
Journal of Combinatorial Optimization (2023) 45:84
https://doi.org/10.1007/s10878-023-01012-x

Fast searching on cactus graphs

Yuan Xue1 · Boting Yang1 · Sandra Zilles1 · Lusheng Wang2,3

Accepted: 22 February 2023 / Published online: 19 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The problem of finding the fast search number of a graph is NP-complete. It is chal-
lenging even when the graph has very small treewidth. However, it can be much
easier to find an optimal fast search strategy for smaller subgraphs with special prop-
erties. This observation motivates us to establish relationships between optimal fast
search strategies for a graph and its subgraphs although fast searching does not have
the subgraph-closed property. In this paper, we introduce the notion of k-combinable
graphs and study their properties. We propose a new method for computing the fast
search number of k-combinable graphs. As an application of this method, we exam-
ine the fast searching for cactus graphs. We investigate the properties of optimal fast
search strategies and give a linear time algorithm for computing the fast search number
of cactus graphs.

1 Introduction

The first graph searching model was introduced by Parsons in 1976 (Parsons 1976).
In this model we are given a graph that contains an invisible fugitive who hides on
vertices or edges. Both searchers and the fugitive move along the edges of a graph in a

The preliminary result of this work has been published in the proceedings of the 16th International
Conference on Algorithmic Aspects in Information and Management, 2022.

B Boting Yang
boting.yang@uregina.ca

Yuan Xue
xue228@uregina.ca

Sandra Zilles
zilles@cs.uregina.ca

Lusheng Wang
cswangl@cityu.edu.hk

1 Department of Computer Science, University of Regina, Regina, SK S4S0A2, Canada

2 Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong, China

3 City University of Hong Kong Shenzhen Research Institution, Shenzhen, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-023-01012-x&domain=pdf
http://orcid.org/0000-0001-6884-2093

84 Page 2 of 22 Journal of Combinatorial Optimization (2023) 45 :84

continuous way. Megiddo et al. (1988) introduced the edge searching model in which
the searchers have three actions: placing, removing and sliding. They first proved
that the edge searching problem is NP-hard, and then gave a O(n)-time algorithm
for computing the edge search number of trees, where n is the number of vertices.
Kirousis and Papadimitriou (1986) introduced the node searching model in which the
searchers have twoactions: placing and removing.They related the searchnumber of an
undirected graphG to the minimum and maximum of the progressive pebble demands
of the directed acyclic graphs obtained by orientingG. Bienstock and Seymour (1991)
introduced the mixed searching problem which is related the edge searching and node
searching problems. They showed that both the edge searching problem and the node
searching problem are monotonic (Bienstock and Seymour 1991; LaPaugh 1993).
More models and results can be found in Alspach (2006), Bienstock (1991), Bonato
and Nowakowski (2011), Bonato and Yang (2013), Fomin and Petrov (1996), Fomin
and Thilikos (2008), and Hahn (2007).

Dyer et al. (2008) introduced the fast searching model. There are two actions for
searchers in this model: placing and sliding. They proposed a O(n)-time algorithm to
compute the fast search number of trees. In Yang (2011), Yang proved that the fast
searching problem is NP-complete. Dereniowski et al. (2013) gave a characterization
for the graphs that are 2-searchable or 3-searchable in the fast searchingmodel. Stanley
and Yang (2011) presented a O(n2)-time algorithm for computing the fast search
number of cubic graphs. Note that the problem of finding the node search number of
cubic graphs is NP-complete (Makedon et al. 1985). Xue et al. (2018) provided lower
bounds and upper bounds on the fast search number of complete k-partite graphs.
They also solved an open problem about the fast search number of complete bipartite
graphs. Xue and Yang (2017) investigated the fast search number of the Cartesian
product of an Eulerian graph and a path. They also presented upper and lower bounds
on the fast search number of hypercubes.

This paper is organized as follows. In Sect. 2, we give some definitions and notation.
In Sect. 3, we introduce the notion of k-combinable graphs, and develop a newmethod
for computing their fast search number. In Sect. 4, we investigate the optimal fast
search strategies of cactus graphs. In Sect. 5, we use the new method to design a
linear time algorithm for computing the fast search number of cactus graphs. In Sect.
6, we prove the correctness of our algorithm and analyze its running time. Finally, we
conclude this paper in Sect. 7.

2 Preliminaries

In this paper, we only consider finite simple graphs. Let G = (V , E), where V is a
set of vertices and E is a set of edges. Let v be a vertex of G. The degree of v, written
degG(v), is the number of edges incident to v. If degG(v) = 1, then v is called a leaf
of G. The edge that is incident with a leaf is called a pendent edge. Let V ′ be a subset
of vertices of G. The subgraph of G that consists of all the vertices of V ′ and all the
edges of G between vertices in V ′ is referred to as the subgraph of G induced by V ′,
denoted by G[V ′]. The graph that is obtained from G by deleting all the vertices of

123

Journal of Combinatorial Optimization (2023) 45 :84 Page 3 of 22 84

V ′ is denoted by G −V ′. For simplicity, the graph that is obtained from G by deleting
a vertex v is denoted by G − v.

Let E ′ be a subset of edges of G. The graph that is obtained from G by deleting all
the edges of E ′ is denoted by G − E ′. If G is connected and E ′ contains only pendent
edges, we abuse the notation by using G − E ′ to denote the non-empty subgraph of
G after the edges of E ′ are deleted from G. Let G1 = (V1, E1) and G2 = (V2, E2)

be subgraphs of G. Define G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2).
In the fast searching model introduced by Dyer et al. (2008), we consider a graph

that contains a fugitive. The fugitive can stay on any vertex or along any edge. Note
that the fugitive is invisible to searchers. The fugitive can move at a great speed at any
time from a vertex u to another vertex v if there is a path from u to v that contains no
searchers. The searchers have two actions: placing and sliding. In each step of a fast
searching process, we can either place a searcher on a vertex or slide a searcher along
an edge from one endpoint to the other. Notice that the major difference between the
fast searching model and the edge searching model is that the searchers cannot be
removed from the graph and every edge can be traversed by searchers at most once in
the fast searching model. If an edge may contain the fugitive, then this edge is called
contaminated. If we are certain that an edge does not contain the fugitive, then we say
that this edge is cleared. For a contaminated edge, if there is a searcher sliding along
the edge from one endpoint to the other, then this edge becomes cleared. In order to
capture the fugitive, the searchers clear the graph edge by edge until all edges are
cleared. Since every edge can be traversed by searchers at most once, the searchers
have to protect the already cleared edges from recontamination.

For a graph G, a fast search strategy of G is a sequence of searchers’ actions that
clear all contaminated edges of G. The fast search number of G, denoted by fs(G), is
the smallest number of searchers required to capture the fugitive in G. A fast search
strategy is optimal if the number of searchers used by this strategy is equal to fs(G).

For any positive integer k, we use [k] to denote the set {1, 2, . . . , k}.

3 Aligning operation and k-combinable graphs

In this section, we will introduce a class of graphs named k-combinable graphs.
Then we describe our new method for finding an optimal fast search strategy for
k-combinable graphs. Let G be a connected graph and let E ′

G be the set of all pendent
edges of G. A component of a graph G is a connected subgraph that is not part of any
larger connected subgraph ofG. The profile ofG is an ordered tuple π = (π1, . . . , πz)

of positive integers, which is defined as follows:

1. If E ′
G = ∅, then z = 1 and π1 = fs(G).

2. If |E ′
G | = k ≥ 1, then z = k!2k and each component πi of π is associated with a

specific permutation σ and a specific orientation of each edge in E ′
G . In particular,

πi is the smallest number of searchers placed on non-leaf vertices of G satisfying
that these searchers and the searchers placed on leaves (where searchers have to start
from these leaves depending on orientations) can clear G such that they traverse
the edges in E ′

G in the order of σ and in the directions as given by the chosen
orientations.

123

84 Page 4 of 22 Journal of Combinatorial Optimization (2023) 45 :84

Fig. 1 A graph with profile
(1, 2, 3, 3, 1, 2, 3, 3) shown in
Table 1

Table 1 Each πi , the smallest
number of searchers placed on
non-leaf vertices of the graph in
Fig. 1, depends on the
permutation and orientation of
the pendent edges

Permutation Orientation πi
v3 ↔ v4 v5 ↔ v6

(v3v4, v5v6) ← ← 1

(v3v4, v5v6) ← → 2

(v3v4, v5v6) → ← 3

(v3v4, v5v6) → → 3

(v5v6, v3v4) ← ← 1

(v5v6, v3v4) ← → 2

(v5v6, v3v4) → ← 3

(v5v6, v3v4) → → 3

We use the graph in Fig. 1 to explain the profile. This graph has two pendent edges
v3v4 and v5v6. Each pendent edge is cleared by sliding a searcher from one endpoint to
the other. The profile of the graph is (1, 2, 3, 3, 1, 2, 3, 3), and Table 1 lists each search
number that is associated with a specific permutation and orientation of {v3v4, v5v6}.
For the first component, by the permutation and orientation of {v3v4, v5v6}, we know
that v3v4 is cleared before v5v6 by sliding a searcher from v4 to v3 (v3 ← v4) and
sliding another searcher from v6 to v5 (v5 ← v6). So the graph can be cleared by
placing a searcher on v3 and clear the remaining edges by sliding v3 → v2, v3 →
v5 → v2 → v1 → v5. Notice that πi is the smallest number of searchers placed
on non-leaf vertices. Thus π1 = 1. For π2, by the permutation and orientation of
{v3v4, v5v6}, we know that sliding v3 ← v4 to clear v3v4 is before sliding v5 → v6
to clear v5v6. After v3v4 is cleared by sliding v4 → v3, the remaining graph can
be cleared by placing a searcher on v3 and v5, respectively, and sliding v3 → v2,
v3 → v5 → v2 → v1 → v5 → v6. Thus π2 = 2. For π3, by the permutation and
orientation, sliding v3 ← v4 to clear v3v4 is before sliding v6 → v5 to clear v5v6.
We have to place three searchers on v3 and clear all incident edges of v3 by sliding
v3 → v4, v3 → v5 and v3 → v2. The remaining graph can be cleared by sliding
v6 → v5 → v2 → v1 → v5. So π3 = 3. For π4, by the permutation and orientation,
sliding v3 → v4 is before sliding v5 → v6. We first place two searchers on v5 and
one searcher on v2. Then clear all edges by sliding v5 → v2 → v1 → v5 → v3,
v2 → v3 → v4 and v5 → v6. Hence π4 = 3. The remaining πi , 5 ≤ i ≤ 8, can be
determined similarly.

123

Journal of Combinatorial Optimization (2023) 45 :84 Page 5 of 22 84

Let G1 be a connected graph that has k1 ≥ 1 pendent edges, and let G2 be a
connected graph having k2 ≥ 1 pendent edges. Let k be an integer satisfying 1 ≤ k ≤
min{k1, k2}. Let −→e1 = (u1u′

1, . . . , uku
′
k), where uiu

′
i ∈ E(G1) and u′

i is a leaf. Let−→e2 = (v1v
′
1, . . . , vkv

′
k), where viv

′
i ∈ E(G2) and v′

i is a leaf. Let H be the graph
obtained from G1 and G2 by performing the following operations on G1 and G2 with
respect to −→e1 and −→e2 : For each i ∈ [k], remove leaves u′

i and v′
i , and add edge uivi .

Note that the above operations depend on the choice of the sequences −→e1 and −→e2
which wewill henceforth call edge pairing sequences. If we permute either of the edge
pairing sequences, this would create a different graph H . Hence, we define the aligning
operation on G1 and G2 with respect to −→e1 and −→e2 , denoted as (G1,

−→e1)�(G2,
−→e2),

to be the above operations to obtain H .

Definition 3.1 Let G1, . . . ,Gm , m ≥ 2, be a sequence of connected graphs. We say
that the sequence (G1, . . . ,Gm) is k-combinable if there are edge pairing sequences−→e1 , . . . ,

−→em , −→e1,2, . . . ,−−−→e1,m−1 satisfying that:

1. for each i ∈ [m], −→ei is a sequence of pendent edges of Gi ;
2. for each i ∈ {2, . . . ,m − 1}, −→e1,i is a sequence of pendent edges of Hi , where

H2 = (G1,
−→e1)�(G2,

−→e2), and Hi+1 = (Hi ,
−→e1,i)�(Gi+1,

−−→ei+1);
3. for each i ∈ [m], the set of all edges of Gi , which occur in −→e1 , . . . ,

−→em and−→e1,2, . . . ,−−−→e1,m−1, has size at most k; and
4. for each i ∈ {2, . . . ,m − 1}, the set of all edges of Hi , which occur in

−→e1 , . . . ,
−→em

and −→e1,2, . . . ,−−−→e1,m−1, has size at most k.

We call Hm a k-combination of (G1, . . . ,Gm), in particular, this is the k-combination
of (G1, . . . ,Gm) with respect to −→e1 , . . . ,

−→em , −→e1,2, . . . ,−−−→e1,m−1.

Note that there may exist more than one graph that is a k-combination of
(G1, . . . ,Gm). Further, for each k-combination G of (G1, . . . ,Gm), there exist spe-
cific edge pairing sequences−→e1 , . . . ,

−→em ,−→e1,2, . . . ,−−−→e1,m−1 to obtainG. In the remainder
of this section, we always assume that every time an algorithm handles profiles of
graphs, it implicitly associates the profiles with corresponding edge pairing sequences.

Theorem 3.2 Given the profiles and edge pairing sequences of two connected graphs
G1 and G2, let G be a k-combination of (G1,G2) with respect to the edge pairing
sequences. Then there exists an algorithm that runs in O(k!(k1 + k2 − 2k)!2k1+k2−k)

time to compute the profile of G, where k1 and k2 refer to the number of pendent edges
of G1 and G2 respectively.

Proof Let −→e1 and −→e2 denote the edge pairing sequences of G1 and G2, respectively,
such that G is the k-combination of (G1,G2) with respect to

−→e1 and −→e2 . Consider all
the edges in −→e1 and −→e2 . If we are given a set of rules instructing how these edges are
cleared in a fast search strategy, then in accordance with the rules, we can figure out the
number of searchers that need to be placed on the non-leaf vertices in V (G). Thus, for
each component in the profile of G, it takes O(k!2k) time to compute its value, where
k!2k is the number of the permutations and orientations of the k pairing edges. Note
that the number of components in the profile of G is (k1 + k2 −2k)!2k1+k2−2k . Hence,
the time complexity for computing the profile of G is O(k!(k1 + k2 − 2k)!2k1+k2−k).
�

123

84 Page 6 of 22 Journal of Combinatorial Optimization (2023) 45 :84

Fig. 2 A graph that can be split
into two vertex-disjoint trees by
deleting four edges

Fig. 3 A graph consists of three components after the solid edges are deleted

It follws from Theorem 3.2 that our method can be applied to find an optimal fast
search strategy for quite complicated graphs, if the graph can be split into two smaller
graphs for which fast search strategies are easy to find. For example, consider the
graph in Fig. 2. This graph G can be decomposed into two vertex-disjoint trees T1 and
T2, and the two trees are connected by four edges. So G is a 4-combination of (T ′

1, T
′
2)

with respect to the edge pairing sequences, where T ′
i , 1 ≤ i ≤ 2, is the tree obtained

from Ti by attaching four pendent edges in the edge pairing sequence. Note that the
fast search number of a tree can be computed in linear time (Dyer et al. 2008). Upon
knowing the profiles of T ′

1 and T ′
2, we then can apply the new method presented in

Theorem 3.2 to compute the fast search number of the graph G.
Moreover, if we are givenG that is a k-combination of (G1, . . . ,Gm)wherem ≥ 3,

by repeatedly applying the procedure presented in the proof of Theorem 3.2, we can
find an optimal fast search strategy for G. This novel method reveals an interesting
property of fast searching that has not been exploited systematically in the literature
to date. Moreover, as we will show in the remainder of this paper, our method can be
applied to a wide class of graphs.

Corollary 3.3 Let G be a k-combination of (G1, . . . ,Gm) with respect to edge pairing
sequences−→e1 , . . . ,

−→em,−→e1,2, . . . ,−−−→e1,m−1, whereG1, . . . ,Gm are connected graphs and
k is a constant. Given the profiles of G1, …, Gm as input, there exists an algorithm
which runs in polynomial time to compute the fast search number of G.

Note that in Definition 3.1, Gi may not always be a subgraph of G. Consider the
graph in Fig. 3. Suppose that after removing edges u1v1, u1v2, u2v2, u3v2, v3w1, v3w2,
v4w1 and v4w2, the remaining graph consists of three components that are represented
by three dotted circles. Let H1, H2 and H3 denote the three components from left to

123

Journal of Combinatorial Optimization (2023) 45 :84 Page 7 of 22 84

right. Let H ′
1 be obtained from H1 by adding the edges u1v1, u1v2, u2v2 and u3v2.

Let G1 be obtained from H1 by adding four pendent edges u1u′
1, u1u

′
2, u2u

′
3, u3u

′
4.

Consider H ′
1. Note that u1, u2 and u3 have a common neighbor v2. Hence, if v2 has

both cleared and contaminated incident edges at somemoment in a fast search strategy,
then at least one searcher must reside on v2. In G1, however, we know that u1, u2 and
u3 share no common neighbor that is outside H1. Hence, no searcher needs to reside
on the leaves u′

1, u
′
2, u

′
3, u

′
4 whenever their incident pendent edges are cleared.

In the next section, we will use Theorem 3.2 to compute the fast search number of
cactus graphs.

4 Cactus graphs

A cactus is a connected graph in which each edge is contained in at most one cycle. A
cut-vertex of a graph is a vertex whose deletion increases the number of components.
Throughout this section, we use G to denote a cactus.

Definition 4.1 Let G be a cactus that contains a cut-vertex v. Let H be a component
in G − v, where a component of a graph G is a maximal connected subgraph of G.
The subgraph of G induced by V (H) ∪ {v}, denoted by Gv , is called a subcactus of
G attached to v. For a subcactus Gv , if the degree of v in Gv is one, let G ′

v denote the
graph obtained from Gv by adding one pendent edge to v; if the degree of v in Gv is
two, let G ′

v denote the graph obtained from Gv by adding two pendent edges to v. G ′
v

is called an extension of Gv with respect to v.

For a subcactus Gv defined in Definition 4.1, it is easy to see that v has degree at
most two in Gv . So we have two cases.

Case 1. If v has degree one inGv , let u ∈ V (Gv) be the neighbor of v. An I-strategy
for Gv is a fast search strategy such that vu is cleared by sliding a searcher from v to
u, and the number of searchers placed on V (Gv) \ {v} is minimum. This minimum
number is denoted by πI (Gv). Note that if vu is cleared by sliding a searcher from
v to u in a fast search strategy, then a searcher must be placed on v at the beginning
of the strategy and this searcher is not counted in πI (Gv). Similarly, an O-strategy
for Gv is a fast search strategy such that vu is cleared by sliding a searcher from u
to v, and the number of searchers placed on V (Gv)\{v} is minimum. This minimum
number is denoted by πO(Gv).

For the extension G ′
v of Gv with respect to v, let wv be the added pendent edge

such that w is not in Gv and has degree one in G ′
v . An I-strategy for G ′

v is a fast
search strategy such that wv is cleared by sliding a searcher from w to v, and the
number of searchers placed on V (Gv) is minimum. This minimum number is denoted
by πI (G ′

v). Similarly, we can define O-strategy for G ′
v and πO(G ′

v).

Case 2. If v has degree two in Gv , let u1, u2 ∈ V (Gv) be the two neighbors of
v. For i ∈ {1, 2}, we say vui is cleared by a slide-in action if a searcher slides from
v to ui along vui , and we say vui is cleared by a slide-out action if a searcher slides
from ui to v along vui . We use πI I (Gv) (resp. πOO(Gv)) to denote the minimum
number of searchers placed on V (Gv) \ {v} in a fast search strategy for Gv , in which

123

84 Page 8 of 22 Journal of Combinatorial Optimization (2023) 45 :84

vu1 and vu2 are both cleared by slide-in (resp. slide-out) actions. We use πI O(Gv)

(resp. πOI (Gv)) to denote the minimum number of searchers placed on V (Gv) \ {v}
in a fast search strategy for Gv , in which a slide-in (resp. slide-out) action clears one
of vu1 and vu2 first, and a slide-out (resp. slide-in) action clears the other edge later.
An II-strategy for Gv is a fast search strategy such that vu1 and vu2 are both cleared
by slide-in actions and the number of searchers placed on V (Gv) \ {v} is πI I (Gv).
Similarly we can define IO-strategy, OI-strategy and OO-strategy for Gv .

For the extension G ′
v of Gv , let w1v and w2v be two added pendent edges where

w1, w2 /∈ V (Gv) and both have degree one in G ′
v . We use πI I (G ′

v) to denote the
minimum number of searchers placed on V (Gv) in a fast search strategy for G ′

v , in
whichw1v andw2v are both cleared by slide-in actions (i.e., sliding fromwi to v along
wiv). An II-strategy for G ′

v is a fast search strategy such that w1v and w2v are both
cleared by slide-in actions and the number of searchers placed on V (Gv) is πI I (G ′

v).
Similarly we can define πI O(G ′

v), πOI (G ′
v), πOO(G ′

v), IO-strategy, OI-strategy and
OO-strategy for G ′

v .

Definition 4.2 Let Gv and G ′
v be defined in Definition 4.1. If v is a leaf in

Gv , then the profile of Gv (resp. G ′
v) is defined as the pair (πI (Gv), πO(Gv))

(resp. (πI (G ′
v), πO(G ′

v))). If v has degree two in Gv , the profile of Gv (resp.
G ′

v) is defined as the 4-tuple (πI I (Gv), πI O(Gv), πOI (Gv), πOO(Gv)) (resp.
(πI I (G ′

v), πI O(G ′
v), πOI (G ′

v), πOO(G ′
v))).

Note that in Definition 4.2, when v has degree two inGv , the profile of the extension
G ′

v is defined as the 4-tuple (πI I (G ′
v), πI O(G ′

v), πOI (G ′
v), πOO(G ′

v)), instead of an
8-tuple in the general definition of profileπ at the beginning of this section. The reason
is that the two pendent edges in G ′

v are incident with the same vertex, i.e., v. So the
ordering of clearing these two pendent edges, that is, the permutation of the two edges,
does not affect the fast search number of G ′

v . Thus we simplify the notation of profile
by only considering the orientation of the two pendent edges.

Definition 4.3 Let S be a fast search strategy for G. The reverse of S is obtained from
S by making the following modifications:

1. Remove all placing actions from S. For each vertex v ∈ V (G) that contains
searchers at the end of S, insert placing actions at the beginning that place the
same number of searchers on v.

2. For each edge e ∈ E(G), reverse the sliding action on e by letting searcher move
in the opposite direction to clear it.

3. Reverse the ordering of all sliding actions.

It is not hard to prove that a fast search strategy S and its reverse use the same
number of searchers to clear G.

We now show that the profile of a subcactus Gv must have one of the properties in
the following theorem.

Theorem 4.4 Let Gv be a subcactus defined in Definition 4.1. If v has degree two in
Gv , then the profile of Gv has one of the properties (R1) - (R6). If v is a leaf in Gv ,
then the profile of Gv has property (R7). Moreover, for each of these relations, there
exist subcacti whose profiles have the relation.

123

Journal of Combinatorial Optimization (2023) 45 :84 Page 9 of 22 84

Fig. 4 (a) πI I (Gv) = πI O (Gv) = πOI (Gv) = 2, and πOO (Gv) = 4. (b) πI I (Gv) = πI O (Gv) = 2,
πOI (Gv) = 3, and πOO (Gv) = 4

(R1) πI I (Gv) = πI O(Gv) = πOI (Gv) = πOO(Gv) − 2;
(R2) πI I (Gv) = πI O(Gv) = πOI (Gv) − 1 = πOO(Gv) − 2;
(R3) πI I (Gv) = πI O(Gv) = πOI (Gv) − 2 = πOO(Gv) − 2;
(R4) πI I (Gv) = πI O(Gv) − 1 = πOI (Gv) − 1 = πOO(Gv) − 2;
(R5) πI I (Gv) = πI O(Gv) − 1 = πOI (Gv) − 2 = πOO(Gv) − 2;
(R6) πI I (Gv) = πI O(Gv) − 2 = πOI (Gv) − 2 = πOO(Gv) − 2;
(R7) πI (Gv) = πO(Gv) − 1.

Proof If v has exactly one incident edge in Gv , let u be the neighbor of v. Note that an
I-strategy for Gv is a fast search strategy such that vu is cleared by sliding a searcher
from v to u, and the searcher placed on v is not counted in πI (Gv). Notice that a fast
search strategy for Gv and its reverse use the same number of searchers to clear Gv .
Thus πI (Gv) = πO(Gv) − 1, that is, the profile of Gv has property (R7).

Suppose that v has two incident edges in Gv . Let u1, u2 ∈ V (Gv) be the two
neighbors of v. Note that an II-strategy for Gv is a fast search strategy such that vu1
and vu2 are both cleared by slide-in actions and the number of searchers placed on
V (Gv)\ {v} is πI I (Gv). So the two searchers placed on v are not counted in πI I (Gv).
Since a fast search strategy and its reverse use the same number of searchers, we
have πI I (Gv) = πOO(Gv) − 2. Furthermore, from the definitions of πI O(Gv) and
πOI (Gv), we have πI I (Gv) ≤ πI O(Gv) ≤ πOI (Gv) ≤ πOO(Gv). Hence, there are
six possible relations, i.e., (R1) - (R6), among the four components of the profile of
Gv . We will show that each of these relations is held for some subcacti Gv .

(i) We first show that the subcactus in Fig. 4 a satisfies property (R1). For an II-
strategy, we place searcher λ1 on a1 and place λ2 on a2. Let λ3 and λ4 be two slide-in
searchers on v, and move them to u1 and u2 respectively. Note that λ3 and λ4 are
not counted in πI I (Gv). Then move λ1 and λ2 to u1 along two edge-disjoint paths
respectively, move λ1 to u2, and move λ1 and λ4 to b1 and b2 along two edge-disjoint
paths respectively. Thus πI I (Gv) ≤ 2. For an IO-strategy, we place λ1 on a1 and place
λ2 on a2. Let λ3 be the slide-in searcher that moves from v to u2 (λ3 is not counted
in πI O(Gv)). Then move λ1 and λ2 to u1, move λ1 to u2, move λ2 to v, and move λ1
and λ3 to b1 and b2 respectively. So πI O(Gv) ≤ 2. For an OI-strategy, we place λ1
on a1 and place λ2 on a2. Then move λ1 and λ2 to b1 and b2 along two edge-disjoint
paths respectively. Hence πOI (Gv) ≤ 2. For an OO-strategy, we place λ1 on a1 and
place λ2 on a2. We place λ3 and λ4 on u2. Then move λ1 and λ2 to u1, move λ2 to
v, move λ1 to u2, move λ4 to v, and move λ1 and λ3 to b1 and b2 respectively. Thus
πOO(Gv) ≤ 4. Note that one searcher cannot clear Gv in an II-strategy, IO-strategy,

123

84 Page 10 of 22 Journal of Combinatorial Optimization (2023) 45 :84

Fig. 5 (a) πI I (Gv) = 1, πI O (Gv) = πOI (Gv) = 2, πOO (Gv) = 3. (b) πI I (Gv) = 0, πI O (Gv) = 1,
πOI (Gv) = πOO (Gv) = 2

or OI-strategy. Therefore πI I (Gv) = πI O(Gv) = πOI (Gv) = 2. It is easy to see that
3 searchers cannot clear Gv in an OO-strategy. Hence πOO(Gv) = 4.

(ii) We next show that the subcactus in Fig. 4b satisfies property (R2). For an II-
strategy, we place λ1 on a1 and place λ2 on a2. Let λ3 and λ4 be two slide-in searchers
moving from v to u1 and u2 respectively. Then move λ3 and λ4 to v′, move λ1 and
λ2 to b1 and b2 along two edge-disjoint paths respectively. So πI I (Gv) ≤ 2. For an
IO-strategy, we place λ1 on a1 and place λ2 on a2. Let λ3 be the slide-in searcher that
moves from v to u1. Then move λ1 and λ2 to b1 and b2 along two edge-disjoint paths
respectively; when a searcher, say λ2, is on v′, move λ3 to v′, then to u2 and back to
v. Thus πI O(Gv) ≤ 2. For an OI-strategy, we place λ1 on a1, λ2 on a2, and λ3 on v′.
Then move λ1 and λ2 to b1 and b2 along two edge-disjoint paths respectively; when
λ2 (or λ1) is on v′, move λ3 along the top 4-cycle to clear it. Hence πOI (Gv) ≤ 3.
For an OO-strategy, we place λ1 on a1, λ2 on a2, and place λ3 and λ4 on v′. Then
move λ1 and λ2 to b1 and b2 along two edge-disjoint paths respectively; when λ2
(or λ1) is on v′, move λ3 and λ4 to v along the two edge-disjoint paths respectively.
Thus πOO(Gv) ≤ 4. Note that one searcher cannot clear Gv in an II-strategy or IO-
strategy, two searchers cannot clear Gv in an OI-strategy, and three searchers cannot
clear Gv in an OO-strategy. Therefore πI I (Gv) = πI O(Gv) = 2, πOI (Gv) = 3 and
πOO(Gv) = 4.

(iii) If Gv is a cycle of length at least 4, then we have πI I (Gv) = πI O(Gv) = 0.
For an OI-strategy or OO-strategy, since one searcher cannot clear a cycle of length
at least 4 but two searchers can, we know that πOI (Gv) = πOO(Gv) = 2.

(iv) Consider the subcactus Gv in Fig. 5a. For an II-strategy, we place λ1 on a1.
Let λ2 and λ3 be two slide-in searchers moving from v to u1 and u2 respectively.
Then move λ1 to u1 and then to a2, move λ2 to u2, and move λ2 and λ3 to b1 and
b2 respectively. Note that πI I (Gv) ≥ 1, and thus πI I (Gv) = 1. For an IO-strategy,
we place λ1 on a1 and place λ2 on a2. Let λ3 be the slide-in searcher moving from
v to u2. Then move λ1 and λ2 to u1, move λ1 to u2, move λ2 to v, and move λ1 and
λ3 to b1 and b2 respectively. It is easy to see that one searcher cannot clear Gv in an
IO-strategy. So πI O(Gv) = 2. For an OI-strategy, we place λ1 on a1 and place λ2
on a2. Then move λ1 and λ2 to u1, move λ1 to u2, move λ2 to v and then to u2, and
move λ1 and λ2 to b1 and b2 respectively. Thus πOI (Gv) ≤ 2. For an OO-strategy,
we place searcher λ1 on b1 and place λ2 on b2. We place λ3 on a1. Then move λ1 and
λ2 to u2, move λ2 to v, move λ1 to u1, move λ3 to u1, and move λ1 and λ3 to v and

123

Journal of Combinatorial Optimization (2023) 45 :84 Page 11 of 22 84

Fig. 6 πI I (Gv) = 0 and
πI O (Gv) = πOI (Gv) =
πOO (Gv) = 2

a2 respectively. Hence πOO(Gv) ≤ 3. Since one searcher cannot clear Gv in an OI-
strategy, and two searchers cannot clear Gv in an OO-strategy, we have πOI (Gv) = 2
and πOO(Gv) = 3.

(v) Consider the subcactus Gv in Fig. 5b. Similarly to the above cases, we can show
that πI I (Gv) = 0, πI O(Gv) = 1 and πOI (Gv) = πOO(Gv) = 2.

(vi) We next show that the subcactus in Fig. 6 satisfies property (R6). For an II-
strategy, let λ1 and λ2 be two slide-in searchers on v, and move them to u1 and u2
respectively. Then move λ1 to u2 and then move λ1 and λ2 to b1 and b2 respectively.
Thus πI I (Gv) = 0. For an IO-strategy, we place λ1 and λ2 on u2. Let λ3 be the
slide-in searcher on v, and move this searcher to u1, and then to u2 and move back
to v. Then move λ1 and λ2 to b1 and b2 respectively. So πI O(Gv) ≤ 2. For an OI-
strategy, we place λ1 on b1 and place λ2 on b2. Then move λ1 and λ2 to u2, move
λ2 to v and then to u1, and move λ1 to u1. Hence πOI (Gv) ≤ 2. Similarly, for an
OO-strategy, we place λ1 on b1 and place λ2 on b2. Then move λ1 and λ2 to u2,
move λ2 to v, and move λ1 to u1 and then to v. So πOO(Gv) ≤ 2. Note that one
searcher cannot clear Gv in an IO-strategy, OI-strategy, or OO-strategy. Therefore
πI O(Gv) = πOI (Gv) = πOO(Gv) = 2. �

5 Algorithm

In this section, we give an algorithm that can compute the fast search number of any
cactus G. FastSearchCactus(G) (see Algorithm 1) is the main function, which
invokes functions Profile1 and Profile3 to compute the profiles of subcacti.

Algorithm 1 FastSearchCactus(G)
Input: A cactus G.
Output: The fast search number of G.
1: If G is a tree, then call FS(G) in Dyer et al. (2008) and output fs(G). If G is a cycle, then fs(G) = 2

and output this number.
2: Arbitrarily select a cut vertex v in V (G). Let H1, . . . , Hk be all components inG−v. LetGi , 1 ≤ i ≤ k,

denote the subgraph of G induced by V (Hi) ∪ {v}. Let Ev denote the edge set consisting of the edges
connecting v and vertices in V (H1). Let H be the subgraph of G induced by V (H2) ∪ · · · ∪ V (Hk) ∪
V (Ev).

3: For each i ∈ [k], call Profile1(Gi , v) and let PGi be its output.
4: Call Profile3(H , Ev , v, {PG2 , . . . ,PGk }) and let PH be its output.
5: For all possible combinations of the profiles from PG1 and PH with respect to sliding actions on

the edges in Ev , let α be the minimum number among the number of searchers used in each of these
combinations of profiles.

6: Output α.

123

84 Page 12 of 22 Journal of Combinatorial Optimization (2023) 45 :84

Profile1 (see Algorithm 2) computes the profile of Gi defined in Algorithm 1.
Note that Gi is a subcactus attached to v that is a cut vertex of G. The output of
Profile1 is the profile of Gi .

Algorithm 2 Profile1(Gi , v)
1: IfGi is a tree, then compute πO (Gi) by calling FS(G) in Dyer et al. (2008). Let πI (Gi) = πO (Gi)−1.

Output (πI (Gi), πO (Gi)).
2: If Gi is a simple cycle, let πI I (Gi) = πI O (Gi) = 0 and πOI (Gi) = πOO (Gi) = 2. Output

(πI I (Gi), πI O (Gi), πOI (Gi), πOO (Gi)).
3: If v is contained in a cycle of Gi , then output the profile of Gi , which is computed by Profile2(Gi ,

v).
4: If v is a leaf ofGi , let u ∈ V (Gi) be the vertex adjacent to v. Output the profile ofGi , which is computed

by Profile1(Gi − v, u).
5: Otherwise, for all subcacti X1, . . . , Xm attached to v, compute their profiles PX j by calling

Profile1(X j , v), 1 ≤ j ≤ m; merge these profiles to obtain the profile of Gi by calling Profile3(Y ,
Ev , v, {PX1 , . . . ,PXm }), where Y is an extension of the subgraph induced by the vertices of all X j
by adding two pendent edges to v which form the edge set Ev . Output the profile of Gi .

Profile2 (see Algorithm 3) is used to compute the profile of Gi in Step 3 of
Profile1when the cut-vertex v is contained in a cycle of Gi . The output of Profile2
is the profile of Gi .

Algorithm 3 Profile2(Gi , v)
1: Let C = vu1 . . . uk′v be the simple cycle in Gi that contains v. Let Xu1 , . . . , Xuk′ denote the compo-

nents after deleting all edges of C from Gi . Let Eu j ⊂ E(C), 1 ≤ j ≤ k′, be the set containing the
two incident edges upon u j . Let Yu j denote the graph obtained from Xu j by attaching the two edges
of Eu j to u j .

2: For each j ∈ [k′] compute the profile of Yu j as follows: Let Z1, . . . , Zm j denote all components in

Xu j −u j and let Z
′
�
, 1 ≤ � ≤ m j , be the subgraph of Xu j induced by V (Z�)∪{u j }; for each � ∈ [m j],

call Profile1(Z ′
�
, u j) and let PZ ′

�
be its output; call Profile3(Yu j , Eu j , u j , {PZ ′

1
, . . . ,PZ ′

m j
})

and its output is the profile of Yu j .
3: Initially let W = Yu1 and j = 2.
4: Compute the profile of W ∪ Yu j with respect to the pendent edges on u1 and u j ,

5: Update W ← W ∪ Yu j and j ← j + 1. If j = k′, similarly to Step 4, compute the profile of W and
output this profile; otherwise, go to Step 4.

Profile3 (see Algorithm 4) is used for computing the profile of G ′
v defined in

Definition 4.1. Recall that Gv satisfies (Ri) if it has the i-th property in Theorem 4.4,
where 1 ≤ i ≤ 7. The input of Profile3 includes G ′(= G ′

v), Ev (the pendent edge(s)
added to v when G ′

v is constructed from Gv), the vertex v (a cut vertex of G) and the
set of profiles P (refer to Step 4 in Algorithm 1 or Step 2 in Profile2). The output of
the algorithm is the profile of G ′.

123

Journal of Combinatorial Optimization (2023) 45 :84 Page 13 of 22 84

Algorithm 4 Profile3(G ′, Ev , v, P)
1: If |Ev | = 1, then call FastSearch(G′ − Ev, 1, 1,P) and assign its output to πI (G

′). Let πO (G′) =
πI (G

′) + 1. Output (πI (G
′), πO (G′)) that is the profile of G′.

2: If |Ev | = 2, then compute each component of the profile of G′ as follows.
(i) Call FastSearch(G′ − Ev, 2, 2,P) and assign its output to πI I (G

′).
(ii) Let πOO (G′) = πI I (G

′) + 2.
(iii) Call FastSearch(G′ − Ev, 0, 1,P) and assign its output to πI O (G′).
(iv) If there are at least five edges in E(G′) incident with v, then call FastSearch(G′ − Ev, 0, 0,P)

and assign its output toπOI (G
′); otherwise, for the subcactiwhose profiles areP , let ri , 1 ≤ i ≤ 7,

be the number of those subcacti that satisfy (Ri).
(a) If 1 ≤ r7 ≤ 2, let t be the minimum number of searchers required for clearing G′ − Ev , such

that all the subcacti of G′ − Ev attached to v and satisfying (R7) are cleared by O-strategies.
Let πOI (G

′) = t + 2 − r7, and go to Step v.
(b) If there is some i , where 2 ≤ i ≤ 6, such that ri = 1, let t be the minimum number of

searchers required for clearing G′ − Ev , such that the subcacti of G′ − Ev satisfying (Ri) is
cleared by an OO-strategy. Let πOI (G

′) = t , and go to Step v.
(c) If r1 = 1, let t be the minimum number of searchers required for clearing G′ − Ev , such that

the subcacti of G′ − Ev satisfying (R1) is cleared by an OI-strategy. Let πOI (G
′) = t + 1.

(v) Output (πI I (G
′), πI O (G′), πOI (G

′), πOO (G′)), the profile of G′.

FastSearch (see Algorithm 5) is called by Profile3 as a subroutine, which com-
putes the total number of searchers for clearing G ′ − Ev under some specific setting
determined by σ1 and σ2. Let P be the set containing the profiles of all the subcacti
of G ′ − Ev attached to v (refer to Step 4 in Algorithm 1 or Step 2 in Profile2). σ1
and σ2 are defined in the following two paragraphs.

We first explain σ1. For the case when |Ev| = 1, let x1 be the minimum number
of searchers required for clearing G ′ where the edge in Ev is cleared by a slide-in
action, and let S1 be the corresponding strategy of G ′. Let S ′

1 be the strategy obtained
from S1 by replacing the slide-in action on the edge in Ev with a placing action on v.
Clearly, S ′

1 clears G
′ − Ev . Hence, x1 is equal to the minimum number of searchers

required for clearing G ′ − Ev where v is initially placed at least one searcher. For the
case when |Ev| = 2, let x2 be the minimum number of searchers required for clearing
G ′ where the two edges in Ev are cleared both by slide-in actions. Obviously, x2 is
equal to the minimum number of searchers required for clearing G ′ − Ev where at
least two searchers are initially placed on v. Hence, we can always convert a slide-in
action on an incident edge of v to a placing action on v. In a similar way, a slide-out
action on an incident edge of v can be converted to the removal of a placing action on
v. For convenience, we use σ1 to denote the number of searchers placed on v, which
is equal to the sum of (1) the number of searchers placed on v, and (2) the number of
incident edges cleared by slide-in actions minus the number of incident edges cleared
by slide-out actions. Note that in the process of assigning strategies to subcacti of
G ′ − Ev , the difference between the numbers of incident edges that are cleared by
slide-in actions and slide-out actions may change dynamically. Hence, σ1 can change
dynamically throughout the process of assigning strategies to subcacti of G ′ − Ev .

We now explain σ2. Let σ2 be the sum of (1) the number of searchers placed on
v, and (2) the number of slide-out actions in OO-strategies and OI-strategies that are
already assigned to subcacti of G ′ − Ev . Similarly, σ2 can change dynamically while

123

84 Page 14 of 22 Journal of Combinatorial Optimization (2023) 45 :84

we are assigning strategies to subcacti of G ′ − Ev . We use σ2 to help determine if IO-
strategies can be assigned to subcacti of G ′ − Ev without placing additional searchers
on v. If σ2 ≥ 2, then this is sufficient for us to assign IO-strategies to any number of
subcacti of G ′ − Ev . For simplicity, σ2 is always set to 2 if the actual value of σ2 is
larger than 2.

Algorithm 5 FastSearch(G, σ1, σ2,P)
1: Let Gv be the set of subcacti corresponding to the profiles in P . For each 1 ≤ i ≤ 7, find ri , the number

of subcacti in Gv which satisfy (Ri).
2: Find non-negative integers s16 , s

2
6 , s

1
7 and s27 satisfying that (1) s16 + s26 = r6; (2) s

1
7 + s27 = r7; (3)

σ1 + s27 − s17 + 2(s26 − s16) has the minimum non-negative value.

3: Let s16 subcacti satisfying (R6) be cleared by II-strategies; let s
2
6 subcacti satisfying (R6) be cleared by

OO-strategies. Let s17 subcacti satisfying (R7) be cleared by I-strategies; let s
2
7 subcacti satisfying (R7)

be cleared by O-strategies.
4: Update σ1 ← σ1 + s27 − s17 + 2(s26 − s16), and σ2 ← min{σ2 + s27 + 2s26 , 2}.
5: List all feasible strategy assignments to the subcacti ofG which have not been assigned strategies, where

the following conditions are satisfied.

(a) If σ2 ≤ 1, then at most one searcher is placed on v or at most one subcactus is assigned an
OO-strategy; if σ2 = 2, then no subcactus is assigned an OO-strategy and no searcher is placed
on v.

(b) If a subcactus is assigned an OO-strategy in (a), then update σ1 ← σ1 + 2 and σ2 ← 2; if a
searcher is placed on v in (a), then update σ1 ← σ1 + 1 and σ2 ← min{σ2 + 1, 2}.

(c) If σ1 ≥ 2, then at most one subcactus is assigned an II-strategy; if there is one subcactus being
assigned an II-strategy, then update σ1 ← σ1 − 2.

(d) For each of the remaining subcacti that has not been assigned a strategy: if the subcactus satisfies
(R1) or (R4), then assign an OI-strategy to the subcactus; if the subcactus satisfies (R2), (R3) or
(R5), then assign an IO-strategy to the subcactus.

6: Find the strategy from the feasible strategy assignments in Step 5 which uses the minimum number of
searchers. Output this minimum number.

6 Correctness and running time

We say that two fast search strategies for a graph are equivalent if both of them use
the same number of searchers to clear the graph. From this definition, we know that a
fast search strategy and its reverse are equivalent.

Lemma 6.1 Let G be a cactus that contains a cut-vertex v, and let Gv be the set of
all subcacti attached to v. For any optimal fast search strategy for G, there exists an
equivalent strategy such that the subcacti in Gv are cleared in the following order:

1. All subcacti that are cleared by an O-strategy or OO-strategy;
2. All subcacti that are cleared by an OI-strategy (for each of these subcacti, perform

all actions in the strategy for this cactus until exactly one of the two edges incident
on v is cleared);

3. All subcacti that are cleared by an IO-strategy;
4. All subcacti that are cleared by an OI-strategy (for each of these subcacti, perform

all remaining actions in the strategy for this cactus);
5. All subcacti that are cleared by an I-strategy or II-strategy.

123

Journal of Combinatorial Optimization (2023) 45 :84 Page 15 of 22 84

Proof Let S be an optimal fast search strategy that clears G using fs(G) searchers.
Since G is a cactus and v is a cut vertex, every subcactus attached to v has one or two
edges incident with v. We will transform S into an equivalent strategy S ′ satisfying
the ordering in the lemma. For a Gv ∈ Gv , we have the following cases for clearing it
by S.

Case 1. If only one edge of Gv is incident on v and this edge is cleared by a
slide-out action in S, then the searchers to clear Gv by S will stay in Gv except the
searcher who slides out of Gv . Thus we can group the actions of S for clearing Gv

into an O-strategy. Similarly, if two edges of Gv are incident on v and they are cleared
by two slide-out actions in S, we can group the actions of S for clearing Gv into an
OO-strategy.

Case 2. If two edges of Gv are incident on v, where one of them, say uv, is cleared
by a slide-out action in S before the other is cleared by a slide-in action, then we can
group the actions of S for clearing Gv into two parts of an OI-strategy: the first part
consists of actions of S on Gv that are performed before and including the slide-out
action on uv, and the second part consists of actions on Gv that are performed after
the slide-out action on uv.

Case 3. If two edges of Gv are incident on v, where one of them is cleared by a
slide-in action in S before the other is cleared by a slide-out action, then we can group
the actions of S for clearing Gv into an IO-strategy.

Case 4. If only one edge of Gv is incident on v and this edge is cleared by a
slide-in action in S, then all searchers to clear Gv by S will stay in Gv . Thus we can
group the actions of S for clearing Gv into an I-strategy. Similarly, if two edges of Gv

are incident on v and they are cleared by two slide-in actions in S, we can group the
actions of S for clearing Gv into an II-strategy.

For the groups of actions in the above cases, we can arrange these groups in the
following ordering:

1. Each group that can be considered as an O-strategy or OO-strategy for clearing a
subcactus of Gv;

2. The first part of each group that can be considered as an OI-strategy for clearing a
subcactus of Gv;

3. Each group that can be considered as an IO-strategy for clearing a subcactus of Gv;
4. The second part of each group that can be considered as an OI-strategy for clearing

a subcactus of Gv;
5. Each group that can be considered as an I-strategy or II-strategy for clearing a

subcactus of Gv .

Since in S, the searchers to clear a subcactus Gv ∈ Gv stay in Gv except those
who slide out of Gv , we know that the groups in the above ordering form a fast search
strategy S ′ that clears G using fs(G) searchers. Thus S ′ and S are equivalent. �
Lemma 6.2 Let G be a cactus that contains a cut-vertex v, and let Gv be the set of
all subcacti attached to v. For any optimal fast search strategy for G, there exists an
equivalent strategy such that for each Gv ∈ Gv ,

(i) If Gv satisfies (R1), then it is cleared by an OI-strategy or OO-strategy;
(ii) If Gv satisfies (R2), then it is cleared by an IO-strategy, OI-strategy or OO-

strategy;

123

84 Page 16 of 22 Journal of Combinatorial Optimization (2023) 45 :84

(iii) If Gv satisfies (R3), then it is cleared by an IO-strategy or OO-strategy;
(iv) If Gv satisfies (R4), then it is cleared by an II-strategy, OI-strategy or OO-

strategy;
(v) If Gv satisfies (R5), then it is cleared by an II-strategy, IO-strategy or OO-

strategy;
(vi) If Gv satisfies (R6), then it is cleared by an II-strategy or OO-strategy.

Proof (i) Suppose that Gv satisfies (R1) and S1 is an optimal fast search strategy for
G in which Gv is cleared by an II-strategy or IO-strategy. Let vv1 and vv2 be the two
edges incident on v in Gv . Without loss of generality, assume that vv1 is the first edge
in Gv that is cleared by S1. By making the following modifications, S1 is converted
to an equivalent strategy for G in which Gv is cleared by an OI-strategy:

1. Let t denote the moment in S1 after which the next sliding action clears vv1.
2. Remove all sliding actions from S1 that clear edges in Gv; remove all placing

actions on vertices in V (Gv − v).
3. Choose an OI-strategy for Gv , insert all its placing actions on V (Gv − v) at the

beginning of the strategy, and insert all its sliding actions immediately after t .

Since Gv satisfies (R1), we have πI I (Gv) = πI O(Gv) = πOI (Gv). Thus the
modified strategy is equivalent to S1. Note that if S1 is a strategy for G in which Gv

is cleared by an OO-strategy, then we do not modify S1. Hence, if Gv satisfies (R1),
then there is an optimal strategy for G such that Gv is cleared by an OI-strategy or
OO-strategy.

(ii) IfGv satisfies (R2), thenπI I (Gv) = πI O(Gv). Similar to (i), there is an optimal
strategy for G such that Gv is cleared by an IO-strategy, OI-strategy or OO-strategy.

(iii) If Gv satisfies (R3), then πI I (Gv) = πI O(Gv) and πOI (Gv) = πOO(Gv).
So, if S1 is an optimal strategy for G in which Gv is cleared by an II-strategy (resp.
OI-strategy), then we can modify S1 to obtain an equivalent strategy such that Gv is
cleared by an IO-strategy (resp. OO-strategy).

(iv) If Gv satisfies (R4), then πI O(Gv) = πOI (Gv). Similar to (i), there is an
optimal strategy for G such that Gv is cleared by an II-strategy, OI-strategy or OO-
strategy.

(v) If Gv satisfies (R5), then πOI (Gv) = πOO(Gv). Thus there is an optimal
strategy for G such that Gv is cleared by an II-strategy, IO-strategy or OO-strategy.

(vi) If Gv satisfies (R6), then πI O(Gv) = πOI (Gv) = πOO(Gv). Hence, there is
an optimal strategy for G such that Gv is cleared by an II-strategy or OO-strategy. �
Lemma 6.3 FastSearch(G, σ1, σ2,P) computes the minimum number of searchers
for clearing G under the given setting in Profile3.

Proof When FastSearch is called, the cactus G ′
v − Ev , where G ′

v is defined in
Definition 4.1, is passed to G along with the set P of profiles of the subcacti attached
to the cut vertex v. Note that there are only four different settings for σ1 and σ2, that
is, (σ1 = 1, σ2 = 1), (σ1 = 2, σ2 = 2), (σ1 = 0, σ2 = 1) and (σ1 = 0, σ2 = 0).
We will show that any optimal fast search strategy for G can be converted into an
equivalent strategy used in FastSearch(G, σ1, σ2,P), which implies that the fast
search strategy used in FastSearch is optimal under the given conditions on σ1 and
σ2.

123

Journal of Combinatorial Optimization (2023) 45 :84 Page 17 of 22 84

Let Gv be the set of subcacti corresponding to the profiles in P . We first prove
the correctness of Steps 2–4. From Lemmas 6.1 and 6.2, there must exist an optimal
fast search strategy for G, denoted as S, satisfying that: (1) all the subcacti in Gv are
cleared in the order given in Lemma 6.1, and (2) each subcactus of Gv is cleared by
a strategy compatible with Lemma 6.2. In S, there must exist a moment at which the
number of searchers on v is at least σ2+ s27 +2s26 ; otherwise, searchers are insufficient
for clearing all subcacti of Gv that satisfy (R6) and (R7). Hence, we can modify the
strategy for Gv in S, if necessary, such that the modified strategy has the following
properties:

1. s16 subcacti satisfying (R6) are cleared by II-strategies, and s26 subcacti satisfying
(R6) are cleared by OO-strategies.

2. s17 subcacti satisfying (R7) are cleared by I-strategies, and s27 subcacti satisfying
(R7) are cleared by O-strategies.

From Lemma 6.1, the modified strategy uses the same number of searchers to clear
G. For convenience, we still use S to denote the modified strategy.

We now prove the correctness of Step 5. Note that both σ1 and σ2 are updated in
Step 4. We first prove that when σ2 = 2 and σ1 ≤ 1, the following strategy assignment
is optimal:

(A) Assign OI-strategies to subcacti that satisfy (R1) and (R4);
(B) Assign IO-strategies to subcacti that satisfy (R2), (R3) and (R5).

Since σ2 = 2, there must exist a moment in S at which v is occupied by at least
two searchers. Hence, we can directly assign IO-strategy to any number of subcacti
attached to v. From Lemmas 6.1 and 6.2, the above strategy assignment to subcacti
satisfying (R1), (R2) and (R3) is optimal. We then consider the strategy assignment
to subcacti satisfying (R4) and (R5). If there exists a subcactus X ∈ Gv that (1)
satisfies (R4) or (R5) and (2) is cleared by an II-strategy, then either there must exist a
subcactus that is cleared by an OO-strategy in S, or at least one searcher is placed on
v in S. Although assigning an II-strategy to X seems to help save one searcher, using
OO-strategy or placing an additional searcher would cost at least one more searcher.
Hence, the strategy assignment to subcacti satisfying (R4) and (R5) is optimal.

In the next, we prove that an optimal strategy assignment, which uses the minimum
number of searchers, contains at most one OO-strategy. Assume that A1 is a strategy
assignment that contains at least two OO-strategies. It is easy to show that there also
exists a subcactus being cleared by an II-strategy or some other strategy that uses the
same number of searchers as the II-strategy. We select this subcactus and a subcatus
being cleared by an OO-strategy. For each of the remaining subcacti of G, we assign a
strategy to it according to the strategy assignment described in the previous paragraph.
Let A2 be the new strategy assignment after taking the abovemodifications. Obviously,
A2 is still a feasible strategy assignment, which uses the same or less number of
searchers than A1. Similarly, we can show that when σ2 ≤ 1, at most one searcher is
placed on v since adopting an OO-strategy is always better than placing two searchers
on v. Further, if an OO-strategy is assigned to some subcactus, then we know there
will exist a moment at which v is occupied by at least two searchers. In this case, we
can show that there is no need to place additional searchers on v.

123

84 Page 18 of 22 Journal of Combinatorial Optimization (2023) 45 :84

Consider the case when σ2 = 0. Note that a feasible strategy assignment must (1)
contain at least one OO-strategy, (2) contain at least two OI-strategies, or (3) contain
at least one OI-strategy and a searcher is initially placed on v. Consider a feasible
strategy assignment. If there exists one subcactus satisfying (R2) that is assigned an
OI-strategy, then we can modify the strategy assignment by (1) letting the subcactus
cleared by an IO-strategy, and (2) placing one additional searcher on v. Obviously,
the modified strategy assignment is still a feasible strategy assignment and uses the
same number of searchers. If there exist two subcacti satisfying (R2) that are assigned
OI-strategies, then we can modify the strategy assignment by (1) letting one of the
subcacti cleared by an OO-strategy, and (2) letting the other subcactus cleared by an
IO-strategy. It is easy to show that the modified strategy assignment is still a feasible
strategy assignment and uses the same number of searchers. In a similar way, we
can modify the strategy assignment such that each subcactus satisfying (Ri), where
1 ≤ i ≤ 5, is assigned (1) a strategy according to the strategy assignment described in
previous paragraph, or (2) an OO-strategy or an II-strategy if allowed by Lemma 6.2.
Hence, we can easily show that an optimal feasible strategy assignment must exist
in the enumerated feasible strategy assignments. Thus, we can find the one with the
minimum number of searchers and output this number in Step 6. �

Lemma 6.4 Profile3(G ′, Ev , v, P) computes the profile of G ′.

Proof We first prove the correctness of Step 1. Since |Ev| = 1, G ′ satisfies (R7).
Consider the case when the pendent edge incident to v is cleared by a slide-in
action. By definition, we have σ1 = 1 and σ2 = 1. Let π1(G ′ − Ev) be the min-
imum number of searchers for clearing G ′ − Ev , in which at least one searcher
is initially placed on v. It is easy to see that πI (G ′) = π1(G ′ − Ev). It follows
from Lemma 6.3 that FastSearch(G ′, σ1, σ2,P) computes the minimum number
of searchers for clearing G ′ under the given setting described by σ1 and σ2. By call-
ing FastSearch(G ′, 1, 1,P), we can obtain πI (G ′). From Theorem 4.4, we have
πO(G ′) = πI (G ′) + 1.

In the rest of this proof, we show the correctness of Step 2.
(i) Consider the case where the two pendent edges incident to v are both cleared

by slide-in actions. After the two pendent edges are cleared, the two searchers on
v can be used to clear subcacti attached to v. Further, we know there must exist a
moment in the strategy of G ′ at which v is occupied by at least two searchers. Hence,
σ1 = 2 and σ2 = 2. Let π2(G ′ − Ev) be the minimum number of searchers for
clearing G ′ − Ev where at least two searchers are initially placed on v. It is easy to
see that πI I (G ′) = π2(G ′ − Ev). By calling FastSearch(G ′, 2, 2,P), we can obtain
πI I (G ′).

(ii) It follows from Theorem 4.4 that πOO(G ′) = πI I (G ′) + 2.
(iii) Consider the casewhere one of the two pendent edges incident to v is cleared by

a slide-in action, and later the other edge is cleared by a slide-out action.We know there
must exist amoment at which v is occupied by a searcher, and σ2 = 1. Letπ3(G ′−Ev)

be the minimum number of searchers for clearing G ′ − Ev where one searcher is
initially placed on v and cannot move at any moment. So πI O(G ′) = π3(G ′ − Ev).
As the searcher placed on v cannot be used to clear any contaminated edge of subcacti

123

Journal of Combinatorial Optimization (2023) 45 :84 Page 19 of 22 84

attached to v, we have σ1 = 0. By calling FastSearch(G ′, 0, 1,P), we can obtain
πI O(G ′).

(iv) Consider the case where one of the two pendent edges incident to v is cleared
by a slide-out action, and later the other edge is cleared by a slide-in action. Note
that for any strategy of G ′, there must exist a moment at which v is occupied by at
least two searchers. If v has at least five incident edges, we know for any strategy of
G ′ − Ev , there must exist a moment at which v is occupied by at least two searchers.
Let π4(G ′ − Ev) be the minimum number of searchers for clearing G ′ − Ev . Thus
πOI (G ′) = π4(G ′ − Ev). Hence, by calling FastSearch(G ′, 0, 0,P), we can obtain
πOI (G ′). If v has at most four incident edges, then consider the subcacti attached to
v.

(a) Consider the case where v has exactly one subcactus and this subcactus satisfies
(R7), that is r7 = 1. If the subcactus is cleared by an I-strategy, then at least two
searchers must be placed on v initially. If the subcactus is cleared by an O-strategy,
then at least one searchermust be placed onv initially.Clearly, nomatterwhich strategy
is assigned to the subcactus, the minimum number of searchers for clearing G ′ remain
the same. Hence, πOI = t + 2− r7 = t + 1. If v has exactly two subcacti and both of
them satisfy (R7), i.e., r7 = 2, then similarly, we can show that πOI = t +2− r7 = t .

(b) Consider the case where v has exactly one subcactus that satisfies (Ri), 2 ≤
i ≤ 6. Note that t is the minimum number of searchers used by an OO-strategy for
clearing the subcactus. It is easy to verify that no matter which strategy is assigned
to the subcactus, since v is required to contain two searchers at some moment in any
strategy of G ′ − Ev , the number of searchers for clearing G ′ − Ev is at least t .

(c) Consider the case where v has exactly one subcactus and this subcactus satisfies
(R1). Note that an OO-strategy of the subcactus uses two more searchers than an OI-
strategy. Hence, it is easy to verify that any strategy for G ′ − Ev uses at least t + 1
searchers. �
Theorem 6.5 For any cactus G, Algorithm 1 computes fs(G).

Proof FastSearchCactus(G) is the main function. If G is a tree, then we can call
FS(G) in Dyer et al. (2008) to find fs(G). If G is a cycle, then fs(G) = 2. So in the
remainder of this proof, we suppose G is neither a tree nor a cycle. In Algorithm 1,
we first pick a cut-vertex v and find all subcacti Gi attached to v. We then invoke
function Profile1(Gi , v) to compute the profile PGi of each subcactus Gi ; we also
invoke function Profile3(H , Ev , v, {PG2 , . . . ,PGk }) to compute the profile PH of
the union H of subcacti.

In Profile1(Gi , v), if Gi is a tree, since v is a leaf of Gi , we know that there is an
optimal fast search strategy such that a searcher will end on v. So fs(Gi) = πO(Gi);
and thus πO(Gi) can be computed by calling FS(G) in Dyer et al. (2008). Notice
that a fast search strategy and its reverse use the same number of searchers to clear
Gi . Since the slide-in searcher in an I-strategy is not counted, we have πI (Gi) =
πO(Gi) − 1. If Gi is a simple cycle, it is easy to see that πI I (Gi) = πI O(Gi) = 0
and πOI (Gi) = πOO(Gi) = 2. If v is contained in a cycle of Gi , we invoke function
Profile2 to compute the profile of Gi . If v is a leaf of Gi , we delete v and call
Profile1 recursively. Otherwise, we invoke Profile1 for each subcactus attached to
v, and then merge them by calling Profile3.

123

84 Page 20 of 22 Journal of Combinatorial Optimization (2023) 45 :84

In Profile2(Gi , v), v is contained in a simple cycle C = vu1 . . . uk′v in Gi . Let
Xu j , 1 ≤ j ≤ k′, be a subcactus attached on u j and Yu j be an extension of Xu j .
Let Eu j ⊂ E(C), 1 ≤ j ≤ k′, be the set containing the two incident edges upon u j .
We then invoke functions Profile1 and Profile3 to compute the profile of Yu j . Let
W = Yu1 and j = 2 initially. In Step 4 of Profile2(Gi , v), sinceW and Yu j have one
edge in common, a strategy forW ∪Yu j can be obtained from strategies forW and Yu j

by reaching an accord on the sliding action on the common edge of W and Yu j . Note
that in the graph W ∪ Yu j , u1 and u j have one pendent edge in E(C) respectively.
Compute the profile of W ∪ Yu j with respect to the sliding actions on the pendent
edges on u1 and u j . Then in Step 5, we update W ← W ∪ Yu j and j ← j + 1. If
j = k′, we can compute the profile of W in a way similar to Step 4 mentioned above.
Note that this W is the same as Gi ; so we output the profile of W .

It follows from Lemmas 6.4 and 6.3 that Profile3(G ′, Ev , v, P), together with
FastSearch(G ′, σ1, σ2,P), can compute the profile of G ′ when a set of profiles P
is given.

From the above, we know that Algorithm 1 can compute the fast search number of
any cactus. �

We now analyze the running time of our algorithms in this section.

Theorem 6.6 For any cactus G, the fast search number of G can be computed in linear
time.

Proof In Algorithm 1, Step 1 takes linear time to find fs(G) by calling FS(G) in Dyer
et al. (2008). Step 2 takes linear time to construct Gi and H . The running time of
Steps 3 and 4 depend on Profile1 and Profile3. In Step 5, it takes constant time to
list all possible combinations of the profiles from PG1 and PH with respect to sliding
actions on the edges in Ev because |Ev| ≤ 2. For each combination of these profiles,
it takes constant time to find the number of searchers required. Thus, Step 5 takes
constant time.

In Profile1, if Gi is a tree, Step 1 takes linear time to find πO(Gi) and πI (Gi)

due to FS(G) in Dyer et al. (2008). If Gi is a simple cycle, it is easy to see that Step 2
takes constant time. The running time of Steps 3 depends on Profile2. Step 4 is a
recursive call of Profile1. The running time of Step 5 mainly depends on Profile3.
Although there is a recursion in Profile1, its running time is still linear because the
structure of the computation is tree-like and has the following properties:

1. the profile of a subcactus attached to any vertex in V (G) has constant size;
2. the profile of any subcactus attached to a vertex in V (G) is computed at most once;
3. the profile of a subcactus attached to a vertex in V (G) is passed as a parameter at

most once when computing the profile of another subcactus;
4. the computation of the profile of a subcactus attached to a vertex in V (G) takes

constant time.

In Profile2, Step 1 takes linear time to construct Yu j . The running time of Step 2
mainly depends on Profile1 and Profile3. In Steps 4 and 5, it takes constant time
to find the profile of W ∪ Yu j .

123

Journal of Combinatorial Optimization (2023) 45 :84 Page 21 of 22 84

InProfile3, the running time of Step 1 depends onFastSearch(G ′−Ev, 1, 1,P),
and the running time of Step 2 depends on FastSearch(G ′ − Ev, 2, 2,P),
FastSearch(G ′ − Ev, 0, 1,P) and FastSearch(G ′ − Ev, 0, 0,P).

In FastSearch(G, σ1, σ2,P), Step 1 takes linear time to find ri . Step 2 also takes
linear time to find s16 , s

2
6 , s

1
7 and s

2
7 . It takes constant time to update σ1 and σ2 in Step 4.

Steps 5–6 takes linear time to list all the feasible strategy assignments and to find the
strategy from these assignments which uses the minimum number of searchers.

Overall, Algorithm 1 computes fs(G) in linear time. �

7 Conclusion

In this paper, we introduced the notion of k-combinable graphs and proposed amethod
for computing the fast search number of these graphs. Using this method, a linear-time
algorithm for computing the fast search number for cacti graphs, along with rigorous
analysis, is presented.

Funding Boting Yang: Research supported in part by an NSERC Discovery Research Grant, Application
No.: RGPIN-2018-06800. Sandra Zilles: Research supported in part by an NSERC Discovery Research
Grant, Application No.: RGPIN-2017-05336. Lusheng Wang: Research supported by National Science
Foundation of China (NSFC: 61972329) and GRF grants for Hong Kong Special Administrative Region,
P. R. China (CityU 11210119 and CityU 11206120).

Data availability Enquiries about data availability should be directed to the authors.

Declarations

Conflict of interest The authors declare that they have no competing interests.

References

Alspach B (2006) Sweeping and searching in graphs: a brief survey. Matematiche 59:5–37
Bienstock D (1991) Graph searching, path-width, tree-width and related problems (a survey). DIMACS Ser

Discr Math Theoret Comput Sci 5:33–49
Bienstock D, Seymour P (1991) Monotonicity in graph searching. J Algorithms 12:239–245
Bonato A, Nowakowski R (2011) The Game of Cops and Robbers on Graphs. American Mathematical

Society, Providence, Rhode Island
Bonato A, Yang B (2013) Graph searching and related problems. In: Pardalos P, Du D-Z and Graham R

(eds) Handbook of Combinatorial Optimization, pp 1511–1558. Springer, 2nd edition
Dereniowski D, Diner Ö, Dyer D (2013) Three-fast-searchable graphs. Discr Appl Math 161:1950–1958
Dyer D, Yang B, Yaşar Ö (2008) On the fast searching problem. In: Algorithmic Aspects in Information

and Management, pp 143–154. Springer
Fomin FV, Petrov NN (1996) Pursuit-evasion and search problems on graphs. Congressus Numerantium,

pp 47–58
Fomin FV, Thilikos DM (2008) An annotated bibliography on guaranteed graph searching. Theor Comput

Sci 399:236–245
Hahn G (2007) Cops, robbers and graphs. Tatra Mt Math Publ 36:163–176
Kirousis LM, Papadimitriou CH (1986) Searching and pebbling. Theor Comput Sci 47:205–218
LaPaugh A (1993) Recontamination does not help to search a graph. J ACM 40:224–245
Makedon FS, Papadimitriou CH, Sudborough IH (1985) Topological bandwidth. SIAM J Algebr Discr

Methods 6:418–444

123

84 Page 22 of 22 Journal of Combinatorial Optimization (2023) 45 :84

Megiddo N, Hakimi SL, Garey MR, Johnson DS, Papadimitriou CH (1988) The complexity of searching a
graph. J ACM 35:18–44

Parsons TD (1976) Pursuit-evasion in a graph. In: Proceedings of the International Conference on the Theory
and Applications of Graphs, Lecture Notes in Mathematics, pp 426–441. Springer-Verlag

Stanley D, Yang B (2011) Fast searching games on graphs. J Comb Optim 22:763–777
XueY,YangB (2017)The fast search number of a cartesian product of graphs.DiscrApplMath 224:106–119
XueY, Yang B, Zhong F, Zilles S (2018) The fast search number of a complete k-partite graph. Algorithmica

80:3959–3981
Yang B (2011) Fast edge searching and fast searching on graphs. Theoret Comput Sci 412:1208–1219

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Fast searching on cactus graphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 Aligning operation and k-combinable graphs
	4 Cactus graphs
	5 Algorithm
	6 Correctness and running time
	7 Conclusion
	References

