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Abstract
A k-submodular function is a generalization of a submodular function. The definition
domain of a k-submodular function is a collection of k-disjoint subsets instead of
simple subsets of ground set. In this paper, we consider the maximization of a k-
submodular function with the intersection of a knapsack and m matroid constraints.
When the k-submodular function is monotone, we use a special analytical method to
get an approximation ratio 1

m+2 (1 − e−(m+2)) for a nested greedy and local search

algorithm. For non-monotone case, we can obtain an approximate ratio 1
m+3 (1 −

e−(m+3)).
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1 Introduction

Given a ground set G containing n elements and k ∈ N+, refer (X1, . . . , Xk) as k-
disjoint subsets, with Xi ⊆ G, ∀i ∈ [k] and Xi ∩ X j = ∅, ∀i �= j ∈ [k]; write
(k + 1)G as the family of k disjoint subsets. Define join and meet operations for any
x = (X1, . . . , Xk) and y = (Y1, . . . ,Yk) in (k + 1)G , that is,

x � y := (X1 ∪ Y1 \ (
⋃

i �=1

Xi ∪ Yi ), . . . , Xk ∪ Yk \ (
⋃

i �=k

Xi ∪ Yi )),

x 
 y := (X1 ∩ Y1, . . . , Xk ∩ Yk).

The join operation removes some points with different positions in x and y, that is,
points v with v ∈ Xi , v ∈ Y j , ∀i �= j ∈ [k]. And the meet operation is just an
intersection operation of sets.

A function f : (k + 1)G → R is said to be k-submodular (Huber and Kolmogorov
2012) if

f (x) + f (y) ≥ f (x � y) + f (x 
 y),

for any x and y in (k + 1)G . The k-submodular function is a generalization of a
submodular function. Note that the definition domain of k-submodular function is a
collection of k disjoint subsets instead of simple subsets.When k = 1, a k-submodular
function becomes a submodular function.

1.1 Related work

There have been many research results on monotone submodular maximization prob-
lem. Nemhauser et al. (1978) firstly achieved a greedy (1 − 1/e)-approximation
algorithm under a cardinality constraint, which was known as a tight bound. Later,
Sviridenko (2004) designed a combinatorial (1 − 1/e) approximate algorithm under
a knapsack constraint. For this problem, Ene and Nguyen (2019) also offered an
approximate ratio of (1−1/e−ε) by using multilinear extention function, which only
needed approximate linear running time. With a matroid constraint, Calinescu et al.
(2011) got an approximate ratio of (1− 1/e), by using the continuous greedy method
and pipage rounding technique. Filmus and Ward (2014) designed a combination
algorithm using local search technique, which also achieved an approximate ratio of
(1 − 1/e). More recently, Sarpatwar et al. (2019) contributed an algorithm with an

approximate ratio of 1−e−(m+1)

m+1 combining the greedy algorithm and local search tech-
niques for maximization problem of submodular function subject to the intersection
of a knapsack and m matroid constraints. For maximizing non-monotone submod-
ular functions, Lee et al. (2010) presented a ( 1

m+2+ 1
m +ε

) approximation algorithm

under m matroid constraints, and a ( 15 − ε) approximation algorithm under m knap-
sack constraints. Feldman et al. (2011) and Chekuri et al. (2014) studied constant
factor approximation algorithms to maximize a multilinear extension of the submod-
ular function over a down-closed polytope, respectively. The fractional solution could
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be rounded with contention resolution schemes. For more references on submodular
maximization, see Bian et al. (2017); Calinescu et al. (2011); Ene and Nguyen (2019);
Feldman and Naor (2013); Filmus and Ward (2014); Huang et al. (2022); Liu et al.
(2022b); Sviridenko (2004); Yoshida (2019).

As a generalization of submodular function, the k-submodular function still has
diminishing marginal benefits, where the definition domain is extended from the
collection of simple subsets to the collection of k disjoint subsets. Many practical
applications can be attributed to the k-submodular maximization problem. Ohsaka
and Yoshida (2015) studied influence maximization with k topics and sensor place-
ment with k sensors both based on k-submodular maximization with a size constraint.
Rafiey and Yoshida (2020) applied k-submodular maximization to facility location.

In recent years, many researches on k-submodular maximization has sprung up.
For k-submodular maximization without monotonicity assumption, Ward and Zivny
(2014) studied the unconstrained problem and gave a deterministic greedy algorithm
and a randomized greedy algorithm achieving the approximate ratio of 1/3 and 1

1+a

with a = max{1,
√

k−1
4 }, respectively. Later, the approximation ratio was improved to

1/2 by Iwata et al. (2016). And Oshima (2021) also contributed a k2+1
2k2+1

-approximate
algorithm.Formonotone k-submodularmaximization, Ward andZivny (2014) showed
a1/2-approximate algorithmwithout constraint, and then itwas improved to k/(2k−1)
by Iwata et al. (2016), which is asymptotically tight. Ohsaka and Yoshida (2015)
introduced a construction method between current solution and optimal solution to
obtain a 1/2-approximate ratio, for a total size constraint. Using the similar construc-
tion method, a 1/2-approximate ratio could be also achieved by Sakaue (2017) for
a matroid constraint. Tang et al. (2022) contributed a 1

2 (1 − e−1)-approximate algo-
rithm with a knapsack constraint. Xiao et al. found that this result could be improved
to 1

2 (1− e−2). Recently, Liu et al. (2022a) designed a nested greedy and local search
1

2(m+1) (1−e−(m+1))-approximation algorithm formonotone k-submodularmaximiza-
tion subject to the intersection of a knapsack and m matroid constraints.

1.2 Our contributions

In this paper, we consider the k-submodular maximization subject to the intersection
of a knapsack and m matroid constraints, and discuss the results in monotone and non
monotone cases respectively. The main contributions of this paper are as follows:

– We improve the approximate ratio from 1
2(m+1) (1− e−(m+1)) in Liu et al. (2022a)

to 1
m+2 (1− e−(m+2)) for monotone k-submodular maximization problem with the

intersection of a knapsack and m matroid constraints. In the theoretical analysis
of the algorithm, we no longer rely on the conclusion of the greedy algorithm for
unconstrained k-submodular maximization problem, and use the properties of k-
submodular function to get the new result. Note that our result will be 1

3 (1− e−3)

when m = 1, it improves the result 1
4 (1 − e−2) in Liu et al. (2022a) with the

intersection of a knapsack and a matroid constraint.
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– We extend the approximation algorithm to non-monotone case. By increasing the
number of enumeration points in the algorithm and using the pairwise monotone
property, we achieve a 1

m+3 (1 − e−(m+3)) approximate ratio. It is easy to know

that we have a 1
4 (1− e−4) approximate ratio for the non-monotone k-submodular

maximization problemwith the intersection of a knapsack and amatroid constraint.

1.3 Organization

Organize our paper as follows: In Sect. 2, we introduce notations, properties and some
basic results about k-submodular function. In Sect. 3, we give and explain the nested
greedy and local search algorithm. In Sects. 4 and 5, we present our theoretical analysis
and show the main results for monotone case and non-monotone case, respectively.

2 Preliminaries

2.1 k-Submodular function

In this paper, we set k ≥ 2 and k ∈ N+, because k-submodular function is submodular
function when k = 1. For any two k disjoint subsets x, y ∈ (k + 1)G , we need to
introduce a remove operation and a partial order, i.e.

x \ y := (X1 \ Y1, . . . , Xk \ Yk),

x 
 y, if Xi ⊆ Yi ,∀i ∈ [k].
Define one-item 1v,i := (X1, . . . , Xk), where Xi = {v} and X j �=i = ∅, and empty-
item 0 := (∅, . . . ,∅). Denote the support set U (x) := ⋃k

i=1 Xi .
Given a function f : (k + 1)G → R, for any x ∈ (k + 1)G , v ∈ G \ U (x) and

i ∈ [k], it is said to be monotone if its marginal gain satisfies:

fx(1v,i ) = f (x � 1v,i ) − f (x) ≥ 0.

From Ohsaka and Yoshida (2015), f is pairwise monotone if

fx(1v,i ) + fx(1v, j ) ≥ 0,

for any x ∈ (k+1)G , v ∈ G \U (x) and i �= j ∈ [k]. And f is orthant submodular ,
if

fx(1v,i ) ≥ fy(1v,i ),

for x 
 y ∈ (k + 1)G , v ∈ G\U (y) and i �= j ∈ [k]. As below, a k-submodular
function has a well-known equivalent definition (Ward and Zivny 2014).

Definition 1 A function f : (k+1)G → R is k-submodular iff it is pairwisemonotone
and orthant submodular.
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Obviously, the monotonicity of f implies pairwise monotonicity. For a monotone
function f : (k+1)G → R, the k-submodularity is equivalent to the orthant submod-
ularity. In addition, a k-submodular function also has the following useful property
(Ohsaka and Yoshida 2015).

Lemma 1 Given a k-submodular function f , we have

f (y) − f (x) ≤
∑

1v,i
y\x
fx(1v,i ),

for any x, y ∈ (k + 1)G and x 
 y.

Given a fixed k disjoint subsets y ∈ (k + 1)G , define a family of k disjoint subsets
D(y) := {x ∈ (k + 1)G | y 
 x}. In the later analysis, we need to construct a function
g(x) : D(y) → R by temporarily hiding y. In order to maintain the regularity, we
can set a k-submodular function g(x) = f (x) − f (y), which is still a k-submodular
function.

Lemma 2 Given a k-submodular function f : (k + 1)G → R and y ∈ (k + 1)G, then
g(x) = f (x) − f (y) : D(y) → R is a k-submodular function and g(y) = 0.

2.2 Knapsack andmatroid constraints

Given L ⊆ 2G , a pair (G,L) is an independence system if (M1) and (M2) hold, and
a set A is an independence set if A ∈ L. Further, the independence system (G,L) is
said to be a matroid if (M3) holds.

Definition 2 Given L ⊆ 2G and a pair M = (G,L) is a matroid if
(M1): ∅ ∈ L.
(M2): A ⊆ B and B ∈ L �⇒ A ∈ L.
(M3): A, B ∈ L and | A |>| B | �⇒ ∃ v ∈ A\B, s.t. B ∪ {v} ∈ L.

For m ∈ N+ and each j ∈ [m], L j is a collection of independent sets, and M j =
(G,L j ) is a matroid. Given a nonnegative bound B, and for each element v ∈ G, there
is a nonnegative weight wv . Without losing generality, we assume that wv and B are
integers. Otherwise, we can always enlarge them to integers in the same proportion.
Let wx = ∑

v∈U (x)
wv . The k-submodular maximization problem with the intersection

of a knapsack and m matroid constraints is

max
x∈(k+1)G

{ f (x) | wx ≤ B and U (x) ∈
m⋂

j=1

L j }. (1)

For any A ∈ G, we use [A]m to express a collection of subsets of A, whose size does
not exceedm. Given an independence set A ∈ ⋂m

j=1 L j and a pair (ā, b)with ā ∈ [A]m
andb ∈ G\A,we refer the pair (ā, b) as am-swap (ā, b) if (A\ā)∪{b} ∈ ⋂m

j=1 L j . The
next lemma ensures that there exists some m-swap (ā, b) between two independence
sets. The detailed proof of Lemma 3 is given by Sarpatwar et al. (2019).
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Lemma 3 Assume two independence sets A, B ∈ ⋂m
j=1 L j , then we can construct a

mapping y : B\A → [A\B]m, such that (A\ā) ∪ {b} ∈ ⋂m
j=1 L j with b ∈ B\A,

ā ∈ [A\B]m, and each element a ∈ A\B appears in mapping y no more than m times.

In the later theoretical proof, the following Lemma 4 (Nemhauser et al. 1978) needs
to be used.

Lemma 4 Given two fixed P, D ∈ N+ and a sequence of nonnegative real numbers
{γi }i∈[P], then we have

∑P
i=1 γi

mint∈[P](
∑t−1

i=1 γi + Dγt )

≥ 1 − (1 − 1

D
)P ≥ 1 − e−P/D . (2)

3 Algorithm overview

3.1 Greedy algorithm

Firstly, we introduce a Greedy Algorithm ( f , G) from Ward and Zivny (2014). By
Definition 1, k-submodularity of f implies pairwise monotonicity, that is, fx(1v,i ) +
fx(1v, j ) ≥ 0 for any x ∈ (k + 1)G , v /∈ U (x) and i �= j ∈ [k]. It means that there are
no two positions i �= j ∈ [k] such that fx(1v,i ) < 0 and fx(1v, j ) < 0 both hold. For
k-submodular maximization problem without constraint, there is always an optimal
solution x∗ satisfyingU (x∗) = G. In Greedy Algorithm ( f ,G), we enter a set G and
give a fixed order to the points in G, that is G = {v1, . . . , v|G|}. Each current solution
xl is obtained by xl−1 adding vl ∈ G\U (xl−1) with a greedy position il ∈ [k] for
l = 1, . . . , |G|.

Algorithm 1 Greedy Algorithm ( f , G)

Require: A k-submodular f : (k + 1)G → R+ and a set G = {v1, . . . , v|G|}
Ensure: A k-disloint set x|G| ∈ (k + 1)G

1: x0 ← 0
2: for l = 1 to |G| do
3: il ← argmaxi∈[k] fxl−1 (1vl ,i )

4: xl ← xl−1 � 1vl ,il
5: end for
6: return x|G|

3.2 Nested greedy and local search algorithm KM-KM

Next, we present a nested greedy and local search algorithm for problem (1), which
is inspired by Liu et al. (2022a). For simplicity, we call it KM-KM. If the objective
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function f is monotone, we choose λ = 2 in KM-KM. Otherwise, we need to choose
λ ≥ (m+1)(m+3)

m+2+e−(m+3) , because of the proof of the approximate ratio.

KM-KM starts with xλ 
 x∗ obtained by enumerating with the largest marginal
profits, where x∗ is an optimal solution of problem (1). If |U (x∗)| ≤ λ, we can
find x∗ by enumerating x ∈ (k + 1)G with |U (x)| ≤ |U (x∗)|. Therefore, we only
consider the case when |U (x∗)| is greater than λ. For a positive integer t ≥ λ, we
define t-th iteration as the process when KM-KM finds a suitable m-swap (āt , bt )
to update xt . Clearly |(U (xt\xλ)\āt ) ∪ {bt }| = |U (xt+1\xλ)|. If the current m-swap
(āt , bt ) satisfies all the conditions in line 11, KM-KM performs line 12-18 and breaks
loop 9-19 to update Sm in line 8. In line 12 of KM-KM, we consider the elements
in (U (xt\xλ)\āt ) ∪ {bt }, and add them to Greedy Algorithm in the same order as
in KM-KM. For l ∈ {1, . . . , |(U (xt\xλ)\āt ) ∪ {bt }|}, Greedy Algorithm ( f (x̃t+1 �
xλ), (U (xt\xλ)\āt )∪{bt }) reorders the positions i of pointsvl ∈ (U (xt\xλ)\āt )∪{bt }.
Define x̃t+1

l as the current solution, such that x̃t+1
l = x̃t+1

l−1 � 1vl ,il . If current m-swap
(āt , bt ) violates any conditions in line 11, KM-KM will remove it and continue to
pick the next m-swap. Finally, KM-KM breaks all loops when Sm = ∅ in line 9 and
return xt . We define the time when KM-KM outputs xt as T and T ≥ λ + 1.

Algorithm 2 KM-KM (G, B, M , λ)
Require: A k-submodular function f : (k + 1)G → R+, a bound B ∈ N+,

m matroids (G,L j ) for j ∈ [m] and λ ∈ N+
Ensure: A k-disloint set xt ∈ (k + 1)G satisfying wxt ≤ B and U (xt ) ∈ ⋂m

j=1 L j

1: x0 ← 0
2: for t = 0 to λ − 1 do
3: xt+1 ← arg max

|U (x)|=t+1,xt
x
x∗ f (x)

4: end for
5: Let t = λ and swi tch = f alse
6: while swi tch = f alse do
7: swi tch ← true
8: Generate a collection of all m-swaps Sm = Sm (U (xt ))\{m−swap (ā, b) | ā ∩U (xλ) �= ∅}
9: while swi tch = true and Sm �= ∅ do
10: Pick a m-swap (ā, b) from Sm with a maximum value ρ(ā, b) =

max
i∈[k],1a, j
xt

f ((xt \⊔a∈ā 1a, j )�1b,i )− f (xt )
wb

and call it the m-swap (āt , bt )

11: if ρ(āt , bt ) > 0 and wxt − wāt + wbt ≤ B then
12: x̃t+1 ← Greedy Algorithm ( f (x̃t+1 � xλ), (U (xt \ xλ) \ āt ) ∪ {bt })
13: xt+1 ← x̃t+1 � xλ

14: wxt+1 ← wxt − wāt + wbt
15: swi tch ← f alse
16: t ← t + 1
17: end if
18: Sm ← Sm\{m-swap (āt , bt )}
19: end while
20: end while
21: return xt
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3.3 A constructionmethod for analysis

In order to give an approximate ratio analysis, we introduce a construction method
based on Algorithm 2. Mark x∗ as an optimal solution of problem (1).

Given a fixed iteration step t ≥ λ + 1 in KM-KM and l ∈ {1, . . . , |U (xt\xλ)|}.
Define xtl = x̃tl �xλ, then xt|U (xt\xλ)| = xt .We further construct two sequences {otl−1/2}
and {otl } such that otl−1/2 = (x∗ � xtl ) � xtl−1, o

t
l = (x∗ � xtl ) � xtl and o

t
l=0 = x∗.

Note that xtl−1 
 xtl 
 otl , o
t
l−1/2 
 otl and U (ot|U (xt\xλ)|)\U (xt ) = U (x∗)\U (xt ).

ByLemma2, define a k-submodular function g(x) = f (x)− f (xλ) : D(xλ) → R+.
The construction method has the following conclusions. The detailed proofs of them
are shown in the Appendix.

Lemma 5 Given a fixed iteration step t ≥ λ + 1 in KM-KM and an optimal solution
x∗ for problem (1), we have:

(i) when the objective function f is monotone,

g(otl−1) − g(otl ) ≤ g(xtl ) − g(xtl−1), (3)

g(x∗) ≤ g(ot|U (xt\xλ)|) + g(xt ). (4)

(i i) when the objective function f is non-monotone,

g(otl−1) − g(otl ) ≤ 2[g(xtl ) − g(xtl−1)], (5)

g(x∗) ≤ g(ot|U (xt\xλ)|) + 2g(xt ). (6)

4 Analysis for monotone k-submodular maximization with a
knapsack andmmatroid constraints

In this section,wewill explain in detail how to obtain the approximate ratio for problem
(1). Our framework of proof is inspired by Sviridenko (2004); Sarpatwar et al. (2019);
Liu et al. (2022a). To simplify the process of analyzing approximate ratio, we give
several lemmas. The detailed proofs of them are shown in the Appendix.

Lemma 6 Given a fixed iteration step t ≥ λ + 1 in KM-KM and an optimal solution
x∗ for problem (1), there exists a mapping y :

U (ot|U (xt\xλ)|)\U (xt ) → [U (xt )\U (x∗)]m

such that (U (xt )\ȳ(b)) ∪ {b} ∈ ⋂m
j=1 L j , for b ∈ U (ot|U (xt\xλ)|)\U (xt ), ȳ(b) ∈

[U (xt )\U (x∗)]m, and each element a ∈ U (xt )\U (x∗) appears in mapping y no more
than m times. Then we have
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g(ot|U (xt\xλ)|) ≤
∑

1b,i
(ot|U (xt \xλ)|\xt )
[g((xt\

⊔

y(b)∈ȳ(b)
1y(b), j ) � 1b,i )

− g(xt\
⊔

y(b)∈ȳ(b)
1y(b), j )] + g(xt )

(7)

and

∑

1b,i
(ot|U (xt \xλ)|\xt )
[g(xt ) − g(xt\

⊔

y(b)∈ȳ(b)
1y(b), j )] ≤ mg(xt ). (8)

for 1y(b), j 
 xt\xλ.

Let us assume that there exists a m-swap (ȳ(b), b) with respect to xT and x∗
satisfying wxT − wȳ(b) + wb > B, when KM-KM runs. Let t∗ + 1 be the iteration
which appears am-swap (ȳ(bt

∗
), bt

∗
) in Sm(U (xt

∗
))\ {m−swap (ā, b) | ā∩U (xλ) �=

∅} violating wxt∗ − wȳ(bt∗ ) + wbt∗ ≤ B, with bt
∗ ∈ U (x∗)\U (xt

∗
) and ȳ(bt

∗
) ∈

[(U (xt )\U (x∗))]m , for the first time.

Lemma 7 Considering the current solution xt
∗
and the m-swap (ȳ(bt

∗
), bt

∗
) men-

tioned above, we have

f ((xt
∗ \

⊔

y(bt∗ )∈ȳ(bt∗ )

1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt
∗
) ≤ 1

2
· f (xλ), (9)

where 1y(bt∗ ), j t∗ 
 xt
∗\xλ, if f is monotone.

Lemma 8 Given t ∈ {λ + 1, . . . , t∗} in KM-KM for problem (1), we have

∑

1b,i
(ot|U (xt \xλ)|\xt )
[g((xt\

⊔

y(b)∈ȳ(b)
1y(b), j ) � 1b,i ) − g(xt )]

≤ (B − wxλ)ρt , (10)

for 1y(b), j 
 xt\xλ.

Lemma 9 Given t ∈ {λ + 1, . . . , t∗} in KM-KM, α, β, r are positive constants satis-
fying 1 − 1

α
(1 − e−β) − r ≥ 0 and x∗ be an optimal solution of problem (1). If

g(x∗) ≤ α[g(xt ) + (B − wxλ)

β
ρt ]

and

f ((xt
∗ \

⊔

y(bt∗ )∈ȳ(bt∗ )

1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt
∗
) ≤ r · f (xλ)
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hold, we have

f (xt
∗
) ≥ 1

α
(1 − e−β) f (x∗). (11)

Theorem 1 If the objective function f is monotone for problem (1), we can obtain a
1

m+2 (1 − e−(m+2))-approximate solution in KM-KM by setting λ = 2.

Proof When there is no qualified m-swap(ā, b) ∈ Sm , KM-KM will break all loops
and output xT . Using Lemma 3 between U (xt ) and U (x∗), for a fixed t ≥ λ, there
exists amapping y :U (x∗)\U (xt ) → [U (xt )\U (x∗)]m such that (U (xt )\ȳ(b))∪{b} ∈⋂m

j=1 L j , for b ∈ U (x∗)\U (xt ) and ȳ(b) ∈ [U (xt )\U (x∗)]m . Thus, there are some
m-swaps (ȳ(b), b) with respect to xt and x∗.

When t = T , according to whether the conditions in line 11 of KM-KM are
violated, consider dividing m-swaps (y(b), b) with respect to xT and x∗ into two
cases.

Case 1: Considering the m-swaps (ȳ(b), b) with respect to xT and x∗, they were
all rejected just due to ρ(ȳ(b), b) ≤ 0 instead of knapsack constraint.

Due to our assumption about the m-swaps, we get

g((xT \
⊔

y(b)∈ȳ(b)
1y(b), j ) � 1b,i ) ≤ g(xT ). (12)

Since f is monotone, we combine formula (4) in Lemma 5 and formula (7) in Lemma
6, then use formula (12) and formula (8) in Lemma 6 to get g(x∗) ≤ (m + 2)g(xT ).
Finally, we have f (x∗) ≤ (m + 2) f (xT ) − (m + 1) f (xλ) ≤ (m + 2) f (xT ) due to
nonnegativity of f . Therefore, we find a 1

m+2 -approximate solution in case 1, if f is
monotone.

Case 2: Considering the m-swaps (ȳ(b), b) with respect to xT and x∗, there exists
at least one satisfying wxt − wȳ(b) + wb > B.

For a fixed t ≥ λ, KM-KM selects a qualified m-swap(āt , bt ) to update xt in
each t-th iteration. In t∗ + 1 iteration, KM-KM checks m-swap (ȳ(bt

∗
), bt

∗
), where

bt
∗ ∈ U (x∗)\U (xt

∗
) and ȳ(bt

∗
) ∈ [(U (xt )\U (x∗))]m , in line 11 and removed it

due to wxt∗ − wȳ(bt∗ ) + wbt∗ > B, for the first time. Define ρt := ρ(āt , bt ) for
t ∈ {λ, . . . , t∗ − 1} and

ρt∗ := f ((xt
∗ \ ⊔

y(bt∗ )∈ȳ(bt∗ ) 1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt
∗
)

wbt∗
.

When t ∈ {λ + 1, . . . , t∗}, we combine formula (4) in Lemma 5 and formula (7) in
Lemma 6, then rewrite formula (7) in Lemma 6 as below
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g((xt\
⊔

y(b)∈ȳ(b)
1y(b), j ) � 1b,i ) − g((xt\

⊔

y(b)∈ȳ(b)
1y(b), j ))

= [g((xt\
⊔

y(b)∈ȳ(b)
1y(b), j ) � 1b,i ) − g(xt )]

+ [g(xt ) − g((xt\
⊔

y(b)∈ȳ(b)
1y(b), j ))].

(13)

Using formula (8) in Lemma 6 and Lemma 8, we can get g(x∗) ≤ (m + 2)[g(xt ) +
(B−wxλ )

m+2 ρt ]. By formula (9) in Lemma 7, we set r = 1
2 in Lemma 9. Therefore,

f (xt
∗
) ≥ 1

m+2 (1 − e−(m+2)) f (x∗) holds immediately. So we get the approximate

ratio of 1
m+2 (1 − e−(m+2)) in case 2, if f is monotone. 
�

As above, we show a 1
m+2 (1 − e−(m+2))-approximate ratio for monotone k-

submodular maximization with a knapsack and m matroid constraints. Due to our
conclusion, we improve the approximate ratio of monotone k-submodular max-
imization with a knapsack and m matroid constraints (Liu et al. 2022a) from

1
2(m+1) (1 − e−(m+1)) to 1

m+2 (1 − e−(m+2)).
When m = 1, i.e. monotone k-submodular maximization with a knapsack and a

matroid constraints, we have the corresponding conclusion as below. It also improves
the result 1

4 (1 − e−2) in Liu et al. (2022a).

Corollary 1 If the objective function f is monotone for problem (1) with m = 1, we
can obtain a 1

3 (1 − e−3)-approximate solution in KM-KM by setting λ = 2.

5 Analysis for non-monotone k-submodular maximization with a
knapsack andmmatroid constraints

In this section, we further study non-monotone k-submodular maximization with a
knapsack and m matroids constraints. In fact, the impact of monotonicity of f is not
reflected in Lemmas 6, 8, 9. So we only need to give the following Lemma 10. Using
Lemmas 6, 8, 9 10, we can get an approximate ratio 1

m+3 (1 − e−(m+3)).

Lemma 10 Considering the current solution xt
∗
and the m-swap (ȳ(bt

∗
), bt

∗
) as in

Lemma 7, we have

f ((xt
∗ \

⊔

y(bt∗ )∈ȳ(bt∗ )

1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt
∗
) ≤ m + 1

λ
· f (xλ), (14)

where 1y(bt∗ ), j t∗ 
 xt
∗\xλ.

Theorem 2 If the objective function f is non-monotone for problem (1), we can obtain
a 1

m+3 (1 − e−(m+3))-approximate solution in KM-KM by setting λ ≥ (m+1)(m+3)
m+2+e−(m+3) .
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Proof When t = T , similar to Theorem 1 in Sect. 4, we consider dividing them-swaps
(y(b), b) with respect to xT and x∗ into two cases.

Case 1: Considering the m-swaps (ȳ(b), b) with respect to xT and x∗, they were
all rejected just due to ρ(ȳ(b), b) ≤ 0 instead of knapsack constraint.

Combine formula (6) in Lemma 5 and formula (7) in Lemma 6, then use formula
(12) and formula (8) in Lemma 6 to get g(x∗) ≤ (m + 3)g(xT ). Finally, we have
f (x∗) ≤ (m + 3) f (xT ) − (m + 2) f (xλ) ≤ (m + 3) f (xT ) due to nonnegativity of
f . Therefore, we find a 1

m+3 -approximate solution in case 1, if f is non-monotone in
problem (1).

Case 2: Considering the m-swaps (ȳ(b), b) with respect to xT and x∗, there exists
at least one satisfying wxt − wȳ(b) + wb > B.

When t ∈ {λ + 1, . . . , t∗}, we combine formula (6) in Lemma 5, formula (7) in
Lemma 6 and formula(13). Then use formula (8) in Lemma 6 and Lemma 8, we can get

g(x∗) ≤ (m+3)[g(xt )+ (B−wxλ )

m+3 ρt ]. By formula (14) in Lemma 10, we set r = m+1
λ

in Lemma 9. Therefore, f (xt
∗
) ≥ 1

m+3 (1− e−(m+3)) f (x∗) holds immediately. So we

get the approximate ratio of 1
m+3 (1 − e−(m+3)) in case 2, if f is non-monotone in

problem (1). 
�

As above, we show a 1
m+3 (1 − e−(m+3))-approximate ratio for non-monotone k-

submodular maximization with a knapsack and m matroid constraints. Due to our
conclusion, we extend monotone k-submodular maximization with a knapsack and m
matroid constraints (Liu et al. 2022a) to non-monotone case.

When m = 1, i.e. non-monotone k-submodular maximization with a knapsack and
a matroid constraints, we have the corresponding conclusion as below.

Corollary 2 If the objective function f is non-monotone for problem (1) with m = 1,
we can obtain a 1

4 (1 − e−4)-approximate solution in KM-KM by setting λ = 3.

6 Conclusions

In our paper, based on a nested greedy and local search algorithm KM-KM (Liu
et al. 2022a) and a construction method (Nguyen and Thai 2020), we improve the
approximate ratio for problem (1) (Liu et al. 2022a) from 1

2(m+1) (1 − e−(m+1)) to
1

m+2 (1−e−(m+2)) by enumerating λ = 2 items with the largest marginal profits in the

optimal solution. The conclusion can get 13 (1−e−3)-approximate ratio for problem (1)
withm = 1. Furthermore, we extend the conclusion to non-monotone case and get the
approximate ratio 1

m+3 (1−e−(m+3)) for problem (1) by enumerating λ ≥ (m+1)(m+3)
m+2+e−(m+3)

items with λ ∈ N+. The conclusion can get 14 (1−e−4) -approximate ratio for problem
(1) with m = 1. And we need to enumerate λ = 3 items with the largest marginal
profits in the optimal solution.
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Appendix

Proof of Lemma 5:
When k-submodular function f is monotone, the conclusions are as follows. Due

to monotonicity of f , fxtl−1
(1vl .il ) ≥ 0 holds in Greedy Algorithm. By the definition of

g, we have gxtl−1
(1vl .il ) ≥ 0. For vl in l-th iteration of Greedy Algorithm, we compare

the position il with 1vl ,il 
 xtl and i∗ with 1vl ,i∗ 
 x∗.
If vl ∈ U (x∗) with i∗ = il , then otl−1 = otl . Therefore, we have

g(otl−1) − g(otl ) = 0 ≤ g(xtl ) − g(xtl−1). (15)

If vl ∈ U (x∗) with i∗ �= il , then otl−1 = otl−1/2 � 1vl ,i∗ and o
t
l = otl−1/2 � 1vl ,il . By

monotonicity of f , greedy choice of Greedy Algorithm and orthant submodularity,
we get

g(otl−1) − g(otl ) ≤ g(otl−1) − g(otl−1/2)

= gotl−1/2
(1vl ,i∗)

≤ gxtl−1
(1vl ,i∗)

≤ g(xtl ) − g(xtl−1).

(16)

If vl /∈ U (x∗), then otl−1/2 = otl = otl−1 � 1vl ,il , we have

g(otl−1) − g(otl ) ≤ 0 ≤ g(xtl ) − g(xtl−1). (17)

In summary, we have

g(otl−1) − g(otl ) ≤ g(xtl ) − g(xtl−1). (18)

Sum it for l from 1 to |U (xt\xλ)| and get

g(x∗) − g(ot|U (xt\xλ)|) =
|U (xt\xλ)|∑

l=1

[g(otl−1) − g(otl )]

≤
|U (xt\xλ)|∑

l=1

g(xtl ) − g(xtl−1)

= g(xt ).

(19)
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When k-submodular function f is non-monotone, the conclusion will change as
below. Due to pairwise monotonicity, fxtl−1

(1vl .il ) ≥ 0 holds in Greedy Algorithm. By
the definition of g, we have gxtl−1

(1vl .il ) ≥ 0.
If vl ∈ U (x∗) with i∗ = il , we have

g(otl−1) − g(otl ) = 0 ≤ 2[g(xtl ) − g(xtl−1)]. (20)

If vl ∈ U (x∗) with i∗ �= il , we get

g(otl−1) − g(otl ) = gotl−1/2
(1vl ,i∗) + gotl−1/2

(1vl ,i ′)

− [gotl−1/2
(1vl ,il ) + gotl−1/2

(1vl ,i ′)]
≤ gotl−1/2

(1vl ,i∗) + gotl−1/2
(1vl ,i ′)

≤ 2gxtl−1
(1vl ,il )

= 2[g(xtl ) − g(xtl−1)]

(21)

for any i ′ ∈ [k] with i ′ �= il . Due to pairwise monotonicity, we get the first inequality.
By greedy choice of Greedy Algorithm and orthant submodularity, the second holds.

If vl /∈ U (x∗), similar to above, we have

g(otl−1) − g(otl ) = gotl−1
(1vl ,i ′) − [gotl−1

(1vl ,i ′) + gotl−1
(1vl ,il )]

≤ gotl−1
(1vl ,i ′)

≤ gotl−1
(1vl ,il )

≤ gxtl−1
(1vl ,il )

≤ 2[g(xtl ) − g(xtl−1)].

(22)

In summary, we have

g(otl−1) − g(otl ) ≤ 2[g(xtl ) − g(xtl−1)]. (23)

Sum it for l from 1 to |U (xt\xλ)| and get

g(x∗) − g(ot|U (xt\xλ)|) =
|U (xt\xλ)|∑

l=1

[g(otl−1) − g(otl )]

≤
|U (xt\xλ)|∑

l=1

2[g(xtl ) − g(xtl−1)]

= 2g(xt ).

(24)

123



Journal of Combinatorial Optimization (2023) 45 :93 Page 15 of 21 93

Proof of Lemma 6:
Due to ot|U (xt\xλ)| = (x∗ � xt ) � xt , we haveU (ot|U (xt\xλ)|)\U (xt ) = U (x∗)\U (xt )

and xt 
 ot|U (xt\xλ)|. By Lemma 3 between U (x∗) and U (xt ), there exists a mapping
y :

U (ot|U (xt\xλ)|)\U (xt ) → [U (xt )\U (x∗)]

such that (U (xt )\ȳ(b)) ∪ {b} ∈ ⋂m
j=1 L j , for b ∈ U (ot|U (xt\xλ)|)\U (xt ), ȳ(b) ∈

[U (xt )\U (x∗)]m , and each element a ∈ U (xt )\U (x∗) appears in mapping y no more
than m times. Using Lemma 1 and the mapping y : b → ȳ(b), we get

g(ot|U (xt\xλ)|) ≤
∑

1b,i
(ot|U (xt \xλ)|\xt )
[g(xt � 1b,i ) − g(xt )] + g(xt )

≤
∑

1b,i
(ot|U (xt \xλ)|\xt )
[g((xt\

⊔

y(b)∈ȳ(b)
1y(b), j ) � 1b,i )

− g(xt\
⊔

y(b)∈ȳ(b)
1y(b), j )] + g(xt )

(25)

for 1y(b), j 
 xt\xλ.
Then we give the proof of second inequality as follows.
For fixed iteration step t ≥ λ + 1 in KM-KM, the ground set of Greedy

Algorithm( f ,G) is G = {v1, . . . , v|U (xt\xλ)|} = U (xt\xλ) in a fixed order as we
mentioned earlier.

Each b ∈ U (ot|U (xt\xλ)|)\U (xt ) will be mapped to ȳ(b) ∈ [U (xt )\U (x∗)]m . Let
p = |ȳ(b)| ∈ [m] for each such b, then write ȳ(b) = {vq1, . . . , vqp }, where 1 ≤ q1 <

. . . qp ≤ m.
By our settings, we have

∑

1b,i
(ot|U (xt \xλ)|\xt )
[g(xt ) − g(xt\

⊔

y(b)∈ȳ(b)
1y(b), j )]

=
∑

1b,i
(ot|U (xt \xλ)|\xt )
[g(xt ) − g(xt\

qp⊔

l=q1

1vl , jl )]

≤
∑

1b,i
(ot|U (xt \xλ)|\xt )

qp∑

r=q1

[g(xλ � (

r⊔

l=1

1vl , jl )) − g(xλ � (

r−1⊔

l=1

1vl , jl ))]

≤ m ·
|U (xt\xλ)|∑

r=1

[g(xλ � (

r⊔

l=1

1vl , jl )) − g(xλ � (

r−1⊔

l=1

1vl , jl ))]

= m · [g(xt ) − g(xλ)]
≤ m · g(xt )

(26)
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for 1y(b), j 
 xt\xλ. The first inequality is due to orthant submodularity. As we men-
tioned, each element a ∈ U (xt )\U (x∗) appears in mapping y no more than m times.
In Greedy Algorithm( f ,G), all marginal gains gx(1vl , jl ) ≥ 0 for non-monotone or
monotone k-submodular function f input. Therefore, we get the second inequality.
The third inequality needs nonnegativity of g.

Proof of Lemma 7:
For problem (1), input a monotone k-submodular function f and λ = 2 in KM-

KM. In the fixed t∗ + 1 iteration, considering the current solution xt
∗
and the m-swap

(ȳ(bt
∗
), bt

∗
), we have

f ((xt
∗ \ 1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt

∗
)

≤ f ((xt
∗ \ 1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt

∗ \ 1y(bt∗ ), j t∗ )

≤ f ((x1 � 1bt∗ ,i t∗ ) − f (x1)

≤ f (x2) − f (x1).

Using the monotonicity of f , we get the first inequality. Then the second is due
to orthant submodularity. Because we greedily choose xt for t ∈ {1, 2}, the third
inequality holds. Similarly, we have

f ((xt
∗ \ 1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt

∗
) ≤ f (x1) − f (x0).

Combining the above two formulas, we have

f ((xt
∗ \ 1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt

∗
) ≤ 1

2
f (x2) = 1

2
f (xλ). (27)

Proof of Lemma 8:
Given a fixed t ∈ {λ, . . . , t∗}, by greedy choice of t-th iteration and the assumption

about t∗ + 1, we have

f (xt\⊔
y(b)∈ȳ(b) 1y(b), j � 1b,i ) − f (xt )

wb
≤ ρt , (28)

for m-swaps (ȳ(b), b) with b ∈ U (ot|U (xt\xλ)|)\U (xt ) and ȳ(b) ∈ [U (xt )\U (x∗)]m .
Due to U (ot|U (xt\xλ)|)\U (xt ) = U (x∗)\U (xt ), we have

∑

1b,i
(ot|U (xt \xλ)|\xt )
wb ≤ B − wxλ . (29)
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Combining the above formula, we get

∑

1b,i
(ot|U (xt \xλ)|\xt )
[g((xt\

⊔

y(b)∈ȳ(b)
1y(b), j ) � 1b,i ) − g(xt )]

=
∑

1b,i
(ot|U (xt \xλ)|\xt )
[ f ((xt\

⊔

y(b)∈ȳ(b)
1y(b), j ) � 1b,i ) − f (xt )]

≤ (B − wxλ)ρt ,

(30)

for 1y(b), j 
 xt\xλ.

Proof of Lemma 9:
We introduce a framework of proof inspired by Sarpatwar et al. (2019) to get

g((xt
∗ \ ⊔

y(bt∗ )∈ȳ(bt∗ ) 1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ )

g(x∗)
≥ 1

α
(1 − e−β). (31)

Let Bλ = 0 and Bt = ∑t
τ=λ+1 wbτ , for any t ∈ {λ + 1, . . . , t∗ + 1}. Define

B ′ = Bt∗+1 = Bt∗ + wbt∗ and B ′′ = B − wxλ . By the assumption of case 2, we have
B ′ > B ≥ B ′′. For j = 1, . . . , B ′, we define γ j = ρt−1 when j = Bt−1 + 1, . . . , Bt .
Note that g(xτ ) − g(xτ−1) = wbτ−1ρτ−1, using the above definition, we obtain that

g(xt ) =
t∑

τ=λ+1

[g(xτ ) − g(xτ−1)] =
t∑

τ=λ+1

wbτ−1ρτ−1 =
Bt∑

j=1

γ j , (32)

for each t ∈ {λ + 1, . . . , t∗}, and

g((xt
∗ \

⊔

y(bt∗ )∈ȳ(bt∗ )

1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) =
t∗+1∑

τ=λ+1

[g(xt ) − g(xt−1)]

=
t∗+1∑

τ=λ+1

wbτ−1ρτ−1 =
B′∑

j=1

γ j .

(33)

Using g(x∗) ≤ α[g(xt ) + (B−wxλ )

β
ρt ] and (32), we have the following equalities

g(x∗) ≤ α min
t∈{λ+1,...,t∗}{g(x

t ) + B ′′

β
ρt }

≤ α min
t∈{λ+1,...,t∗}{

Bt∑

j=1

γ j + B ′′

β
γBt+1}.

(34)
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From (33), (34) and Lemma 4, we obtain that

g((xt
∗ \ ⊔

y(bt∗ )∈ȳ(bt∗ ) 1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ )

g(x∗)

≥
∑B′

j=1 γ j

α min
t∈{λ+1,...,t∗}{

Bt∑
j=1

γ j + B′′
β

γBt+1}

=
∑B′

j=1 γ j

α min
t∈{1,...,B′}

{
t−1∑
j=1

γ j + B′′
β

γt }

≥ 1

α
(1 − (1 − β

B ′′ )
B′

)

≥ 1

α
(1 − e− βB′

B′′ )

≥ 1

α
(1 − e−β).

(35)

Using 1 − 1
α
(1 − e−β) − r ≥ 0 and (35), we have

f (xt
∗
) = f (xλ) + g(xt

∗
)

= f (xλ) + g((xt
∗ \

⊔

y(bt∗ )∈ȳ(bt∗ )

1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ )

− [g((xt∗ \
⊔

y(bt∗ )∈ȳ(bt∗ )

1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − g(xt
∗
)]

= f (xλ) + g((xt
∗ \

⊔

y(bt∗ )∈ȳ(bt∗ )

1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ )

− [ f ((xt∗ \
⊔

y(bt∗ )∈ȳ(bt∗ )

1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt
∗
)]

≥ f (xλ) + 1

α
(1 − e−β)g(x∗) − r f (xλ)

= 1

α
(1 − e−β) f (x∗) + (1 − 1

α
(1 − e−β) − r) f (xλ)

≥ 1

α
(1 − e−β) f (x∗).

(36)
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Proof of Lemma 10:
Recall our settings in proof of Lemma 6: For a fixed iteration step t ≥ λ + 1 in

KM-KM, the ground set of Greedy Algorithm( f ,G) is G = {v1, . . . , v|U (xt\xλ)|} =
U (xt\xλ) in a fixed order as we mentioned earlier. Each b ∈ U (ot|U (xt\xλ)|)\U (xt )

will be mapped to ȳ(b) ∈ [U (xt )\U (x∗)]m . Let p = |ȳ(b)| ∈ [m] for each such b,
then write ȳ(b) = {vq1, . . . , vqp }, where 1 ≤ q1 < . . . qp ≤ m. We have

f ((xt
∗ \

⊔

y(bt∗ )∈ȳ(bt∗ )

1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt
∗
)

= f ((xt
∗ \

qp⊔

l=q1

1vl , jl ) � 1bt∗ ,i t∗ ) − f (xt
∗
)

= − [ f (xt∗ \ 1vq1 , jq1
� 1vq1 , jq1

) − f (xt
∗ \ 1vq1 , jq1

)]

− [ f ((xt∗ \
q2⊔

l=q1

1vl , jl ) � 1vq2 , jq2
) − f (xt

∗ \
q2⊔

l=q1

1vl , jl )]

. . .

− [ f ((xt∗ \
qp⊔

l=q1

1vl , jl ) � 1vqp , jqp ) − f (xt
∗ \

qp⊔

l=q1

1vl , jl )]

+ f ((xt
∗ \

qp⊔

l=q1

1vl , jl ) � 1bt∗ ,i t∗ ) − f (xt
∗ \

qp⊔

l=q1

1vl , jl )

≤ [ f (xt∗ \ 1vq1 , jq1
� 1vq1 , j ′) − f (xt

∗ \ 1vq1 , jq1
)]

+ [ f ((xt∗ \
q2⊔

l=q1

1vl , jl ) � 1vq2 , j ′) − f (xt
∗ \

q2⊔

l=q1

1vl , jl )]

. . .

+ [ f ((xt∗ \
qp⊔

l=q1

1vl , jl ) � 1vqp , j ′) − f (xt
∗ \

qp⊔

l=q1

1vl , jl )]

+ f ((xt
∗ \

qp⊔

l=q1

1vl , jl ) � 1bt∗ ,i t∗ ) − f (xt
∗ \

qp⊔

l=q1

1vl , jl )

≤
qp∑

l=q1

[ f (xτ−1 � 1vl , j ′) − f (xτ−1)] + [ f ((xτ−1 � 1bt∗ ,i t∗ ) − f (xτ−1)]

≤ (p + 1)[ f (xτ ) − f (xτ−1)]
≤ (m + 1)[ f (xτ ) − f (xτ−1)]

(37)
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for τ ∈ 1, . . . , λ. The first inequality is due to pairwise monotonicity, that is,
− fx((v, i)) ≤ fx((v, j)) for i �= j ∈ [k]. The second is due to orthant submod-
ularity. Because we greedily choose xt for t ∈ {1, . . . , λ}, the third inequality holds.
Combining the above λ formulas, we have

f ((xt
∗ \ 1y(bt∗ ), j t∗ ) � 1bt∗ ,i t∗ ) − f (xt

∗
) ≤ m + 1

λ
f (xλ). (38)
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