is also a subset of J .

Now, we obtain the following

e(J\Ak∗) = e(J ) − e(Ak∗)

≤ e(J ) − e(A∗)
= e(J\A∗)
≤ B

where the second inequality comes from the facts e(Ak∗) ≥ e(A∗), the fourth inequal-
ity comes from the fact that the optimal solution is also a feasible solution, implying
that e(J\Ak∗) ≤ B.

Due to the minimality of k0 in the algorithm ACPS−DT BP , i.e., k0 = min{k ∈
{1, 2, . . . ,C} | e(J\Ak) ≤ B}, we obtain k0 = Cmax(Ak0 , Tk0) ≤ k∗ =
Cmax(A∗, T ∗). And by the minimality of the optimal solution k∗ for an instance I
of the CPS-DTBP problem, we have k0 = k∗, implying that this subset Ak0 with the
value k0 produced by the algorithm ACPS−DT BP is also an optimal solution for an
instance I of the CPS-DTBP problem. This shows that the algorithm ACPS−DT BP

indeed works correctly to solve the CPS-DTBP problem.
The complexity of the algorithm ACPS−DT BP can be determined as follows. (1)

Step 1 needs at most time O(n log n) to compute C ; (2) Step 2 needs at most time
O(n) to compute e(J ); (3) Step 3 needs at most time O(1) to compute k0; (4) Step 4
needs at most time O(n log n+nm) to find a subset Ak for some integer k by using the
algorithm AMK P−DS (Detti 2009); (5) Step 5 needs at most time O(1) to determine
the size relationship between e(J\Ak) and B, and assign k to BU or BL ; (6) Step 6
determine the difference between BU and BL , and if the difference between BU and
BL is exactly equal to 1, we determine the value k0, and if this difference is greater
than to 1, it returns to Step 3 and continues to use the binary search algorithm in
(Schrijver 2003) to iterate, implying that Steps 3–6 have to be executed for at most
logC iterations until the difference between BU and BL is exactly equal to 1. Thus, the
running time of the algorithm ACPS−DT BP is in total time O((n log n + nm) logC).

This completes the proof of the theorem. ��

6 Conclusion and further research

In this paper, we consider the three versions of the constrained parallel-machine
scheduling problem with divisible job sizes and penalties (the CPS-DTP problem),
i.e., the CPS-DTTP problem, the CPS-DTMP problem and the CPS-DTBP problem,
respectively. We obtain the following three main results.

(1) We design an exact algorithm to optimally solve the CPS-DTTP problem, and this
algorithm runs in time O((n log n + nm)C), where n is the number of jobs with
divisible sizes,m is the number ofmachines for an instance I = (M, J ; p, e) of the
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CPS-DTTP problem, andC is the optimal value for the instance τ(I ) = (M, J ; p)
of the PS-DT problem;

(2) We provide an exact algorithm to optimally solve the CPS-DTMP problem, and
this algorithm runs in time O(n2 log n);

(3) We present an exact algorithm to optimally solve the CPS-DTBP problem, and
that algorithm runs in time O((n log n + nm) logC), where C is defined in (1).

In further research, we may consider other versions of the CPS-DTP problem.
On the other hand, a challenging task is to design some exact algorithms in lower
running times to optimally solve CPS-DTTP problem and/or other the constrained
parallel-machine scheduling problems mentioned above.
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