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Abstract

A k-submodular function is a generalization of a submodular function. The definition
domain of a k-submodular function is a collection of k-disjoint subsets instead of
simple subsets of ground set. In this paper, we consider the maximization of a k-
submodular function with the intersection of a knapsack and m matroid constraints.
When the k-submodular function is monotone, we use a special analytical method to
get an approximation ratio m;ﬂ(l — e~ "2y for a nested greedy and local search

algorithm. For non-monotone case, we can obtain an approximate ratio m+r3(l -
e (m+3)y.
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1 Introduction

Given a ground set G containing n elements and k € N, refer (X1, ..., Xy) as k-
disjoint subsets, with X; € G, Vi € [k] and X; N X; = 0, Vi # j € [k]; write
(k + 1)¢ as the family of k disjoint subsets. Define join and meet operations for any
x=(X1,....,Xpandy = (Y,...,Y) in (k + 1)C, that is,

xuy: =X un\(Jxivy, ... . xxur\ (Jxiur),
i1 i#k
xny: =& NYy, ..., XeNYy).

The join operation removes some points with different positions in x and y, that is,
points v with v € X;, v € ¥;, Vi # j € [k]. And the meet operation is just an
intersection operation of sets.

A function f : (k+ 1) — R is said to be k-submodular (Huber and Kolmogorov
2012) if

X+ f@y) = fxuy) + f&xny),

for any x and y in (k + 1)¢. The k-submodular function is a generalization of a
submodular function. Note that the definition domain of k-submodular function is a
collection of k disjoint subsets instead of simple subsets. When k = 1, a k-submodular
function becomes a submodular function.

1.1 Related work

There have been many research results on monotone submodular maximization prob-
lem. Nembhauser et al. (1978) firstly achieved a greedy (1 — 1/e)-approximation
algorithm under a cardinality constraint, which was known as a tight bound. Later,
Sviridenko (2004) designed a combinatorial (1 — 1/e) approximate algorithm under
a knapsack constraint. For this problem, Ene and Nguyen (2019) also offered an
approximate ratio of (1 — 1/e — ¢) by using multilinear extention function, which only
needed approximate linear running time. With a matroid constraint, Calinescu et al.
(2011) got an approximate ratio of (1 — 1/e), by using the continuous greedy method
and pipage rounding technique. Filmus and Ward (2014) designed a combination
algorithm using local search technique, which also achieved an approximate ratio of

(1 — 1/e). More recently, Sarpatwar et al. (2019) contributed an algorithm with an
approximate ratio of lffnf—f:m combining the greedy algorithm and local search tech-

niques for maximization problem of submodular function subject to the intersection
of a knapsack and m matroid constraints. For maximizing non-monotone submod-

ular functions, Lee et al. (2010) presented a (m) approximation algorithm

under m matroid constraints, and a (% — &) approximation algorithm under m knap-
sack constraints. Feldman et al. (2011) and Chekuri et al. (2014) studied constant
factor approximation algorithms to maximize a multilinear extension of the submod-
ular function over a down-closed polytope, respectively. The fractional solution could
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be rounded with contention resolution schemes. For more references on submodular
maximization, see Bian et al. (2017); Calinescu et al. (2011); Ene and Nguyen (2019);
Feldman and Naor (2013); Filmus and Ward (2014); Huang et al. (2022); Liu et al.
(2022b); Sviridenko (2004); Yoshida (2019).

As a generalization of submodular function, the k-submodular function still has
diminishing marginal benefits, where the definition domain is extended from the
collection of simple subsets to the collection of k disjoint subsets. Many practical
applications can be attributed to the k-submodular maximization problem. Ohsaka
and Yoshida (2015) studied influence maximization with k topics and sensor place-
ment with k sensors both based on k-submodular maximization with a size constraint.
Rafiey and Yoshida (2020) applied k-submodular maximization to facility location.

In recent years, many researches on k-submodular maximization has sprung up.
For k-submodular maximization without monotonicity assumption, Ward and Zivny
(2014) studied the unconstrained problem and gave a deterministic greedy algorithm

and a randomized greedy algorithm achieving the approximate ratio of 1/3 and ﬁ

witha = max{l, ,/ % }, respectively. Later, the approximation ratio was improved to

1/2 by Iwataetal. (2016). And Oshima (2021) also contributed a %—approximate
algorithm. For monotone k-submodular maximization, Ward and Zivny (2014) showed
a 1/2-approximate algorithm without constraint, and then it was improved tok / (2k—1)
by Iwata et al. (2016), which is asymptotically tight. Ohsaka and Yoshida (2015)
introduced a construction method between current solution and optimal solution to
obtain a 1/2-approximate ratio, for a total size constraint. Using the similar construc-
tion method, a 1/2-approximate ratio could be also achieved by Sakaue (2017) for
a matroid constraint. Tang et al. (2022) contributed a %(1 — e‘l)—approximate algo-
rithm with a knapsack constraint. Xiao et al. found that this result could be improved
to %(1 — e72). Recently, Liu et al. (2022a) designed a nested greedy and local search
m (1—e~"+D)_approximation algorithm for monotone k-submodular maximiza-
tion subject to the intersection of a knapsack and m matroid constraints.

1.2 Our contributions

In this paper, we consider the k-submodular maximization subject to the intersection
of a knapsack and m matroid constraints, and discuss the results in monotone and non
monotone cases respectively. The main contributions of this paper are as follows:

— We improve the approximate ratio from m (1—e~ Dy in Liuetal. (2022a)

to m+_2 (1 — e~ ™+ for monotone k-submodular maximization problem with the
intersection of a knapsack and m matroid constraints. In the theoretical analysis
of the algorithm, we no longer rely on the conclusion of the greedy algorithm for
unconstrained k-submodular maximization problem, and use the properties of k-
submodular function to get the new result. Note that our result will be %(1 —e )
when m = 1, it improves the result }1(1 — ¢ %) in Liu et al. (2022a) with the
intersection of a knapsack and a matroid constraint.
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— We extend the approximation algorithm to non-monotone case. By increasing the
number of enumeration points in the algorithm and using the pairwise monotone
property, we achieve a m+r3(1 — e~ "*+3)) approximate ratio. It is easy to know

that we have a ;ll(l — ¢~*) approximate ratio for the non-monotone k-submodular
maximization problem with the intersection of a knapsack and a matroid constraint.

1.3 Organization

Organize our paper as follows: In Sect. 2, we introduce notations, properties and some
basic results about k-submodular function. In Sect. 3, we give and explain the nested
greedy and local search algorithm. In Sects. 4 and 5, we present our theoretical analysis
and show the main results for monotone case and non-monotone case, respectively.

2 Preliminaries
2.1 k-Submodular function

In this paper, we set k > 2 and k € N, because k-submodular function is submodular
function when £ = 1. For any two k disjoint subsets X, y € (k + 1)G, we need to
introduce a remove operation and a partial order, i.e.

x\y: =X\ Y,..., X\ Vo),
x Xy, if X; CY;,Vi € [k].

Define one-item 1, ; := (X1, ..., Xx), where X; = {v} and X ;; = ¢, and empty-
item 0 := (¥, ..., ). Denote the support set U (x) := Ule X;.

Given a function f : (k + 1)¢ — R, foranyx € (k+ )%, v € G\ U(x) and
i € [k], itis said to be monotone if its marginal gain satisfies:

fx(lv,i) = f(xu 1v,i) — fx)>0.
From Ohsaka and Yoshida (2015), f is pairwise monotone if
fx(lv,i) + fx(lv,j) = 0,

forany x € (k+ DG, v e G\UX)andi # j € [k]. And f is orthant submodular,
if

fx(lv,i) = fy(lv,i),

forx <ye (k+ 1% ve G\U(y) andi # j € [k]. As below, a k-submodular
function has a well-known equivalent definition (Ward and Zivny 2014).

Definition 1 A function f : (k4+1)¢ — R is k-submodular iff it is pairwise monotone
and orthant submodular.
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Obviously, the monotonicity of f implies pairwise monotonicity. For a monotone
function f : (k4 1)¢ — R, the k-submodularity is equivalent to the orthant submod-
ularity. In addition, a k-submodular function also has the following useful property
(Ohsaka and Yoshida 2015).

Lemma 1 Given a k-submodular function f, we have

fO-f®=< > A,

llv,ifY\X

foranyx,y € (k+ 1) andx < y.

Given a fixed k disjoint subsets y € (k + 1)¢, define a family of k disjoint subsets
D(y) ={xe (k+ G |'y < x}. In the later analysis, we need to construct a function
g(x) : D(y) — R by temporarily hiding y. In order to maintain the regularity, we
can set a k-submodular function g(x) = f(x) — f(y), which is still a k-submodular
function.

Lemma 2 Given a k-submodular function f : (k+1)° — Randy € (k+ 1)C, then
g(x) = f(x) — f(y) : D(y) = R is a k-submodular function and g(y) = 0.

2.2 Knapsack and matroid constraints

Given £ C 29, apair (G, £) is an independence system if (M 1) and (M2) hold, and
a set A is an independence set if A € L. Further, the independence system (G, £) is
said to be a matroid if (M3) holds.

Definition 2 Given £ € 2% and a pair M = (G, £) is a matroid if
(M1): 0 e L.
(M2):ACBandBe L= AcL.
(M3):A,BeLand| A|>| B|=3veA\B,s.t. BU{v} e L.

For m € Nj and each j € [m], £; is a collection of independent sets, and M ; =
(G, L) is amatroid. Given a nonnegative bound B, and for each element v € G, there
is a nonnegative weight w,. Without losing generality, we assume that w, and B are
integers. Otherwise, we can always enlarge them to integers in the same proportion.

Let wx = ). wy. The k-submodular maximization problem with the intersection
vel (x)
of a knapsack and m matroid constraints is

m
max {f(x) |wy < Band U(x) € [ | £;}. 1)
xe(k+1)¢ j=1

Forany A € G, weuse [A]" to express a collection of subsets of A, whose size does
notexceed m. Given an independence set A € ﬂ?’:l L ; and apair (a, b) witha € [A]™
andb € G\ A, werefer the pair (a, b) asam-swap (a, b) if (A\a)U{b} € ﬂ’;’zl L;.The
next lemma ensures that there exists some m-swap (a, b) between two independence
sets. The detailed proof of Lemma 3 is given by Sarpatwar et al. (2019).
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Lemma 3 Assume two independence sets A, B € ﬂ;flzl L, then we can construct a
mapping y : B\A — [A\B]", such that (A\a) U {b} € ﬂ;'?:] L; with b € B\A,
a € [A\B]", and each element a € A\ B appears in mapping y no more than m times.

In the later theoretical proof, the following Lemma 4 (Nemhauser et al. 1978) needs
to be used.

Lemma4 Given two fixed P, D € N+ and a sequence of nonnegative real numbers
{yi}ie(p), then we have

Zf:] Vi
minze[P](Zf;} vi + Dyr)
1
zl—(l—B)”zl—e*’/D. ()

3 Algorithm overview
3.1 Greedy algorithm

Firstly, we introduce a Greedy Algorithm (f, G) from Ward and Zivny (2014). By
Definition 1, k-submodularity of f implies pairwise monotonicity, that is, fx(1, ;) +
fx(y,j) > Oforanyx € (k + )¢, v ¢ U(x)andi # j € [k]. It means that there are
no two positions i # j € [k] such that fx(1,;) < 0and fx(1, ;) < 0 both hold. For
k-submodular maximization problem without constraint, there is always an optimal
solution x* satisfying U (x*) = G. In Greedy Algorithm (f, G), we enter a set G and
give a fixed order to the points in G, thatis G = {v1, ..., v|g|}. Each current solution
x; is obtained by x;_; adding v; € G\U(x;—1) with a greedy position i; € [k] for
I=1,...,]|G|.

Algorithm 1 Greedy Algorithm (f, G)

Require: A k-submodular f : (k + D¢ - RyandasetG = {vy,..., viG|}
Ensure: A k-disloint set x| € (k + 1)G

1: xg <0

2: for/ = 1to |G| do

30 0 < argmaxjepk] fx_g (Qy,i)

4 xp < x1uly

5: end for

6: return x|G|

3.2 Nested greedy and local search algorithm KM-KM

Next, we present a nested greedy and local search algorithm for problem (1), which
is inspired by Liu et al. (2022a). For simplicity, we call it KM-KM. If the objective
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function f is monotone, we choose A = 2 in KM-KM. Otherwise, we need to choose

(m+1)(m+3) . .
A > o e e because of the proof of the approximate ratio.

KM-KM starts with x* < x* obtained by enumerating with the largest marginal
profits, where x* is an optimal solution of problem (1). If |U(x*)] < A, we can
find x* by enumerating x € (k + 1)¢ with |U(x)| < |U(x*)|. Therefore, we only
consider the case when |U (x*)| is greater than A. For a positive integer t > A, we
define t-th iteration as the process when KM-KM finds a suitable m-swap (a’, b")
to update x’. Clearly |(U (x'\x*)\a') U {b'}| = |U (x'T1\x*)|. If the current m-swap
(a', b") satisfies all the conditions in line 11, KM-KM performs line 12-18 and breaks
loop 9-19 to update S™ in line 8. In line 12 of KM-KM, we consider the elements
in (Ux'\x")\a@') U {b'}, and add them to Greedy Algorithm in the same order as
in KM-KM. For [ € {1,..., |(UX\x")\a') U {b'}|}, Greedy Algorithm (f & ! L
x*), (Ux'\x*)\a")U{b'}) reorders the positions i of points v; € (U (x'\x*)\a")U{b'}.
Define f(f“ as the current solution, such that f(f‘l = f(ffll u1,, ;. If current m-swap
(a', b") violates any conditions in line 11, KM-KM will remove it and continue to
pick the next m-swap. Finally, KM-KM breaks all loops when $” = ¢J in line 9 and
return x’. We define the time when KM-KM outputs x” as 7 and T > A + 1.

Algorithm 2 KM-KM (G, B, M, i)
Require: A k-submodular function f : (k + NG — R4,abound B € Ny,
m matroids (G, L) for j € [m]and 1 € N4
Ensure: A k-disloint set x' € (k 4 1) satisfying wy < B and U(X) € ’;1=1 Lj
1:x0 <0
2:fort =0toAr—1do

3 xtl—ar max fx
U X)|=t+1,x! <x=<x*
4: end for
5: Lett = A and switch = false
6: while switch = false do
7. switch < true
8:  Generate a collection of all m-swaps S = §™ (U (x'))\{m—swap (a, b) | a N Ux*) # ¢}
9:  while switch = true and S # ¢ do
10: Pick a m-swap (a,b) from S™ with a maximum value p(a,b) =
' ; N
max RN, l‘fl;’)mh")i'f &) and call it the m-swap (a’, b')
i€lk] 14, j=<x! b
11: if p(a', b') > 0 and wy — wy + wyr < B then
12: X'*! « Greedy Algorithm (f &+ ux*), (U \x*)\a") U{p'})
13: xItD gl xh
14: wx;+1 < Wyt — Wyt + Wpt
15: switch < false
16: t<—t+1
17: end if
18: S§™ « S™\ {m-swap (a’, b")}

19: end while
20: end while
21: return x’

@ Springer



93 Page 8of 21 Journal of Combinatorial Optimization (2023) 45:93

3.3 A construction method for analysis

In order to give an approximate ratio analysis, we introduce a construction method
based on Algorithm 2. Mark x* as an optimal solution of problem (1).

Given a fixed iteration step > A + 1 in KM-KM and [ € {1, ..., |U ' \x")|}.
Define x) = X/ Lix*, then x" Ve = x'. We further construct two sequences {0]_, 2}
and {o]} such that 0;71/2 =" Ux) UXx_,0;=(x"Ux) U X andoj_; = x*.
Note that x|, < x] < o], 05—1/2 < o and U(OTU(xf\xm)\U(Xt) = UX"\U(X).

By Lemma 2, define a k-submodular function g(x) = f(x)— f(x*) : D(x*) — R,.
The construction method has the following conclusions. The detailed proofs of them
are shown in the Appendix.

Lemma5 Given a fixed iteration step t > A + 1 in KM-KM and an optimal solution
x* for problem (1), we have:
(i) when the objective function f is monotone,

g(0]_) —g(o)) < g(x)) — g(x]_,), (3)
§O) < g0l ) + 8. 4)

(ii) when the objective function f is non-monotone,

g(0)_;) — g(o}) < 2[g(x)) — g(x|_p]. ®)
X*) < (0! ) + 28X, ©)

4 Analysis for monotone k-submodular maximization with a
knapsack and m matroid constraints

In this section, we will explain in detail how to obtain the approximate ratio for problem
(1). Our framework of proof is inspired by Sviridenko (2004); Sarpatwar et al. (2019);
Liu et al. (2022a). To simplify the process of analyzing approximate ratio, we give
several lemmas. The detailed proofs of them are shown in the Appendix.

Lemma 6 Given a fixed iteration step t > A + 1 in KM-KM and an optimal solution
x* for problem (1), there exists a mapping y :

U 0]y o) \U ) = [UGO\U ()"

such that (U )\3 (1)) U (b} € (Yj_y L;, for b € U0l .\ o NUK), 5(b) €

[UH\U (x*)]™, and each element a € U (x")\U (x*) appears in mapping y no more
than m times. Then we have
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801y ) = > B\ || Lol

1, <(o \x’) y(b)ey(b)

U \x)| (7
—e&x'\ | ] s pl+ex)
y(b)ey(b)
and
Yoo le) -\ ] L)l < meex). ®)
1= (ow(x,\ 3o X y(b)ey(b)

for ly(b),j < Xt\X)‘.

Let us assume that there exists a m-swap (y(b), b) with respect to x! and x*
satisfying wyr — wyep) + wp > B, when KM-KM runs. Let t* + 1 be the iteration
which appears a m-swap (3(b"), b"") in " (U (x'")) \ {m—swap (@, b) | aNU (x*) #
P} violating w — wyge) + wys < B, with b e Ux\UX") and 5(b'") €
[(UH\U (x*))]™, for the first time.

Lemma 7 Considering the current solution x' and the m-swap (3(b" ), b"") men-
tioned above, we have

* * 1
N L Ty ) Ul ) = FT) < o F), ©)

y()EF®™)
where ly(bf* o < X'\x*, if f is monotone.

Lemma8 Givent € {A+1,...,t*} in KM-KM for problem (1), we have

Yoo e\ ] Lw)ule) — gl

lbt_( \U(x’\x)“)\\Xt) y(b)Ei’(b)
< (B—wy)p, (10)
for ly(b),j =< XI\X)‘.
Lemma9 Givent € {A+1,...,t*} in KM-KM, «, B, r are positive constants satis-

fying 1 — é(l — e P) —r > 0 and x* be an optimal solution of problem (1). If

B — wy
g(x*) < afg(x") + %pz]

and

FON L e ) Ul ) = F&T) <7 f 6

y(b')eF (™)
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hold, we have

* 1
f& = —d —e Py fF(x"). (11)

Theorem 1 If the objective function f is monotone for problem (1), we can obtain a

ml+2 (1 — e~ "2 _approximate solution in KM-KM by setting » = 2.

Proof When there is no qualified m-swap(a, b) € S™, KM-KM will break all loops
and output x!. Using Lemma 3 between U (x') and U (x*), for a fixed t > A, there
existsamapping y : U (x*)\U (x") — [U(x")\U (x*)]" such that (U (x")\y(b))U{b} €
ﬂT:l Lj, for b € Ux*)\U(x") and y(b) € [U(x")\U (x*)]™. Thus, there are some
m-swaps (y(b), b) with respect to x’ and x*.

When ¢t = T, according to whether the conditions in line 11 of KM-KM are
violated, consider dividing m-swaps (y(b), b) with respect to x! and x* into two
cases.

Case 1: Considering the m-swaps (¥(b), b) with respect to x” and x*, they were
all rejected just due to p(y(b), b) < 0 instead of knapsack constraint.

Due to our assumption about the m-swaps, we get

g\ ] Lepuln =exh. (12)
y(b)ey(b)

Since f is monotone, we combine formula (4) in Lemma 5 and formula (7) in Lemma
6, then use formula (12) and formula (8) in Lemma 6 to get g(x*) < (m + 2)g(xT).
Finally, we have f(x*) < (m 4+ 2)f(x’) — (m + 1) f(x*) < (m +2) f(x7) due to
nonnegativity of f. Therefore, we find a ﬁ—approximate solution in case 1, if f is
monotone.

Case 2: Considering the m-swaps (¥(b), b) with respect to x” and x*, there exists
at least one satisfying wy — wy@p) + wp > B.

For a fixed t > A, KM-KM selects a qualified m-swap(a’, b*) to update x’ in
each z-th iteration. In t* + 1 iteration, KM-KM checks m-swap (¥ (b’ *), b’*), where
b e UXH\U®K") and y(b'") € [(UXH\U(x*)]™, in line 11 and removed it
due to wyr — Wy + wye > B, for the first time. Define p; := p(a', b") for
te{r,...,t* —1}and

FO N Lyoryesor) Lyar)., ) Ul i) = &)
wb[* ’

Pr+ =

Whent € {A +1,...,t*}, we combine formula (4) in Lemma 5 and formula (7) in
Lemma 6, then rewrite formula (7) in Lemma 6 as below
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g\ || Lopubo-gx\ || L)

y(b)ey(®) y(b)ey(d)
=L@\ [ | L )ul) —g&)] (13)
y(b)ey(b)
+lex) — g\ || L)l
y(b)eyb)

Using formula (8) in Lemma 6 and Lemma 8, we can get g(x*) < (m + 2)[g(x") +

% pt]. By formula (9) in Lemma 7, we set r = % in Lemma 9. Therefore,

&) > +2(1 e~ (m*2)) £(x*) holds immediately. So we get the approximate
ratio of -~ 2 (1 — e=+2)) in case 2, if f is monotone. O
As above, we show a m(l — ¢~ m+2)_approximate ratio for monotone k-

submodular maximization with a knapsack and m matroid constraints. Due to our
conclusion, we improve the approximate ratio of monotone k-submodular max-
imization with a knapsack and m matroid constraints (Liu et al. 2022a) from
2(m+l)(1 _ e—(m+1)) to _(1 —(m+2))‘

When m = 1, i.e. monotone k-submodular maximization with a knapsack and a
matroid constraints, we have the corresponding conclusion as below. It also improves
the result }t(l — e 2) in Liuetal. (2022a).

Corollary 1 If the objective function f is monotone for problem (1) with m = 1, we
can obtain a %(1 — e 3)-approximate solution in KM-KM by setting . = 2.

5 Analysis for non-monotone k-submodular maximization with a
knapsack and m matroid constraints

In this section, we further study non-monotone k-submodular maximization with a
knapsack and m matroids constraints. In fact, the impact of monotonicity of f is not
reflected in Lemmas 6, 8, 9. So we only need to give the following Lemma 10. Using
Lemmas 6, 8, 9 10, we can get an approximate ratio m+L3(1 — e_(m+3)).

Lemma 10 Considering the current solution X' and the m-swap (3(b'"), b'") as in
Lemma 7, we have

* * 1
SN L Lot — £ = 60 (g

y(O'")eFd™)
where 1,0y v < x\x%.

Theorem 2 [fthe objective function f is non-monotone for problem (1), we can obtain

a m+_3(1 e~ "3 _approximate solution in KM-KM by setting % > %
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Proof Whent = T, similar to Theorem 1 in Sect. 4, we consider dividing the m-swaps
(y(b), b) with respect to x! and x* into two cases.

Case 1: Considering the m-swaps (y(b), b) with respect to x! and x*, they were
all rejected just due to p(y(b), b) < 0 instead of knapsack constraint.

Combine formula (6) in Lemma 5 and formula (7) in Lemma 6, then use formula
(12) and formula (8) in Lemma 6 to get g(x*) < (m + 3)g(x”). Finally, we have
Ff&x*) < (m+3)fx") — (m+2)f(x*) < (m + 3) f(xT) due to nonnegativity of
f. Therefore, we find a ﬁ—approximate solution in case 1, if f is non-monotone in
problem (1).

Case 2: Considering the m-swaps (¥(b), b) with respect to x” and x*, there exists
at least one satisfying wyr — wyp) + wp > B.

When ¢ € {A +1,...,t*}, we combine formula (6) in Lemma 5, formula (7) in
Lemma 6 and formula(13). Then use formula (8) in Lemma 6 and Lemma 8§, we can get

g(x*) < (m+3)[g(x)+ (Br::}gk)p,]. By formula (14) in Lemma 10, we setr = mT“

in Lemma 9. Therefore, f(x *) > m+_3 (1 — e~ (m+3))y f(x*) holds immediately. So we

get the approximate ratio of ﬁ(l — e~ 3y in case 2, if f is non-monotone in
problem (1). o

As above, we show a m+_3(1 — e~ "+t approximate ratio for non-monotone k-
submodular maximization with a knapsack and m matroid constraints. Due to our
conclusion, we extend monotone k-submodular maximization with a knapsack and m
matroid constraints (Liu et al. 2022a) to non-monotone case.

When m = 1, i.e. non-monotone k-submodular maximization with a knapsack and
a matroid constraints, we have the corresponding conclusion as below.

Corollary 2 [f the objective function f is non-monotone for problem (1) with m = 1,
we can obtain a ‘—1‘(1 — e~Y-approximate solution in KM-KM by setting A = 3.

6 Conclusions

In our paper, based on a nested greedy and local search algorithm KM-KM (Liu
et al. 2022a) and a construction method (Nguyen and Thai 2020), we improve the
approximate ratio for problem (1) (Liu et al. 2022a) from m(l — ety (o
m+r2( 1 — e~ 0"+2)) by enumerating A = 2 items with the largest marginal profits in the
optimal solution. The conclusion can get %(1 — e~ 3)-approximate ratio for problem (1)

with m = 1. Furthermore, we extend the conclusion to non-monotone case and get the

approximate ratio m+_3 (1—e~*+3) for problem (1) by enumerating A > %

items with A € N,. The conclusion can get JT(I — e~*) -approximate ratio for problem
(1) with m = 1. And we need to enumerate A = 3 items with the largest marginal
profits in the optimal solution.
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Appendix

Proof of Lemma 5:
When k-submodular function f is monotone, the conclusions are as follows. Due
to monotonicity of f, fX;—l (1y,;,) = Oholds in Greedy Algorithm. By the definition of

g, we have i, (1,,.4,) = 0. For v; in [-th iteration of Greedy Algorithm, we compare

the position i; with 1,, ;, < xJ and i, with 1, ;, < x*.
If v; € U(x*) with iy, = i;, then o]_, = o;. Therefore, we have

(0j_1) —g(0) =0 < g(x;) — g(x;_1). 15)

If v € U(x*) with iy, # i, theno]_, = 0§_1/2 ul,,;, and o) = 0§_1/2 Uly.;. By
monotonicity of f, greedy choice of Greedy Algorithm and orthant submodularity,
we get

8(0;71) - g(Of) = 8(0;71) - 8(0;,1/2)
= g";,l/z(lv/*i*)

(16)
= gX]til(lvl,i*)
< g(x) — g(x;_).
If v; ¢ U(x*), then 0571/2 =o0j =0)_, Ul ;, wehave
g(0j_) —g(0)) <0 < g(x}) — g(xj_). (17)
In summary, we have
g(0]_)) —g(o)) < g(x)) — g(x|_}). (18)
Sum it for / from 1 to |U (x'\x")| and get
U x"\xM)]
t _ t t
§(x*) = g0[ iy = ZZ [g(0]_1) — (0]
=1
U x"\x")] (19)

< Y &) -gxy

=1
= g(x").
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When k-submodular function f is non-monotone, the conclusion will change as
below. Due to pairwise monotonicity, fXLl (1y,5,) = O holds in Greedy Algorithm. By

the definition of g, we have i, (1y,5) = 0.
If v € U(x*) with i, = i;, we have

g(0]_) — g(0)) =0 < 2[g(x})) — g(x;_]. (20)
If vy € U(x*) with i, # ij, we get

g(0j_1) —g(0p) =g |, (Luyi,) + &, (Luy.i1)
— 80, Quri) + 8op_ , (Luyir)]
< 8oy, Qi) + 80, , (L) 1)
<28y (i)
=2[g(x) — g(x;_1)]
for any i’ € [k] with i’ # i;. Due to pairwise monotonicity, we get the first inequality.

By greedy choice of Greedy Algorithm and orthant submodularity, the second holds.
If v; ¢ U(x*), similar to above, we have

8(0;_1) — 8(0) = gg_ (Lu,i") = [8g_ (Luyir) + 8t (Luyi))]
< 8o, (Ly.i1)
< 8o, (Ly.iy) (22)
< gy, (Ly.ip)
< 2[g(x)) — g(xj_)].

In summary, we have
g(0)_)) — g(o)) <2[g(x)) — g(xj_}]I. (23)
Sum it for [ from 1 to |U (x"\x*)| and get

|U(x"\x")|
g = 80l ) = D [80j_) —g(0))]
=1
U \x)] (24)
< > 20 —gxj_p]
=1
=2g(x").

@ Springer



Journal of Combinatorial Optimization (2023) 45:93 Page150f21 93

Proof of Lemma 6:
Due to o’ = (x*ux’) Ux’, we have U(ofU(X,\xA)l)\U(x’) =UK"\U(®X)

U (x"\x)]
! By Lemma 3 between U (x*) and U (x"), there exists a mapping

t
and X" = 0y iy

y:

U( \UK') — [UX)\U(X)]

t
Oy
such that (U (x")\y(b)) U {b} € ﬂ;f'zl Lj, for b € U(OfU(xf\xm)\U(Xt)’ y(b) €
[UH\U (x*)]™, and each element a € U (x")\U (x*) appears in mapping y no more
than m times. Using Lemma 1 and the mapping y : b — y(b), we get

g(OTU(x’\X")l) = Z [g(x’ Ulp;) — g(Xt)] + g(xt)

. ' 1]
lb,t j«)\l/(xt\x)‘)\\x )

= ) e L wepubo g

1200l o ) y(b)eF(b)

—e"\ || LI+

y(b)ey(b)

for ly(b),j =< XZ\X)‘.

Then we give the proof of second inequality as follows.

For fixed iteration step ¢t > A + 1 in KM-KM, the ground set of Greedy
Algorithm(f, G) is G = {vy, ..., v|U(x1\xx)|} = U(xt\xk) in a fixed order as we
mentioned earlier.

Each b € U(OiU(x’\x*)l)\U(Xl) will be mapped to y(b) € [U(x")\U (x*)]™. Let
p = [y(b)| € [m] for each such b, then write y(b) = {vg,, ..., vg,}, where I < ¢ <
o gqp < m.

By our settings, we have

Yoo lexh—gx\ || Ly

1200y X Y(b)EF (D)
dp
= > [g(x) — gx'\ | ] 1))
1b,;§(0TU(x,\x~A)l\X’) I=q1
4qp r r—1
< > D olet u (1) — et u 1 @6
lb‘[i(OTU(xt\x)‘)l\XI) r=qi =1 =1
U x"\x")| r r—1
<m- Y L& u( 1y ) — et u( |1,
r=1 =1 =1
=m-[g(x') — g(xM)]
<m-gx')
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for 1,(5),; < x'\x*. The first inequality is due to orthant submodularity. As we men-
tioned, each element a € U (x")\U (x*) appears in mapping y no more than m times.
In Greedy Algorithm( f, G), all marginal gains gx(1, j,) > 0 for non-monotone or
monotone k-submodular function f input. Therefore, we get the second inequality.
The third inequality needs nonnegativity of g.

Proof of Lemma 7:

For problem (1), input a monotone k-submodular function f and A = 2 in KM-
KM. In the fixed t* + 1 iteration, considering the current solution x’ " and the m-swap
G ™), b)), we have

F\ Ly, o) U e o) = f&)
< SO\ Ly 1) Ul o) = L\ L) )
< f(( Ul ) — Fxh
< f&*) = fxh.

Using the monotonicity of f, we get the first inequality. Then the second is due
to orthant submodularity. Because we greedily choose x” for ¢+ € {1, 2}, the third
inequality holds. Similarly, we have

SN g ) Ul o) = ) < fxD = £,

Combining the above two formulas, we have

PO N Ly ) Ul i) = FOE) < 260 = 2060, @D

Proof of Lemma 8:
Givenafixedt € {A, ..., t*}, by greedy choice of ¢-th iteration and the assumption
about t* 4 1, we have

FxN\ Lly(b)ey(b) 1yp),j Ulp) — f(x)
wp

= P (28)

for m-swaps (y(b), b) with b € U(o’ \Xx)|)\U(XI) and y(b) € [U(xH\U (x*)]".

|U (x!
Due to U(O‘IU(X,\XA)‘)\U(Xt) = U (x*)\U(x"), we have
Z wp < B —wy. (29)
1h.i§(0"U(x,\xA)|\X’)
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Combining the above formula, we get

> @\ | L pul)—gx)]

1 =0, 1 ) y(b)€5(b)
= o e\ L] Lempul) - f&] 30)
1 (0], 11 X y(b)€F(b)
< (B —wy)pr,

for 1,@),; < x/\x*.

Proof of Lemma 9:
We introduce a framework of proof inspired by Sarpatwar et al. (2019) to get

t*
8"\ Lyarmyesar) Ly ) ULy i) 1(1 —e . 31)
g(x*) o

Let B), = 0 and B, = ZIT:AH wpr, for any t € {A + 1,...,1* + 1}. Define
B’ = By+y1 = B+ + wy+ and B” = B — wyu.. By the assumption of case 2, we have
B'>B=>B"Forj=1,...,B,wedefiney; = p—y when j = B,_1 + 1, ..., B,.
Note that g(x7) — g(x*~!) = w1 0,1, using the above definition, we obtain that

g(x) = Z [ex") — g(x" ] = Z Wyr-1 pr— I—Zyj, (32)

T=A+1 T=A+1
foreacht € {A+1,...,r*}, and

r*+1

g\ L LUl = Y e — g
yO*)eFD™) T=A+1
41

= Y wyipre 1—2)/]

T=A+1

(33)

Using g(x*) < a[g(x") + ,o,] and (32), we have the following equalities

4

B
g(x) <« e i {g(x )+ sz}
B, / (34)

. B
<
<o  min t*}{z 17/] +—= 5 — VB )
J=

@ Springer



93 Page 18 of 21 Journal of Combinatorial Optimization (2023) 45:93

From (33), (34) and Lemma 4, we obtain that

8N Lypyesor) Lype,je) H 1y irt)
8(x*)

B/
Zj:l Vi

=1 (35)

re{l....B'} i

I a_PBw
= (- (- 2%
1 B
> La— e
> La—e ),
o

Using 1 — %(1 — e Py —r > 0and (35), we have

fET) = f(x") 4+ g(x)

=fON +e N ] Ly ) Ul )

Yy )eFd™)
g\ L] L) Ul ) — 8]
y(O)EFB™)
= fx") +g((x\ 1, o) Uy )
y@'),j ,
y(b)eFd™) (36)
AN L] L) Ul ) — £
y()eFd™)

v

1
FeM + —(- e Prg(x*) —rf(x*)

= l(1 —e Py Fx) 4+ (1 - l(1 —e Py —nreh
o o

\%

1
> —(1—eP)fx".
o

@ Springer



Journal of Combinatorial Optimization (2023) 45:93 Page190f21 93

Proof of Lemma 10:

Recall our settings in proof of Lemma 6: For a fixed iteration step t > A + 1 in
KM-KM, the ground set of Greedy Algorithm(f, G) is G = {vy, ..., UlU(Xt\XA)l} =
Ux! \X)‘) in a fixed order as we mentioned earlier. Each b € U (O‘IU (xt\x)\)|)\U (xh)
will be mapped to y(b) € [U)H\U (x*)]™. Let p = |y(b)| € [m] for each such b,
then write y(b) = {vgys---s vqp}, where 1 < g1 <...q, < m. We have

FEN L e e Ul ) — FG&)
yB)ey (')
qp
= F N\ 1wty e — &)

l=q1
=— [\ 1y, g, ULy, ) — F\ 1y 0]

q2 q2
— AN [ T u e, ) — £\ L]

I=q I=q
q qp
—[f((x’*\l_pll DUl )—f(X’*\I_Ill )]
v, Ji VgpsJap Vis I
I=q1 I=qy

qp dp
+ AN | L) 0wl ) = &N [ 1)

I=q1 I=q1

) ) 37)
= [f(X \ 1v,“,qu u lvql ,j’) - f(X \ lvqlﬁqu )]

q2 q2
FLATN | T uly, 0 = £\ Ly

I=q I=q1
qp qp
FIAN Lt Uy, 0 = £ [ 1]
I=q1 I=q1
qp qap
AN | o) Ul ) = £ [ 1)
I1=q I=q1
dp
< DT UL, ) = FETDIH AT UL ) = fTT]
I=q1
< (p+DIFE) — F(x*H]
< (m+DIfE) — fxTH]
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for t € 1,...,A. The first inequality is due to pairwise monotonicity, that is,
—fx((v,1)) < fx((v,j)) fori # j € [k]. The second is due to orthant submod-
ularity. Because we greedily choose x’ for r € {1, ..., A}, the third inequality holds.
Combining the above A formulas, we have

m

1
L. (38)

fx! \ly(br*),jt*) U lbt*,it*) - fx') = X
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