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Abstract
Submodular function has the property of diminishing marginal gain, and thus it has a
wide range of applications in combinatorial optimization and in emerging disciplines
such as machine learning and artificial intelligence. For any set S, most of previous
works usually do not consider how to compute f (S), but assume that there exists an
oracle that will output f (S) directly. In reality, however, the process of computing the
exact f is often inevitably inaccurate or costly. At this point, we adopt the easily avail-
able noise version F of f . In this paper, we investigate the problems of maximizing a
non-negative monotone normalized submodular function minus a non-negative mod-
ular function under the ε-multiplicative noise in three situations, i.e., the cardinality
constraint, the matroid constraint and the online unconstraint. For the above problems,
we design three deterministic bicriteria approximation algorithms using greedy and
threshold ideas and furthermore obtain good approximation guarantees.

Keywords Submodular minus modular · Multiplicative noise · Bicriteria algorithm ·
Cardinality constraint · Matroid constraint

1 Introduction

The submodular function has the property of diminishing marginal gain, that is, the
marginal gain of any element added to a given set cannot exceed that of its subset.
The position of submodular optimization in combinatorial optimization corresponds
to that of convex optimization in continuous optimization. A set function f : 2G → R

is submodular iff f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for any subsets A, B ⊆ G.
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Another equivalent definition is that for any subsets S ⊆ T ⊆ G and any element
e ∈ G \ T , f (S ∪ {e}) − f (S) ≥ f (T ∪ {e}) − f (T ). A set function f is monotone
if for any S ⊆ T , it holds f (S) ≤ f (T ); and f is normalized if f (∅) = 0. For
convenience, f A(B) � f (A∪ B)− f (A) and FA(B) � F(A∪ B)− F(A). Similarly,
f A( j) � f (A ∪ { j}) − f (A) and FA( j) � F(A ∪ { j}) − F(A).The goal of the
submodular optimization problem is to find a feasible solution among a finite number
of solutions to achieve the optimum or near-optimum.

Submodular minimization with unconstraint can be solved in polynomial time
(Grötschel et al. 2012; Iwata et al. 2001). Submodular minimization with constraints
is very difficult, even under very simple constraints (Iwata and Nagano 2009; Koufo-
giannakis and Young 2013; Svitkina and Fleischer 2011). In this paper, we focus on
submodular maximization problems. Submodular maximization problems are usually
NP-hard, so many works have studied approximation algorithms for the correspond-
ing problems. In addition, submodular maximization has a wide range of application
scenarios, such as sensor placement (Krause et al. 2006), clustering (Liu et al. 2013),
profit maximization with multiple adoptions (Zhang et al. 2016), subset selection (Das
and Kempe 2018), secretary problems (Bateni et al. 2013), and so on.

Inmany practical problems, it is desirable to seek a feasible solution that can balance
benefits and costs, such as team formation problem, influence maximization problem
and recommender systems problemetc. To be specific, take the influencemaximization
problem as an example. A company wants to select a set of representatives from the
community to promote its products and to sell as many products as possible while
employing as little cost as possible. In other words, find a subset to maximize the
company’s net profit. These problems can be modeled as maxS∈I f (S)− c(S) where
I is some constraint. Under the noise-free environment, there has been a great deal of
work (Harshaw et al. 2019; Nikolakaki et al. 2021; Qian 2021; Sviridenko et al. 2017;
Wang et al. 2021). Although f and c are both non-negative, f − c can be potentially
negative. In Feige (1998) and Papadimitriou and Yannakakis (1991) it is shown that
there is nomultiplicative approximation guarantee in polynomial time for the problems
of possibly negative submodular maximization with or without constraints. Similar to
previous works (Du et al. 2014; Wang et al. 2021), we use a weaker approximation: S
is (α, β)-bicriteria approximate if

f (S) − c(S) ≥ α · f (S∗) − β · c(S∗),

where α ∈ [0, 1], β ≥ 0 and S∗ is an optimal solution.
In some real-world problems, it is costly to compute the exact value of the sub-

modular function or a slight error inevitably arises in the process, such as revealed
preference theory (Chambers and Echenique 2016), crowdsourced image collection
summarization (Singla et al. 2016), active learning (Feldman 2009), information max-
imization (Chen et al. 2015), etc. Thus we take the noise version F to approximately
replace f for calculation, where F is easy to calculate. This paper focuses on the
ε-multiplicative noise version F of f , i.e., for any set S, it holds

(1 − ε) f (S) ≤ F(S) ≤ (1 + ε) f (S).
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Although f is monotone submodular, F is not necessarily monotone or submodular.
But we assume that F is normalized in this paper. Therefore, some methods used to
solve the submodular maximization problem in the noise-free environment cannot be
directly applied to the noisy version, which brings challenges to our work. Fortunately,
we can use the ease of computation of F to design algorithms and the approximately
submodularity of F to analyze the quality of f (S).
Our contribution For the problem ofmaximizing a non-negativemonotone normalized
submodular function minus a non-negative modular function with noise in three situa-
tions: the cardinality constraint, the matroid constraint and the online unconstraint, we
devise three concise deterministic algorithms and obtain good approximation guaran-
tees.

2 Related work

First, we list the relevant theoretical results that the objective function is a submodular
function f minus a modular function c. Note that f − c is still submodular.
The cardinality constraint For maximizing a non-negative monotone γ -weakly sub-
modular function minus a non-negative modular function, Harshaw et al. (2019)
proposed a deterministic algorithm with approximation ratio (1 − e−γ , 1) and a
stochastic algorithm with approximation ratio (1− e−γ −O(ε), 1) using greedy idea.
For the same problem, Qian (2021) designed a stochastic algorithm with approxima-
tion ratio (1−e−γ , 1)using themulti-objective evolutionarymethod. Formaximizing a
non-negative monotone submodular function minus a non-negative modular function,
Nikolakaki et al. (2021) devised a more concise deterministic algorithm with approx-
imation ratio ( 12 , 1) and used the lazy evaluations technique to further accelerate its
algorithm.
Thematroid constraintFormaximizing a non-negativemonotone submodular function
minus a non-negative modular function, Sviridenko et al. (2017) designed a stochastic
algorithm with approximation ratio (1 − e−γ , 1). Due to the high computational cost
of Sviridenko et al. (2017) and Nikolakaki et al. (2021) proposed a deterministic
algorithm with approximation ratio ( 12 , 1) and better query complexity.
No constraints For maximizing a non-negative monotone submodular function minus
a non-negative modular function, Sviridenko et al. (2017) designed a stochastic algo-
rithm with approximation ratio (1− e−γ , 1). Later, Nikolakaki et al. (2021) proposed
a deterministic algorithm with approximation ratio ( 12 , 1).

Next, we describe some related works under noisy models. Submodular maxi-
mization with noise is closely related to approximately submodular maximization.
F is called ε-approximately submodular if there is a submodular function f such
that (1 − ε) f (S) ≤ F(S) ≤ f (S) for any S ⊆ G. The difference is that the objec-
tive of the submodular maximization problem with noise is f while the objective of
the approximately submodular maximization problem is F . Horel and Singer (2016)
first introduced the ε-approximately submodular maximization. For maximizing a
monotone submodular function, Horel and Singer (2016) designed an algorithm to
achieve the 1 − e−1 − O(δ) approximation ratio using greedy ideas, where ε ≤ 1

k ,
δ = εk. Later, Gölz and Procaccia (2019) considered the problem of submodular max-
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imization with ε-multiplicative noise under the P-matroids constraint and devised a
(P + 1 + 4kε

1−ε
)−1-approximation algorithm where k is the size of maximum feasible

set of the P-matroids. Yang et al. (2019) studied the problem of submodular maxi-
mization under the streaming model with two types of noise: multiplicative noise and
additive noise. When noise tends to 0, the approximation ratio both can reach 2

k where
k is the cardinality. For the same problem, Xiao et al. (2021) considered it with the
differential privacy noise and got an approximation ratio close to 1

(2+(1+ 1
k )2)(1+ 1

k )
.

3 The bicriteria algorithmwith the cardinality constraint under noise

In this section, we consider the first problem

max
S⊆G

f (S) − c(S)

s.t. |S| ≤ k

where f is a non-negative monotone normalized submodular and c is a non-negative
modular function. In Algorithm 1, we use the distorted objective function about the
noise function F . For convenience, we define �i (S) = (1 − 1

k )
k−i F(S) − xc(S)

for any subset S ⊆ G and any iteration i = 1, 2, . . . , k. We define �i (S, e) =
max{0, (1 − 1

k )
k−i FS(e) − xc(e)} for any subset S ⊆ G, any element e ∈ G and

any iteration i = 1, 2, . . . , k. At each iteration, Algorithm 1 selects an element ei
with the maximum marginal gain of the distorted objective function, and then this
algorithm only accepts ei if it has positive marginal gain. Algorithm 1 terminates after
k iterations. Denote the set after i iterations as Si and the output set Sk satisfies |Sk | ≤ k
according to the iteration rules.

Algorithm 1 The distorted bicriteria algorithm for f − c under noise with the cardi-
nality constraint
Input: Ground set G, noisy function F , non-negative modular function c, cardinality constraint k ∈ N+,

noise parameter ε and x = 1 + ε + 2εk
Output: Set Sk
1: Initially set S0 := ∅
2: for i = 1, 2, · · · , k do
3: ei = argmaxe∈G\Si−1 {(1 − 1

k )k−i FSi−1 (e) − xc(e)}
4: if (1 − 1

k )k−i FSi−1 (e) − xc(e) > 0 then
5: Si := Si−1 ∪ {ei }
6: else
7: Si := Si−1
8: end if
9: end for
10: return Si

In this section, we can analyze the approximation ratio of the above algorithm
by the following two lemmas. Lemmas 1 and 2 together indicate that the marginal
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gain of distorted objective at each iteration has a lower bound to ensure the desired
approximate ratio.

Lemma 1 In each iteration of Algorithm 1, we have

�i (Si ) − �i−1(Si−1) = �i (Si−1, ei ) + 1

k
(1 − 1

k
)k−i F(Si−1).

Proof Based on the definition of the function �, we have

�i (Si ) − �i−1(Si−1)

=(1 − 1

k
)k−i F(Si ) − xc(Si ) − (1 − 1

k
)k−(i−1)F(Si−1) + xc(Si−1)

=(1 − 1

k
)k−i F(Si ) − (1 − 1

k
)(1 − 1

k
)k−i F(Si−1) − xc(Si ) + xc(Si−1)

=(1 − 1

k
)k−i (F(Si ) − F(Si−1)

) + 1

k
(1 − 1

k
)k−i F(Si−1) − x

(
c(Si ) − c(Si−1)

)
.

The following discussion is divided into two situations. Firstly, if the elements ei is
added to the set Si−1 in the i th iteration, then we have

�i (Si−1, ei ) = (1 − 1

k
)k−i FSi−1(ei ) − xc(ei ) > 0.

And F(Si )−F(Si−1) = F(Si−1∪ei )−F(Si−1) = FSi−1(ei ), c(Si )−c(Si−1) = c(ei ).
Therefore, we can get

�i (Si ) − �i−1(Si−1) = (1 − 1

k
)k−i FSi−1(ei ) − xc(ei ) + 1

k
(1 − 1

k
)k−i F(Si−1)

= �i (Si−1, ei ) + 1

k
(1 − 1

k
)k−i F(Si−1).

Secondly, if the elements ei is not added to the set Si−1, then �i (Si−1, ei ) = 0 ≥
(1 − 1

k )
k−i FSi−1(ei ) − xc(ei ) and Si = Si−1. Obviously, F(Si ) − F(Si−1) = 0,

c(Si ) − c(Si−1) = 0. Then we obtain

�i (Si ) − �i−1(Si−1) = 0 + 1

k
(1 − 1

k
)k−i F(Si−1)

= �i (Si−1, ei ) + 1

k
(1 − 1

k
)k−i F(Si−1).

In summary, at each iteration, it holds that

�i (Si ) − �i−1(Si−1) = �i (Si−1, ei ) + 1

k
(1 − 1

k
)k−i F(Si−1).

��
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Next, we discuss the lower bound of the function �i (Si−1, ei ) through Lemma 2.

Lemma 2 Sk is the output solution of Algorithm 1, we have

�i (Si−1, ei )≥ (1−ε)

k
(1−1

k
)k−i [ f (S∗)− f (Si−1)]−2ε(1−1

k
)k−i f (Sk)− x

k
c(S∗).

Proof Denote by S∗ an optimal solution of the first problem. By the definition of �,

k · �i (Si−1, ei ) = k · max{0, (1 − 1

k
)k−i FSi−1(ei ) − xc(ei )}

= k · max{0, max
e∈G\Si−1

[(1 − 1

k
)k−i FSi−1(e) − xc(e)]}

= k · max{0,max
e∈G [(1 − 1

k
)k−i FSi−1(e) − xc(e)]}

= k · max
e∈G {0, (1 − 1

k
)k−i FSi−1(e) − xc(e)}

≥ |S∗| · max
e∈G {0, (1 − 1

k
)k−i FSi−1(e) − xc(e)}

≥ |S∗| · max
e∈S∗{0, (1 − 1

k
)k−i FSi−1(e) − xc(e)}

≥
∑

e∈S∗
[(1 − 1

k
)k−i FSi−1(e) − xc(e)]

= (1 − 1

k
)k−i

∑

e∈S∗
[F(Si−1 ∪ {e}) − F(Si−1)] − xc(S∗)

≥(1−1

k
)k−i

∑

e∈S∗
[(1−ε) f (Si−1 ∪ {e})−(1+ε) f (Si−1)]−xc(S∗)

= (1 − ε)(1 − 1

k
)k−i

∑

e∈S∗
[ f (Si−1 ∪ {e}) − f (Si−1)]

− 2ε(1 − 1

k
)k−i

∑

e∈S∗
f (Si−1) − xc(S∗).

(1)

By the submodularity and monotonicity of f , we have

∑

e∈S∗
[ f (Si−1 ∪ {e}) − f (Si−1)] ≥ f (Si−1 ∪ S∗) − f (Si−1) ≥ f (S∗) − f (Si−1).

Clearly, Si−1 ⊆ Sk and by the monotonicity of f , we have f (Si−1) ≤ f (Sk). There-
fore, inequality (1) becomes

k · �i (Si−1, ei ) ≥ (1 − ε)(1 − 1

k
)k−i [ f (S∗) − f (Si−1)]

− 2εk(1 − 1

k
)k−i f (Sk) − xc(S∗).
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Both sides of the above inequality are divided by k at the same time,then

�i (Si−1, ei ) ≥ (1 − ε)

k
(1 − 1

k
)k−i [ f (S∗) − f (Si−1)]

− 2ε(1 − 1

k
)k−i f (Sk) − x

k
c(S∗).

Thus, we complete the proof. ��

Combined with Lemmas 1 and 2, we can get the Theorem 1 as follows.

Theorem 1 When x = 1 + ε + 2εk, Algorithm 1 returns the set Sk such that

f (Sk) − c(Sk) ≥ 1 − ε

1 + ε + 2εk
(1 − e−1) f (S∗) − c(S∗).

If the parameter ε → 0, the approximate ratio is (1 − e−1, 1).

Proof On the one hand,by Lemmas 1 and 2, we have

�i (Si ) − �i−1(Si−1)

≥1 − ε

k
(1 − 1

k
)k−i [ f (S∗) − f (Si−1)] − 2ε(1 − 1

k
)k−i f (Sk)

− x

k
c(S∗) + 1

k
(1 − 1

k
)k−i F(Si−1)

≥1 − ε

k
(1 − 1

k
)k−i f (S∗) − 1 − ε

k
(1 − 1

k
)k−i f (Si−1) − 2ε(1 − 1

k
)k−i f (Sk)

− x

k
c(S∗) + 1 − ε

k
(1 − 1

k
)k−i f (Si−1)

=1 − ε

k
(1 − 1

k
)k−i f (S∗) − 2ε(1 − 1

k
)k−i f (Sk) − x

k
c(S∗).

On the other hand, by the definition of the function �, it is clear that

�0(S0) = (1 − 1

k
)k F(∅) − xc(∅) ≥ 0

and

�k(Sk) = (1 − 1

k
)0F(Sk) − xc(Sk).
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We can get

F(Sk) − xc(Sk) ≥ �k(Sk) − �0(S0)

=
k∑

i=1

(
�i (Si ) − �i−1(Si−1)

)

≥
k∑

i=1

(1 − ε

k
(1 − 1

k
)k−i f (S∗) − 2ε(1 − 1

k
)k−i f (Sk) − x

k
c(S∗)

)

=1−ε

k

k∑

i=1

(1−1

k
)k−i f (S∗)−2ε

k∑

i=1

(1−1

k
)k−i f (Sk)− x

k

k∑

i=1

c(S∗).

Since

k∑

i=1

(1 − 1

k
)k−i = k

(
1 − (1 − 1

k
)k

)
,

we have

F(Sk) − xc(Sk) = 1 − ε

k
k
(
1 − (1 − 1

k
)k

)
f (S∗)

− 2εk
(
1 − (1 − 1

k
)k

)
f (Sk) − xc(S∗)

≥ (1 − ε)
(
1 − (1 − 1

k
)k

)
f (S∗) − 2εk f (Sk) − xc(S∗).

Based on the definition of function F , we can get

(1 + ε) f (Sk) − xc(Sk) ≥ F(Sk) − xc(Sk)

≥ (1 − ε)
(
1 − (1 − 1

k
)k

)
f (S∗) − 2εk f (Sk) − xc(S∗)

Arranging the above inequality, then

(1 + ε + 2εk) f (Sk) − xc(Sk) ≥ (1 − ε)
(
1 − (1 − 1

k
)k

)
f (S∗) − xc(S∗).

Thus, we have

f (Sk) − c(Sk) ≥ 1 − ε

1 + ε + 2εk

(
1 − (1 − 1

k
)k

)
f (S∗) − c(S∗)

≥ 1 − ε

1 + ε + 2εk
(1 − e−1) f (S∗) − c(S∗).

Completing the proof. ��
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4 The bicriteria algorithmwith thematroid constraint under noise

In this section, we consider the second problem

max
S⊆G

f (S) − c(S)

s.t. S ∈ F

where f is a non-negative monotone normalized submodular, c is a non-negative
modular function and the constraint is a matroid constraint. Before analyzing the
specific approximation guarantee of Algorithm 2, we firstly introduce the definition
of matroidM = (G,F ) by Edmonds (2003).

Definition 1 (Edmonds 2003)
Given a finite ground set G and a collection of subsets F ⊆ 2G , (G,F ) is called

a matroid iff this pair satisfies:

(1) ∅ ∈ F ;
(2) Hereditary property: if for any subsets I , J satisfying I ⊆ J and J ∈ F , then

I ∈ F ;
(3) Augmentation property: if for any subsets I , J satisfying I , J ∈ F and |J | > |I |,

then there exists an element e ∈ J \ I such that I ∪ {e} ∈ F .

In the following, we list a common result presented by Brualdi (1969) on matroid.

Algorithm 2The bicriteria algorithm for f −c under noise with thematroid constraint
Input: Ground setG, noisy function F , non-negativemodular function c, matroid (G,F ), noise parameter

ε, x = 2 + 2ε + 4εr and r is the rank of the matriod (G,F ).
Output: Set S′
1: Initially set S0 := ∅, M := G
2: for i = 1, 2, · · · , n do
3: if M = ∅ then
4: break
5: else
6: ei = argmaxe∈M {F(e|Si−1) − xc(e)}
7: if F(ei |Si−1) − xc(ei ) > 0 then
8: Si := Si−1 ∪ {ei }
9: else
10: break
11: end if
12: end if
13: delete all the elements in M such that Si−1 ∪ {e} /∈ F
14: end for
15: return S′ where S′ = S j for some j ∈ {1, 2, . . . , n}

Lemma 3 (Brualdi 1969)
For any A ∈ F and any B ∈ F , if they satisfy |A| = |B|, then there exists a

bijection φ : A\B → B\A such that (B\φ(e)) ∪ {e} ∈ F for any e ∈ A\B.

123
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Denote S′ andM ′ as the output solution set and the set of elements left fromG at the
end of Algorithm 2, respectively. Denote the current solution set after i iterations as Si
and the element added in i-th iteration as ei . Suppose that S∗ is an optimal solution of
the second problem and the rank of matroid (G,F ) is r . To facilitate the analysis of
the approximation ratio, we use surrogate function h(S) = F(S) − xc(S) replace the
original objective function f (S) − c(S) in our algorithm where x can be determined
later.

We divide the optimal solution S∗ into two parts S∗
1 and S∗

2 where S∗
1 = S∗ ∩ M ′

and S∗
2 = S∗ \ S∗

1 . The following lemma tells us that the number of elements in S′
is not less than the number of elements in S∗

2 . It guarantees the existence of Si for
i = 1, 2, . . . , |S∗

2 |.

Lemma 4 We have

|S′| ≥ |S∗
2 |.

Proof Since S′ and S∗ are bases of the matroid and S∗
2 ⊆ S∗, then |S′| ≥ |S∗

2 | is
obvious. ��

Let l = |S∗
2 |. ByLemma4,we know that Sl exists. Then,we analyze the relationship

between S′ and S∗
2 and prove the following conclusion.

Lemma 5 It holds that

(1 − ε) f (Sl ∪ S∗
2 ) − 2εr f (S′) − xc(S∗

2 ) ≤ 2 f (Sl) − xc(Sl). (2)

Proof Since |Sl | = |S∗
2 | = l, S∗

2 ∈ F and Sl ∈ F , by Lemma 3, we can establish a
bijection τ : S∗

2 → Sl such that Sl \ τ(e) ∪ {e} ∈ F for each element e ∈ S∗
2 \ Sl and

τ(e) = e for each element e ∈ S∗
2 ∩ Sl .

For any i = 1, 2, · · · , l, denote by S∗
2

(i) = τ−1(Si ) and s∗
i = τ−1(ei ). By the

selection rule, we get that

hSi−1(ei ) ≥ hSi−1(s
∗
i ), (3)

which is showed as follows. In the above bijection, if s∗
i = ei , the inequality obviously

established. If s∗
i �= ei , i.e. s∗

i ∈ S∗
2 \ Sl , we know Sl\{ei }∪ {s∗

i } ∈ F . For each j < i ,
we have S j ⊆ Sl\{ei }, thus S j ∪ {s∗

i } ∈ F by the hereditary property. Thus element
s∗
i is a candidate for ei , and the inequality hSi−1(ei ) ≥ hSi−1(s

∗
i ) holds.

Thus, for each i = 1, · · · , l, we expand the inequality (3) by definition to obtain

F(Si ) − F(Si−1) − xc(ei ) ≥ F(Si−1 ∪ {s∗
i }) − F(Si−1) − xc(s∗

i ). (4)
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Based on the definition of F and the submodularity of function f , the right-hand side
of the inequality (4) can be rewritten as

F(Si−1 ∪ {s∗
i }) − F(Si−1) − xc(s∗

i )

≥ (1 − ε) f (Si−1 ∪ {s∗
i }) − (1 + ε) f (Si−1) − xc(s∗

i )

= (1 − ε)
(
f (Si−1 ∪ {s∗

i }) − f (Si−1)
)

− 2ε f (Si−1) − xc(s∗
i )

≥ (1 − ε)
(
f (Sl ∪ s∗

i ) − f (Sl)
)

− 2ε f (Si−1) − xc(s∗
i )

≥ (1 − ε)
(
f (Sl ∪ S∗

2
(i)

) − f (Sl ∪ S∗
2
(i−1)

)
)

− 2ε f (Si−1) − xc(s∗
i ).

Combing (4) and a fact that f is monotone, we have

F(Si ) − F(Si−1) − xc(ei ) ≥ (1 − ε)
(
f (Sl ∪ S∗

2
(i)

) − f (Sl ∪ S∗
2
(i−1)

)
)

− 2ε f (S′) − xc(s∗
i ).

Summing up all i = 1, · · · , l,

(1 + ε) f (Sl) − xc(Sl) ≥ F(Sl) − F(∅) − xc(Sl)

≥ (1 − ε)
(
f (Sl ∪ S∗

2 ) − f (Sl)
)

− 2ε
l∑

i=1

f (S′) − xc(S∗
2 )

≥ (1 − ε)
(
f (Sl ∪ S∗

2 ) − f (Sl)
)

− 2εr f (S′) − xc(S∗
2 ).

Rearranging the above inequality, we can get

(1 − ε) f (Sl ∪ S∗
2 ) − 2εr f (S′) − xc(S∗

2 ) ≤ 2 f (Sl) − xc(Sl).

��
On the other hand, there is also a relationship between S′ and S∗

1 .

Lemma 6 It holds that

(1 − ε) f (S′ ∪ S∗
1 ) − xc(S∗

1 ) ≤ (1 − ε + 2εr) f (S′). (5)

Proof Without loss of generality, we assume S∗
1 �= ∅. Since S∗

1 = ∅ obviously holds.
According to the selection rule in Algorithm 2, for each s∗ ∈ S∗

1 , it satisfies

hS′(s∗) = h(S′ ∪ {s∗}) − h(S′) ≤ 0.

That is

F(S′ ∪ {s∗}) − F(S′) − xc(s∗) ≤ 0.
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Thus, we have

∑

s∗∈S∗
1

(
F(S′ ∪ {s∗}) − F(S′)

)
≤

∑

s∗∈S∗
1

xc(s∗). (6)

By the definition of F , we get

(1 − ε)
∑

s∗∈S∗
1

(
f (S′ ∪ {s∗}) − f (S′)

)
− 2ε

∑

s∗∈S∗
1

f (S′) ≤
∑

s∗∈S∗
1

xc(s∗).

By the submodularity of f , we have

(1 − ε) fS′(S∗
1 ) − 2εr f (S′) ≤ xc(S∗

1 ),

Rearranging it we can get Lemma 6. ��
By the above two Lemmas, we get Theorem 2 as follows.

Theorem 2 When x = 2+2ε +4εr , Algorithm 2 returns a solution S′ ∈ F such that

f (S′) − c(S′) ≥ 1 − ε

2 + 2ε + 4εr
f (S∗) − c(S∗),

where r is the rank of matroid (G,F ). If the parameter ε → 0, the approximate ratio
is ( 12 , 1).

Proof Based on the definition of submodular function and S∗ = S∗
1 ∪ S∗

2 , Sl ⊆ S′, we
obtain

f (Sl ∪ S∗
1 ) + f (S′ ∪ S∗

2 ) ≥ f (Sl) + f (S′ ∪ S∗). (7)

Summing (2) and (5). After utilizing (7), we get

(1 − ε) f (S∗) − xc(S∗) ≤ (1 − ε + 4εr) f (S′) + (1 + ε) f (Sl) − xc(Sl). (8)

According to the rule of Algorithm 2, we know that for any element ei ∈ S′, it obeys
the condition that

h(Si ) − h(Si−1) > 0,

then
|S′|∑

i=l+1

(
h(Si ) − h(Si−1)

)
= h(S′) − h(Sl) > 0.

By the definition of function h and F , we have

(1 + ε) f (S′) − xc(S′) ≥ (1 − ε) f (Sl) − xc(Sl).
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Combing the inequality (8), it holds that

(1 − ε) f (S∗) − xc(S∗) ≤ (1 − ε + 4εr) f (S′) + (1 + ε) f (Sl) − xc(Sl)

= (1 − ε + 4εr) f (S′) + (1 − ε) f (Sl) + 2ε f (Sl) − xc(Sl)

≤ (1 − ε + 4εr) f (S′) + (1 + ε) f (S′) − xc(S′) + 2ε f (Sl).

Rearranging to get the following inequality

(2 + 4εr) f (S′) + 2ε f (Sl) − xc(S′) ≥ (1 − ε) f (S∗) − xc(S∗).

By Sl ⊆ S′ and the monotonicity of f , we get

(2 + 2ε + 4εr) f (S′) − xc(S′) ≥ (1 − ε) f (S∗) − xc(S∗).

When x = 2 + 2ε + 4εr , the above inequality is obviously satisfied. Hence, we get
the final approximation guarantee:

f (S′) − c(S′) ≥ 1 − ε

2 + 2ε + 4εr
f (S∗) − c(S∗).

��

5 The bicriteria algorithmwith online unconstrained problem under
noise

In this section, we consider the last problem

max
S⊆G

f (S) − c(S)

where f is a non-negative monotone normalized submodular, c is a non-negative
modular function and G is a online set. In the online setting, the elements arrive one
at a time in the form of stream. At this time, we need to decide whether to add it to the
current solution set, and this decision is irrevocable. Here, we consider this model in
a noisy environment which means that using the easily calculable noise function F .

Denote by S∗ an optimal solution of the last problem and S′ is the output solution
of Algorithm 3. Let |S∗| = q and S̃ = S∗ \ S′ = {s1, · · · , s|S̃|}. In this algorithm, we
use the surrogate function h(S) = F(S)− xc(S) and the value of x can be determined
later. For each iteration, we add the arriving element to the current solution only when
its marginal gain exceeds 0. Furthermore, let the first i elements of S̃ be S̃i , i.e.,
S̃i = {s1, · · · , si } ⊆ S̃ for all 1 ≤ i ≤ |S̃|. The details of the bicriteria algorithm are
as follows.

We analyze the approximation ratio by the following lemma.
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Algorithm 3 The online bicriteria algorithm for f − c under noise
Input: Ground setG = {e1, e2, · · · , en}, noisy function F , non-negative modular function c, noise param-

eter ε and x = 2
(
1 + 2εn

1+ε

)

Output: Set S′
1: Initially set S0 := ∅
2: for each arriving element ei do
3: if FSi−1 (ei ) − xc(ei ) > 0 then
4: Si := Si−1 ∪ {ei }
5: else
6: Si := Si−1
7: end if
8: end for
9: return S′ where S′ = Sn

Lemma 7 It holds that

h(S′ ∪ S̃) − h(S′) ≤ 2εn f (S∗) + 4εn

1 − ε
f (S′) + 2ε

1 − ε
xc(S∗) (9)

Proof It is clearly that

h(S′ ∪ S∗) − h(S′) = h(S′ ∪ S̃) − h(S′) =
|S̃|∑

i=1

(
h(S′ ∪ S̃i ) − h(S′ ∪ S̃i−1)

)
.

Then,

h(S′ ∪ S̃i ) − h(S′ ∪ S̃i−1)

= F(S′ ∪ S̃i ) − xc(S′ ∪ S̃i ) − F(S′ ∪ S̃i−1) + xc(S′ ∪ S̃i−1)

≤ (1 + ε) f (S′ ∪ S̃i ) − xc(S′ ∪ S̃i ) − (1 − ε) f (S′ ∪ S̃i−1) + xc(S′ ∪ S̃i−1)

≤ (1 + ε)
(
f (S′ ∪ S̃i ) − f (S′ ∪ S̃i−1)

)
+ 2ε f (S′ ∪ S∗) − xc(si )

≤ (1 + ε) fS′(si ) + 2ε f (S′) + 2ε f (S∗) − xc(si )

≤ (1 + ε)
( F(S′ ∪ {si })

1 − ε
− F(S′)

1 + ε

)
+ 2ε f (S′) + 2ε f (S∗) − xc(si )

≤ 1 + ε

1 − ε
F(S′ ∪ {si }) − F(S′) + 2ε f (S′) + 2ε f (S∗) − xc(si )

≤ 1 + ε

1 − ε

(
h(S′ ∪ {si }) − h(S′)

)
+ 4ε

1 − ε
f (S′) + 2ε f (S∗) + 2ε

1 − ε
xc(si ).

(10)
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where the second inequality used S̃i−1 ⊆ S̃ ⊆ S∗ and the monotonicity of f . The
third inequality obeys the submodularity of function f . Thus, there is

h(S′ ∪ S̃) − h(S′)

=
|S̃|∑

i=1

(
h(S′ ∪ S̃i ) − h(S′ ∪ S̃i−1)

)

≤ 1 + ε

1 − ε

|S̃|∑

i=1

(
h(S′ ∪ {si }) − h(S′)

)
+ 4εn

1 − ε
f (S′) + 2εn f (S∗) + 2ε

1 − ε
xc(S∗)

According to the selection rule of the Algorithm 3, the marginal contribution from
elements that are not added to S′ is less than 0, i.e.

|S̃|∑

i=1

(
h(S′ ∪ {si }) − h(S′)

)
≤ 0.

Then, we complete the proof of lemma 7. ��
Based on lemma 7, we analyse the approximation ratio as follows.

Theorem 3 When x = 2
(
1 + 2εn

1+ε

)
, the Algorithm 3 returns a solution S′ such that

f (S′) − c(S′) ≥ (1 − ε − 2εn)(1 − ε)

2 + 2ε + 4εn
f (S∗) − c(S∗), (11)

If the parameter ε → 0, we have ( 12 , 1)-approximation ratio.

Proof On the one hand, lemma 7 illustrates the upper bound of h(S′ ∪ S̃) − h(S′). On
the other hand, we give the lower bound

h(S′ ∪ S̃) − h(S′) ≥ (1 − ε) f (S′ ∪ S̃) − (1 + ε) f (S′) − x
(
c(S′ ∪ S̃) − c(S′)

)

≥ (1 − ε) f (S∗) − (1 + ε) f (S′) − xc(S∗),

where the first inequality used the definition of F , the second inequality used the
monotonicity of function f and c. Combing the lemma 7, it is obvious that

1 − ε2 + 4εn

1 − ε
f (S′) ≥ (1 − ε − 2εn) f (S∗) − 1 + ε

1 − ε
xc(S∗),

i.e.

f (S′) ≥ (1 − ε − 2εn)(1 − ε)

1 − ε2 + 4εn
f (S∗) − 1 + ε

1 − ε2 + 4εn
xc(S∗).
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Finally, we consider the value of x . Since the algorithm only adds elements whose
marginal contribution exceeds 0, then h(S′) − h(∅) > 0, i.e., h(S′) > 0. Thus

c(S′) <
1 + ε

x
f (S′) (x > 0).

Rearranging, we can get

f (S′) − c(S′) > f (S′) − 1 + ε

x
f (S′)

≥
(
1−1+ε

x

)( (1−ε−2εn)(1−ε)

1−ε2+4εn
f (S∗) − 1 + ε

1 − ε2 + 4εn
xc(S∗)

)
.

(12)

When x = 2
(
1 + 2εn

1+ε

)
, then

f (S′) − c(S′) ≥ (1 − ε − 2εn)(1 − ε)

2 + 2ε + 4εn
f (S∗) − c(S∗).

It completes the proof of this Theorem. ��

6 Conclusions

In this paper, we study the problem of monotone submodular functions minus mod-
ular functions with ε-multiplicative noise under different constraints. For the first
problem, i.e., the monotone submodular minus modular function under the cardi-
nality constraint, Algorithm 1 constructs the distorted surrogate function and gives
the ( 1−ε

1+ε+2εk (1 − e−1), 1) approximation ratio using the greedy idea. For the sec-
ond problem, i.e., the monotone submodular minus modular function under the
matroid constraint, Algorithm 2 constructs a concise surrogate function and gives
the ( 1−ε

2+2ε+4εr , 1) approximation ratio using the greedy idea. For the last problem, i.e.,
the monotone submodular minus modular function with online unconstraint, Algo-
rithm 3 constructs a similarly concise surrogate function to give the (

(1−ε−2εn)(1−ε)
2+2ε+4εn , 1)

approximation ratio by adding only the elements whosemarginal contributions exceed
0. When ε → 0+, thus we get (1−e−1, 1)-approximation ratio, ( 12 , 1)-approximation
ratio and ( 12 , 1)-approximation ratio to these problems respectively.
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