

Minimum total coloring of planar graphs with maximum degree 8

Liting Wang1 · Huijuan Wang1 · Weili Wu²

Accepted: 21 February 2023 / Published online: 15 March 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

We define *G* to be a planar graph with maximum degree Δ . Suppose $\Delta > 8$ and *G* has no adjacent *p*,*q*-cycles for some *p*, $q \in \{3, 4, 5, 6, 7, 8\}$, then *G* can be totally colored by $(\Delta + 1)$ colors.

Keywords Minimum total coloring · Planar graph · Maximum degree

1 Introduction

In this paper, all graphs considered are finite, simple and undirected. We refer the readers to Bondy and Murt[y](#page-9-0) [\(1982\)](#page-9-0) for undefined notions and terminologies. Supposing that *G* is a graph, then *V* is used to denote the vertex set and $d(v)$ is used to denote the degree of v. Similarly, we respectively use F and $d(f)$ to denote the face set, the degree of *f*. Moreover, *E* is used to denote the edge set. Let Δ to be the maximum degree of a graph and δ to be the minimum degree. We respectively use *i*-vertex, i^+ vertex and *i*[−]-vertex to denote the vertex v when $d(v) = i$, $d(v) \ge i$, or $d(v) \le i$. A *i*-face, *i*⁺-face, or *i*[−]-face can be similarly defined. We use (l_1, l_2, \ldots, l_k) to denote a *k*-face whose boundary vertices are consecutively l_1 -vertex, l_2 -vertex … l_k -vertex. We use $n_k(f)$ to denote the number of *k*-vertices incident with f, use $n_k(v)$ to denote the number of *k*-vertices adjacent to *v* and use $f_k(v)$ to denote the number of *k*-faces incident with v. A *k*-total-coloring for *G* is coloring of $V \cup E$ that no two adjacent or incident elements in $V \cup E$ receive a same color by using k colors. If G has a *k*-total-coloring, then we say that *G* can be totally colored by *k* colors. And *G* is total*k*-colorable if *G* can be totally colored by *k* colors. Suppose *G* has a *k*-total-coloring but does not have a (*k* − 1)-total-coloring. Then *k* is the total chromatic number of *G* [d](#page-9-1)efined as χ'' . It is obvious to find that the lower bound of χ'' is $\Delta + 1$. Behzad [\(1965\)](#page-9-1)

 \boxtimes Huijuan Wang sduwhj@163.com

¹ School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China

² Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA

and Vizin[g](#page-10-0) [\(1968](#page-10-0)) posed the Total Coloring Conjecture (TCC) independently for the upper bound of χ'' .

Conjecture 1 For any graph, $\Delta + 1 \le \chi''(G) \le \Delta + 2$.

Total Coloring Conjecture has attracted a lot of researchers' attention. But this conjecture is still unsolved even for planar graphs. Kostochk[a](#page-9-2) [\(1996\)](#page-9-2) confirmed TCC with $\Delta \leq 5$ $\Delta \leq 5$ $\Delta \leq 5$. For planar graphs, the conjecture is open only when $\Delta = 6$ (see Kostochka [1996;](#page-9-2) Sanders and Zha[o](#page-9-3) [1999\)](#page-9-3). Some researchers found that it is possible for some specific graphs to prove that $\chi''(G) = \Delta + 1$. It is proved that it is a NP-complete pr[o](#page-9-4)blem to judge whether $\chi''(G) = \Delta + 1$ for a simple graph *G* by Sánchez-Arroyo [\(1989\)](#page-9-4). However, if *G* is a planar graph with a large maximum degree, then it is possible to prove that $\chi''(G) = \Delta + 1$. It was proved that $\chi''(G) = \Delta + 1$ when G is a planar [g](#page-10-1)raph with $\Delta(G) \ge 9$ (see Borodin et al[.](#page-9-6) [1997;](#page-9-5) Wang [2007](#page-10-1); Kowalik et al. [2008\)](#page-9-6). It is still an unsolved problem to judge whether a planar graph can be totally colored by $(\Delta + 1)$ colors for $\Delta = 6$, 7 and 8. There are many results obtained by adding restrictions for a planar graph with $\Delta(G) = 8$ in Du et al[.](#page-9-8) [\(2009\)](#page-9-7), Hou et al. [\(2008\)](#page-9-8), Tan et al[.](#page-10-2) [\(2009\)](#page-10-2), Wang et al[.](#page-10-3) [\(2014](#page-10-3)). Recently, a result for a planar graph with $\Delta(G) = 8$ has been proved in Wang et al[.](#page-10-4) [\(2017\)](#page-10-4), that is, suppose $\Delta \geq 8$ and G has no adjacent *p*,*q*-cycles for some *p*, $q \in \{3, 4, 5, 6, 7\}$, then *G* can be totally colored by $(\Delta + 1)$ colors. Next we generalize the result and get this following result.

Theorem 1 *Let G be a planar graph with maximum degree* $\Delta \geq 8$ *. Suppose G has no adjacent p,q-cycles for some p, q* \in {3, 4, 5, 6, 7, 8}*, then G can be totally colored by* $(\Delta + 1)$ *colors.*

2 Reducible configurations

Since Theorem [1](#page-1-0) was proved for $\Delta \geq 9$ in Kowalik et al[.](#page-9-6) [\(2008](#page-9-6)). We only need to prove the theorem for $\Delta = 8$ in this paper. Let $G = (V, E)$ to be a minimal counterexample to Theorem [1,](#page-1-0) that is to say, the number of $|V| + |E|$ is as small as possible. So every proper subgraph of *G* has a 9-total-coloring.

Lemma 1 (Borodin et al[.](#page-9-5) [1997\)](#page-9-5)

- (a) *G is* 2*-connected.*
- (b) *Suppose u*₁*u*₂ *is an edge of G and* $d(u_1) \leq 4$ *. Then* $d(u_1) + d(u_2) \geq \Delta + 2 = 10$ *.*
- (c) *Suppose G*⁸² *is a proper subgraph of G and it is induced by all the edges joining* 8*-vertices to* 2*-vertices. Then G*⁸² *is a forest.*

Lemma 2 (Chang et al[.](#page-9-9) [2013\)](#page-9-9) *G cannot contain subgraph isomorphic to the configurations depicted in Fig.* [1](#page-2-0)*. A vertex is marked by* • *if all neighbors are depicted in G and* 7 − v *denotes the vertex whose degree is seven.*

Lemma 3 (Xu et al[.](#page-10-5) [2014](#page-10-5)) *Suppose* $v \in V$, $d(v) = 8$ *and* $d \ge 6$ *. If* v *is consecutively adjacent to* v_1, v_2, \ldots, v_8 *, then let* v *be incident with* f_1, f_2, \ldots, f_8 *and* f_i ($1 \leq j \leq 1$ 7) *be incident with* v_j *and* v_{j+1} *. As for* f_8 *, it is incident with* v_8 *and* v_1 *. If* $d(v_1) = 2$ *and it is adjacent to* v *and u*1*. Then G cannot contain the following configurations (see Fig.* [2](#page-2-1)*):*

Fig. 1 Reducible configurations of Lemma [2](#page-1-1)

Fig. 2 Reducible configurations of Lemma [3](#page-1-2)

- (1) *There exists an integer k* (2 $\leq k \leq 7$) *such that* $d(f_i) = 4$ (1 $\leq j \leq k$), $d(v_{k+1}) = 2$ *and* $d(v_i) = 3$ (2 $\leq i \leq k$).
- (2) *There exist two integers k and t* $(2 \le k < t \le 7)$ *such that* $d(v_k) = 2$, $d(v_i) = 3$ $(k + 1 \le i \le t)$, $d(f_t) = 3$ *and* $d(f_i) = 4$ ($k \le j \le t - 1$).
- (3) *There exist two integers k and t* $(3 \le k \le t \le 7)$ *such that* $d(v_i) = 3$ $(k \le i \le t)$ *,* $d(f_{k-1}) = d(f_t) = 3$ *and* $d(f_i) = 4$ ($k \leq j \leq t-1$)*.*
- (4) *There exist two integers k* ($2 \le k \le d 2$) *and d, such that* $d(v_d) = d(v_i) = 3$ $(2 \le i \le k)$, $d(f_k) = 3$ and $d(f_i) = 4$ $(0 \le j \le k - 1)$.

Lemma 4 (Wang et al[.](#page-10-4) [2017\)](#page-10-4) *Suppose* v *is a* 6*-vertex of G. If* v *is incident with a* 3*-cycle* (u, v, w) *where* u *or* w *is a* 4*-vertex, then* n_{4} $- (v) = 1$ *.*

Lemma 5 (Shen and Wan[g](#page-10-6) [2009](#page-10-6)) *G cannot contain* (4−, 6, 6)*-cycles.*

3 Discharging

We will use discharging method to accomplish the proof of Theorem [1.](#page-1-0) By Euler's formula $|V| - |E| + |F| = 2$, we obtain

$$
\sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -6(|V| - |E| + |F|) = -12 < 0
$$

We define $\omega(x)$ to be the original charge. Let $\omega(v) = 2d(v) - 6$ for each $v \in V$ and $\omega(f) = d(f) - 6$ for each $f \in F$. So $\sum_{v \in V \cup F} \omega(x) < 0$. We define $\omega(x \to y)$ to be the amount of total charge which is transferred from *x* to *y*. We will give suitable discharging rules and distribute original charge to receive a new charge. We have two rounds of discharging rules. After the first round of discharging, we get a new charge of $x \in V \cup F$ denoted as $\omega^*(x)$. After the second round of discharging, we get a new charge of $x \in V \cup F$ denoted as $\omega'(x)$. If there exist no discharging rules for $x \in V \cup F$, then $\omega'(x) = \omega^*(x) = \omega(x)$. It is obvious that the total charge of *G* is unchangeable in the process of redistributing charge. So we have $\sum_{x \in V \cup F} \omega'(x) = \sum_{x \in V \cup F} \omega(x) = -6\chi(\Sigma) = -12 < 0$. We can get a contradiction by proving that $\sum_{x \in V \cup F} \omega'(x) \ge 0$.

These are the first round of discharging rules:

- **R1**. Every 8-vertex sends 1 to its each adjacent 2-vertex.
- **R2**. Suppose f is a face incident with v and $d(v) = 4$ or 5. If $d(f) = 5$, then $\omega(v \to f) = \frac{1}{3}$. If $d(f) = 4$, then $\omega(v \to f) = \frac{1}{2}$. At the end, v sends spare charge to its incident 3-faces evenly.
- **R3**. If a 6-vertex and a 7^+ -vertex is incident with a same 3-face, then the 7^+ -vertex sends $\frac{5}{4}$ to the 3-face.
- **R4**. Every 3-face receives $\frac{d(f)-6}{d(f)}$ from its adjacent 7⁺-faces.

If the charge of a 5−-face is still negative after the first round of discharging rules, in other words, we have $\omega^*(f) < 0$, then we carry on the second round discharging:

R5. If $\omega^*(f) < 0$, then *f* receives $\left|\frac{\omega^*(f)}{n_{6}+(v)}\right|$ from each incident 6⁺-vertices which does not send any charge to *f* .

Lemma 6 *Suppose* v *is a vertex incident with the face f .*

$$
I. If d(v) = 6, then we have \omega(v \to f) \leq \begin{cases} \frac{5}{4}, & \text{if } d(f) = 3 \text{ and } n_5(f) \geq 1, \\ \frac{11}{10}, & \text{if } d(f) = 3 \text{ and } n_6 + (f) = 3, \\ 1, & \text{if } d(f) = 3 \text{ and } n_7 + (f) = 3, \\ \frac{7}{8}, & \text{if } d(f) = 3 \text{ and } n_7 + (f) = 2, \\ \frac{1}{2}, & \text{if } d(f) = 3 \text{ and } n_7 + (f) = 2, \\ \frac{1}{2}, & \text{if } d(f) = 4 \text{ and } n_3 - (f) = 1, \\ \frac{1}{2}, & \text{if } d(f) = 4 \text{ and } n_3 - (f) = 0, \\ \frac{1}{3}, & \text{if } d(f) = 3 \text{ and } n_3 - (f) = 0, \\ \frac{1}{3}, & \text{if } d(f) = 3 \text{ and } n_3 - (f) = 1, \\ \frac{5}{4}, & \text{if } d(f) = 3 \text{ and } n_3 - (f) = 1, \\ 1, & \text{if } d(f) = 4 \text{ and } n_3 - (f) = 2, \\ 1, & \text{if } d(f) = 4 \text{ and } n_3 - (f) = 2, \\ \frac{2}{4}, & \text{if } d(f) = 4, \ n_3 - (f) = 1 \text{ and } n_4(f) = 1, \\ \frac{2}{3}, & \text{if } d(f) = 4, \ n_3 - (f) = 1 \text{ and } n_5 + (f) = 3, \\ \frac{1}{2}, & \text{if } d(f) = 4 \text{ and } n_3 - (f) = 0, \\ \frac{1}{3}, & \text{if } d(f) = 4 \text{ and } n_3 - (f) = 0, \\ \frac{1}{3}, & \text{if } d(f) = 5. \end{cases}
$$

Proof Suppose f is incident with v and $d(f) \geq 4$. Then it is easy to know that Lemma [6](#page-3-0) is right by R2 and R5. If $d(v) \ge 7$ and $d(f) = 3$, then f is incident with at most one 3⁻-vertex, so $\omega(v \to f) \leq \frac{3}{2}$. If *f* is not incident with a 3-face, then $\omega(v \to f) \leq \frac{3-\frac{1}{2}}{2} = \frac{5}{4}$. Now we consider the case where $d(v) = 6$ and $d(f) = 3$ noted as (u, v, w) . It is easy to find that the vertex u and the vertex w is equivalent. By lemma [1](#page-1-3) (b), 6-vertex is not adjacent to 3⁻-vertices. If $d(u) = 4$, then $d(w) \ge 7$

by Lemma [5.](#page-2-2) So $\omega(v \to f) \leq 3 - \frac{5}{4} - \frac{1}{2} = \frac{5}{4}$. If $d(u) = 5$ and $d(w) = 6$, then $\omega(v \to f) \leq \frac{3-\frac{4}{5}}{2} = \frac{11}{10}$. Suppose $d(u) = d(w) = 5$. If *u* is incident with five 3-faces, then w is incident with at least two 6⁺-faces. So $\omega(v \to f) \leq 3 - \frac{4}{5} - \frac{4}{3} \leq \frac{11}{10}$. If *u* is incident with four 3-faces, then u and u are incident with at least one 6^+ -face. So $ω(v → f) ≤ 3-1 × 2 ≤ \frac{11}{10}$. Suppose $d(u) = d(w) = 6$. Then $ω(v → f) ≤ \frac{3}{2} = 1$. If $d(u) \ge 7$ and $d(w) \ge 6$, then the *u* sends $\frac{5}{4}$ to *f* by R4, so $\omega(v \to f) \le \frac{3-\frac{5}{4}}{2} = \frac{7}{8}$. If $d(u) = d(w) \ge 7$, then $\omega(v \to f) \le 3 - \frac{5}{4} \times 2 = \frac{1}{2}$ $\frac{1}{2}$.

Lemma 7 *Suppose* $d(v) = 8$ *and v is consecutively adjacent to* v_1, v_2, \ldots, v_8 *. Let v be incident with* f_1, f_2, \ldots, f_8 *and* f_j ($1 \leq j \leq 7$) *be incident with* v_j *and* v_{j+1} *. As for f₈, it is incident with* v_8 *and* v_1 *. If* $d(v_1) = d(v_t) = 2$ ($t \ge 3$) *and* $d(v_i) \ge 3$ $(2 \le i \le t - 1)$, then we have $\sum_{i=1}^{t-1} \omega(v \to f_i) \le \frac{5}{4}t - \frac{9}{4}$.

Proof By Lemma [2,](#page-1-1) we know that $\min\{d(f_1), d(f_{t-1})\} \geq 4$. Firstly, suppose $d(f_1) = 4$ and $d(f_{t-1}) = 4$. If $\min\{d(f_2), d(f_3), \dots, d(f_{t-2})\} \ge 5$, then $t \ge 4$, so
 $\sum_{i=1}^{t-1} \omega(v \to f_i) \le 1 \times 2 + \frac{1}{3}(t-3) \le \frac{5}{4}t - \frac{9}{4}$. If $\min\{d(f_2), d(f_3), \dots, d(f_{t-2})\} = 4$ and $\max\{d(f_2), d(f_3), \ldots, d(f_{t-2})\} = 5$, then $\sum_{i=1}^{t-1} \omega(v \to f_i) \le t - 2 + \frac{1}{3} \le$ $\frac{5}{4}t - \frac{9}{4}$. If max{ $d(f_2), d(f_3), ..., d(f_{t-2})$ }=min{ $d(f_2), d(f_3), ..., d(f_{t-2})$ } = 4, then $\sum_{i=1}^{t-1} \omega(v \rightarrow f_i) \leq t - 3 + \frac{3}{4} \times 2 \leq \frac{5}{4}t - \frac{9}{4}$ by Lemma [3.](#page-1-2) Suppose $\min\{d(f_2), d(f_3), \ldots, d(f_{t-2})\}$ = 3 and $\max\{d(f_2), d(f_3), \ldots, d(f_{t-2})\}$ = 4. Whether $d(f_2) = 3$ or $d(f_2) = 4$, we have $\omega(v \to f_1) + \omega(v \to f_2) \le \max\{1 \times 2, \frac{3}{4} + \frac{1}{2}\}$ $\frac{5}{4}$] = 2 by Lemma [3.](#page-1-2) Similarly, $\omega(v \to f_{t-2}) + \omega(v \to f_{t-1}) \le \max\{1 \times 2, \frac{3}{4} + \frac{5}{4}\}$ 2. Moreover, v sends more charge to 3-faces than 4-faces, so we assume that v is incident with 3-faces as more as possible. Hence, $\sum_{i=1}^{t-1} \omega(v \to f_i) \leq 2 \times 2 + \frac{5}{4} \times (t-5) \leq$ $\frac{5}{4}$ *t* − $\frac{9}{4}$. Suppose max{*d*(*f*₂), *d*(*f*₃), , *d*(*f*_{*t*−2})} = min{*d*(*f*₂), *d*(*f*₃), , *d*(*f*_{*t*−2})} = 3, then f_j (2 ≤ *j* ≤ *t*−2) receives at most $\frac{5}{4}$ from *v* by Lemma [3.](#page-1-2) Hence, $\sum_{i=1}^{t-1} \omega(v \rightarrow$ f_i) $\leq \frac{3}{4} \times 2 + \frac{5}{4} \times (t - 3) \leq \frac{5}{4}t - \frac{9}{4}$ $\frac{9}{4}$. Secondly, suppose min{ $d(f_1)$, $d(f_{t-1})$ } = 4 and max $\{d(f_1), d(f_{t-1})\} \ge 5$. If max $\{d(f_2), d(f_3), \ldots, d(f_{t-2})\} \ge 4$, then
 $\sum_{i=1}^{t-1} \omega(v \rightarrow f_i) \le 1 \times 2 + \frac{1}{3} + \frac{3}{2} + \frac{5}{4} \times (t-5) \le \frac{5}{4}t - \frac{9}{4}$. Otherwise, if max $\{d(f_2), d(f_3), ..., d(f_{t-2})\}$ =min $\{d(f_2), d(f_3), ..., d(f_{t-2})\}$ = 3, then $\sum_{i}^{t-1} \omega(v \to f_i) \leq \frac{3}{4} + \frac{1}{3} + \frac{3}{2} + \frac{5}{4} \times (t-4) \leq \frac{5}{4}t - \frac{9}{4}$. Finally, suppose $d(f_1) \geq 5$ and $d(f_{t-1}) \ge 5$. Then $\sum_{i=1}^{t-1} \omega(v \to f_i) \le \frac{1}{3} \times 2 + \frac{3}{2} \times 2 + \frac{5}{4} \times (t-5) \le \frac{5}{4}t - \frac{9}{4}$. Ч

In the rest of this paper, we can check that $\omega'(x) \ge 0$ for every $x \in V \cup F$ which is a contradiction to our assumption. Let $f \in F$. If $d(f) \ge 7$, then $\omega'(f) \ge \omega(f)$ – is a contradiction to our assumption. Let $f \in F$. If $d(f) \ge 7$, then $\omega'(f) \ge \omega(f) - \frac{d(f)-6}{d(f)} \times d(f) = 0$ by R4. If f is a 6-face, then $\omega'(f) = \omega(f) = 0$. Suppose $d(f) \le 5$. If $n_{6+}(f) \ge 1$, then $\omega'(f) \ge 0$ by R5. Otherwise, if $n_{6+}(f) = 0$, then $n_5(f) = d(f)$. If $d(f) = 3$ and f is noted as (u_1, u_2, u_3) , then $d(u_1) = d(u_2) = d(u_3) = 5$. By R2, 4⁺-face receives at most $\frac{1}{2}$ from incident 4-vertices or 5-vertices. Suppose $f_3(u_i) \leq 3$ $(i = 1, 2, 3)$. Then $\omega(u_i \to f) \ge 1$, so $\omega'(f) \ge (3 - 6) + 1 \times 3 = 0$. Suppose there exists $f_3(u_i) \geq 4$. Without loss of generality, we assume that $f_3(u_3) \geq 4$. Then we have $f_3(u_1) \le 4$ and $f_3(u_2) \le 4$. Otherwise, $f_3(u_1) = 5$ or $f_3(u_2) = 5$, then for any integers $p, q \in \{3, 4, 5, 6, 7, 8\}$, there exists a vertex incident with adjacent *p*-cycles

and *q*-cycles. So it is a contradiction to the condition of Theorem [1.](#page-1-0) If $f_3(u_1) = 4$, then u_1 is incident with a 9⁺-face and u_2 is incident with at least two 6⁺-faces, so $\omega(u_1 \to f) \ge 1$ and $\omega(u_2 \to f) \ge 1$. Consequently, $\omega'(f) \ge (3-6) + \frac{4}{5} + 1 + \frac{4}{3} > 0$. Similarly, we know that if $f_3(u_2) = 4$, then $\omega'(f) > 0$. Suppose $f_3(u_1) = f_3(u_2) = 3$. Then *u*₁ and *u*₂ is incident with at least one 6⁺-face, so $\omega(u_i \rightarrow f) \ge \frac{4-\frac{1}{2}}{3} = \frac{7}{6}$, $(i = 1, 2)$. Consequently, $\omega'(f) \ge (3 - 6) + \frac{4}{5} + \frac{7}{6} \times 2 > 0$. If $d(f) = 4$, then $ω'(f)$ ≥ (4 − 6) + $\frac{1}{2}$ × 4 = 0 by R2. If $d(f)$ = 5, then $ω'(f)$ ≥ (5 − 6) + $\frac{1}{3}$ × 5 > 0 by R2. So for every $f \in F$, we prove that $\omega'(f) \ge 0$. Next, we consider that $v \in V$. Suppose $d(v) = 2$. Then it is clear that $\omega(v) = -2$, so $\omega'(v) = -2 + 1 \times 2 = 0$ by R1. If $d(v) = 3$, then $\omega'(v) = \omega(v) = 0$. Suppose $d(v) = 4$ or $d(v) = 5$. Then $\omega'(v) = 0$ by R2.

If v is a 6^+ -vertex and it is consecutively adjacent to v_1, v_2, \ldots, v_d . Let v be incident with f_1, f_2, \ldots, f_d and f_i (1 ≤ $j \leq d-1$) be incident with v_j and v_{j+1} . As for f_d , it is incident with v_d and v_1 . Suppose $d(v) = 6$. Then v is not incident with 3−-vertices by Lemma [1](#page-1-3) (b) and v is incident with at most two 3-faces incident with a 4-vertex by Lemma [4.](#page-2-3) Clearly, $\omega(v) = 2d(v) - 6 = 6$. Hence, if $f_3(v) \le 3$, then $\omega'(v)$ ≥ 6 – $(\frac{5}{4} \times 2 + \frac{11}{10} \times 1 + \frac{2}{3} \times 3)$ > 0 by R4. Suppose $f_3(v) = 4$. If $f_{5^+}(v) \ge 1$, then $\omega'(v) \ge 6 - (\frac{5}{4} \times 2 + \frac{11}{10} \times 2 + \frac{2}{3} + \frac{1}{3}) > 0$. If $f_4(v) = 2$, then another three boundary vertices of each two 4-faces are adjacent to v , that is, all vertices of the two 4-faces are 4⁺-vertices. Hence, $w'(v) \ge 6 - (\frac{5}{4} \times 2 + \frac{11}{10} \times 2 + \frac{1}{2} \times 2) > 0$. Suppose $f_3(v) \ge 5$. If v is adjacent to a 5-vertex v_0 and f is a 3-face incident with v and v_0 , then $f_3(v_0) \leq 3$, so $\omega(v_0 \to f) \geq 1$ and $\omega(v \to f) \leq 1$. Suppose $f_3(v) = 5$. If $f_{5+}(v) = 1$, then $\omega'(v) \ge 6 - (\frac{5}{4} \times 2 + 1 \times 3 + \frac{1}{3}) > 0$. If $f_4(v) = 1$, then another three boundary vertices of the 4-faces are adjacent to v , that is, the 4-face is incident with four 4⁺-vertices. Hence, $\omega'(v) \ge 6 - (\frac{5}{4} \times 2 + 1 \times 3 + \frac{1}{2}) = 0$.

Suppose $f_3(v) = 6$, that is, $d(f_1) = d(f_2) = \ldots = d(f_6) = 3$. By Lemma [4,](#page-2-3) v is incident with at most one 4-vertex. So we may assume that $d(v_6) = 4$, then $d(v_1) \ge 7$ and $d(v_5) \ge 7$ by Lemma [5.](#page-2-2) Suppose $f_{6+}(v_6) = 2$. Then $\omega(v_6 \rightarrow f_5) \ge 1$ and $\omega(v_6 \rightarrow f_6) \geq 1$, so $\omega(v \rightarrow f_5) \leq 1$ and $\omega(v \rightarrow f_6) \leq 1$. Therefore, $ω'(v)$ ≥ 6 − 1 × 6 = 0. Otherwise, f_5 - (v) ≥ 3. Let f_l be the 5⁻-face incident with v_6 except f_5 and f_6 . Suppose $d(f_l) = 5$. Then it is a contradiction to the condition of Theorem [1.](#page-1-0) Suppose $d(f_l) = 4$. Then v_6 is adjacent to v_4 and v_1 is adjacent to v_3 . So we know that $f_{6+}(v_6) = 1$ and $\omega(v_6 \to f_i) \ge \frac{2-\frac{1}{2}}{2} = \frac{3}{4}$ $(i = 5, 6)$. Therefore, $ω(v \to f_i) \leq 3 - \frac{5}{4} - \frac{3}{4} \leq 1$ (*i* = 5, 6), and $ω'(v) \geq 6 - 1 \times 6 = 0$. Suppose $d(f_l) = 3$. Then each of the boundary vertices of f is adjacent to v. If v_6 is adjacent to v_4 and v_1 is adjacent to v_4 , then $d(v_4) \ge 7$ by Lemma [5.](#page-2-2) So $\omega(v_4 \to f_4) = \frac{5}{4}$ and $\omega(v_5 \to f_4) = \frac{5}{4}$, then $\omega(v \to f_4) \le \frac{1}{2}$ and $\omega'(v) \ge 6 - (\frac{5}{4} \times 2 + 1 \times 3 + \frac{1}{2}) = 0$. If v_6 is adjacent to v_3 and v_1 is adjacent to v_3 , then $d(v_3) \ge 7$ by Lemma [5.](#page-2-2) Suppose *d*(*v*₂) ≥ 6 and *d*(*v*₄) ≥ 6. Then $\omega(v \to f_i) \leq \frac{3-\frac{5}{4}}{2} = \frac{7}{8}$ (*i* = 1, 2, 3, 4). Hence, $\omega'(v) \ge 6 - (\frac{5}{4} \times 2 + \frac{7}{8} \times 4) = 0$. Suppose $d(v_2) = 5$ or $d(v_4) = 5$. Without of generality, assume that $d(v_4) = 5$. Then $\omega(v_4 \rightarrow f_3) \ge 1$ and $\omega(v_4 \rightarrow f_4) \ge 1$. So $ω(v → f_3) ≤ 3 − (1 + \frac{5}{4}) = \frac{3}{4}$ and $ω(v → f_4) ≤ 3 − (1 + \frac{5}{4}) = \frac{3}{4}$. Therefore, $\omega'(v) \ge 6 - (\frac{5}{4} \times 2 + 1 \times 2 + \frac{3}{4} \times 2) = 0.$

Fig. 3 $n_2(v) = 0$ and $f_3(v) = 6$

Suppose $d(v) = 7$. Then $\omega(v) = 2d(v) - 6 = 8$. Clearly, we have $f_3(v) \le 6$ and n_2 − (v) = 0 by Lemma [1](#page-1-3) (b). Suppose each of the 3-faces incident with v is not incident with a 3-vertex. If $f_3(v) = 6$, then $f_{9^+}(v) = 1$, so $\omega'(v) \ge 8 - \frac{5}{4} \times 6 > 0$. If $f_3(v) = 5$, then each of the 4-faces incident with v is incident with at most one 3^- -vertex. So $\omega'(v)$ ≥ 8 – ($\frac{5}{4}$ × 5 + $\frac{3}{4}$ × 2) > 0. If *f*₃(*v*) ≤ 4, then $\omega'(v)$ ≥ 8 – ($\frac{5}{4}$ × 4 + 1 × 3) = 0. Suppose v is incident with at least one 3-face which is incident with a 3-vertex. Then each of the 4-faces is incident with at most one 3^- -vertex. By Lemma [2,](#page-1-1) v is incident with at most two 3-faces which is incident with a 3-vertex. If $f_3(v) = 6$, then $f_{9+}(v) = 1$, so $\omega'(v) \ge 8 - (\frac{3}{2} \times 2 + \frac{5}{4} \times 4) = 0$ by Lemma [6.](#page-3-0) Suppose $f_3(v) = 5$. If $f_{5^+}(v) \ge 1$, then $\omega'(v) \ge 8 - (\frac{3}{2} \times 2 + \frac{5}{4} \times 3 + \frac{2}{3} + \frac{1}{3}) > 0$ by Lemma [6.](#page-3-0) Otherwise, suppose $f_4(v) = 2$. If there exist two 3-faces incident with a 3-vertex, then each of the 4-faces incident with v is not incident with 3^- -vertices. So $ω'(v)$ ≥ min{8 – ($\frac{3}{2}$ × 2 + $\frac{5}{4}$ × 3 + $\frac{3}{4}$ + $\frac{1}{2}$), 8 – ($\frac{3}{2}$ × 1 + $\frac{5}{4}$ × 4 + $\frac{3}{4}$ × 2} = 0. Suppose $f_3(v) \le 4$. Then $\omega'(v) \ge 8 - (\frac{3}{2} \times 2 + \frac{5}{4} \times 2 + \frac{3}{4} \times 3) > 0$ by Lemma [6.](#page-3-0) If $d(v) = 8$, then $\omega(v) = 2 \times 8 - 6 = 10$ and $f_3(v) \le 6$. We will consider the following cases by discussing the number of $n_2(v)$ by Lemmas [6](#page-3-0) and [7.](#page-4-0)

Case 1. $n_2(v) = 0$. Suppose $f_3(v) = 6$. If $f_{5^+}(v) \ge 2$ or $f_{6^+}(v) \ge 1$, then $\omega'(v) \ge 10 - (\frac{3}{2} \times 6 + 1) = 0$ by Lemma [6.](#page-3-0) Otherwise, $f_{5+}(v) \le 1$ and $f_{6+}(v) = 0$. Suppose $f_5(v) = 1$ and $f_4(v) = 1$. Then there exists only one case that satisfies the condition of Theorem [1.](#page-1-0) We show this case in Fig. $3(1)$ $3(1)$. It is clear that another three boundary vertices of each 4-faces are adjacent to v , and v is incident with at least one 3-face which is not incident with a 3-vertex by Lemma [2.](#page-1-1) If the 4-face is incident with at most one 3-vertex, then $\omega'(v) \ge 10 - (\frac{3}{2} \times 5 + \frac{5}{4} + \frac{3}{4} + \frac{1}{3}) > 0$. Otherwise, the 4-face is incident with two 3-vertex, then v is incident with at least two 3-faces each of which is not incident with a 3-vertex by Lemma [2.](#page-1-1) Hence, $\omega'(v) \ge 10 - (\frac{3}{2} \times 4 + \frac{5}{4} \times 2 + \frac{3}{4} + \frac{1}{3})$ 0. Suppose $f_4(v) = 2$. Then there exist only two cases that satisfies the condition of Theorem [1.](#page-1-0) We show these cases in Fig. $3(2)$ $3(2)$ and (3). In Fig. $3(2)$, v is incident with at least four 3-faces each of which is adjacent to a 8^+ -face. By R4, if there exists a 8^+ -face adjacent to a 3-face, then 8^+ -face sends $\frac{1}{4}$ to its adjacent 3-face, so each of the 3-face adjacent to a 8^+ -face receives at most $\frac{3-\frac{1}{4}}{2} = \frac{11}{8}$ from the boundary vertices. There exist at most one 4-face incident with two 3-vertices in Fig. [3](#page-6-0) (2). By Lemma [2,](#page-1-1) ν is incident with at least one 3-face which is not incident with a 3-vertex,

so $\omega'(v) \ge 10 - (\frac{3}{2} + \frac{11}{8} \times 4 + \frac{5}{4} + 1 + \frac{3}{4}) = 0$ $\omega'(v) \ge 10 - (\frac{3}{2} + \frac{11}{8} \times 4 + \frac{5}{4} + 1 + \frac{3}{4}) = 0$ $\omega'(v) \ge 10 - (\frac{3}{2} + \frac{11}{8} \times 4 + \frac{5}{4} + 1 + \frac{3}{4}) = 0$. In Fig. 3 (3), v is incident with at least four 3-faces each of which is adjacent to a 8^+ -face. By Lemma [2,](#page-1-1) v is incident with at most one 4-face incident with two 3-vertices. If each of the two 4-faces is incident with at most one 3-vertex, then $\omega'(v) \ge 10 - (\frac{3}{2} \times 2 + \frac{11}{8} \times 4 + \frac{3}{4} \times 2) = 0$. Otherwise, v is incident with one 4-face which is incident with two 3-vertices, then there exist at least three 3-faces each of which is not incident with a 3-vertex by Lemma [2.](#page-1-1) Hence, $ω'(v) ≥ 10 - (\frac{3}{2} \times 3 + \frac{5}{4} \times 3 + 1 + \frac{3}{4}) = 0$. Suppose $f_3(v) = 5$. Then by the condition of Theorem [1,](#page-1-0) we have $f_{5+}(v) \ge 1$, so $\omega'(v) \ge 10 - (\frac{3}{2} \times 5 + 1 \times 2 + \frac{1}{3} \times 2) > 0$.

Case 2. $n_2(v) = 1$. After transferring charge from v to 2-vertex, the remaining charge of v is $2 \times 8 - 6 - 1 = 9$.

Case 2.1. Suppose the 2-vertex is incident with a 3-cycle. It is clear that $f_3(v) \le 6$ and each of the 3-faces is not incident with a 3-vertex by Lemma 2 . So v is incident with at most one 3-face that receives $\frac{3}{2}$ from v. If $f_3(v) = 6$, then by the condition of Theorem [1,](#page-1-0) we know that $f_{6+}(v) \ge 1$ or $f_{5+}(v) \ge 2$, so $\omega'(v) \ge 9 - (\frac{3}{2} + \frac{5}{4} \times 5) > 0$ by Lemma [6.](#page-3-0) Suppose $f_3(v) = 5$. If $f_4(v) = 3$, then there are at least two $(2^+, 4^+, 4^+, 8)$ -faces between the three 4-faces by Lemma [2.](#page-1-1) Hence, $\omega' \ge 9 - (\frac{3}{2} + \frac{5}{4} \times 4 + 1 + \frac{3}{4} \times 2) =$ 0. If $f_4(v) \le 2$, then we have $\omega'(v) \ge 9 - (\frac{3}{2} + \frac{5}{4} \times 4 + 1 \times 2 + \frac{1}{3}) > 0$. Suppose $f_3(v) = 4$. If $f_4(v) = 4$, then there exist at least two $(2^+, 4^+, 4^+, 8)$ -faces between the four 4-faces by Lemma [2.](#page-1-1) Hence, $\omega' \ge 9 - (\frac{3}{2} + \frac{5}{4} \times 3 + 1 \times 2 + \frac{3}{4} \times 2) > 0$. If $f_4(v) \le 3$, then $\omega'(v) \ge 9 - (\frac{3}{2} + \frac{5}{4} \times 3 + 1 \times 3 + \frac{1}{3}) > 0$. If $f_3(v) \le 3$, then $\omega'(v) \ge 9 - (\frac{3}{2} + \frac{5}{4} \times 2 + 1 \times 5) = 0.$

Case 2.2. Suppose the 2-vertex is not incident with a 3-cycle. Then $f_3(v) \le 6$. Suppose $f_3(v) = 6$. Then the six 3-faces are consecutively adjacent and $f_{9^+}(v) = 1$, so there exist at least four $(4^+, 4^+, 8)$ -faces between the six 3-faces by Lemma [3.](#page-1-2) Consequently, $\omega'(v) \ge 9 - (\frac{3}{2} \times 2 + \frac{5}{4} \times 4 + 1 \times 1) > 0$ by Lemma [6.](#page-3-0) Suppose $f_3(v) = 5$. Then $f_{6^+}(v) \ge 1$ by the condition of Theorem [1.](#page-1-0) If $f_4(v) = 2$, then another three the boundary vertices of each 4-faces are adjacent to v . So v is incident with at least two (4⁺, 4⁺, 8)-faces and one (2⁺, 4⁺, 4⁺, 8)-face by Lemma [3.](#page-1-2) Hence, $\omega'(v) \ge$ 9 – $(\frac{3}{2} \times 3 + \frac{5}{4} \times 2 + 1 \times 1 + \frac{3}{4} \times 1) > 0$. If $f_4(v) = 1$, then v is incident with at least one $(4^+, 4^+, 8)$ -face by Lemma [3.](#page-1-2) Hence, $\omega'(v) \ge 9 - (\frac{3}{2} \times 4 + \frac{5}{4} \times 1 + 1 \times 1 + \frac{1}{3} \times 2) > 0$. If $f_4(v) = 0$, then $\omega'(v) \ge 9 - (\frac{3}{2} \times 5 + \frac{1}{3} \times 3) > 0$. Suppose $f_3(v) = 4$. Then we have $f_4(v) \leq 3$ according to the condition of Theorem [1.](#page-1-0) If $f_4(v) = 3$, then v is incident with at least two (4⁺, 4⁺, 8)-faces. Hence, $\omega'(v) \ge 9 - (\frac{3}{2} \times 2 + \frac{5}{4} \times 2 + 1 \times 3 + \frac{1}{3} \times 1) > 0$. If $f_4(v) \le 2$, then $\omega'(v) \ge 9 - (\frac{3}{2} \times 4 + 1 \times 2 + \frac{1}{3} \times 2) > 0$. Suppose $f_3(v) = 3$. If v is incident with a 5⁺-face, then $\omega'(v) \ge 9 - (\frac{3}{2} \times 3 + 1 \times 4 + \frac{1}{3}) > 0$. Otherwise, $f_4(v) = 5$, then v is incident with at least three $(2^+, 4^+, 4^+, 8)$ -faces. Hence, $\omega'(v) \ge$ 9 – $(\frac{3}{2} \times 3 + 1 \times 2 + \frac{3}{4} \times 3)$ > 0. If *f*₃(*v*) ≤ 2, then $\omega'(v)$ ≥ 9 – ($\frac{3}{2} \times 2 + 1 \times 6$) = 0.

Case 3. $n_2(v) = 2$. Then $2 \times 8 - 6 - 2 = 8$ and there are four cases where 2-vertices are located. We show these cases in Fig. [4.](#page-8-0) In Fig. [4\(](#page-8-0)1), $\omega'(v) \ge 8 - (\frac{5}{4} \times 8 - \frac{9}{4}) > 0$ by Lemma [7.](#page-4-0) In Fig. [4](#page-8-0) (2), $\omega'(v) \ge 8 - \left[(\frac{5}{4} \times 3 - \frac{9}{4}) + (\frac{5}{4} \times 7 - \frac{9}{4}) \right] = 0$. In Fig. 4 (3), $ω'(v) ≥ 8-[(\frac{5}{4}×4-\frac{9}{4})+(\frac{5}{4}×6-\frac{9}{4})] = 0.$ $ω'(v) ≥ 8-[(\frac{5}{4}×4-\frac{9}{4})+(\frac{5}{4}×6-\frac{9}{4})] = 0.$ $ω'(v) ≥ 8-[(\frac{5}{4}×4-\frac{9}{4})+(\frac{5}{4}×6-\frac{9}{4})] = 0.$ In Fig. 4(4), $ω'(v) ≥ 8-2×(\frac{5}{4}×5-\frac{9}{4}) = 0$ by Lemma [7.](#page-4-0)

Case 4. $n_2(v) = 3$. Then $2 \times 8 - 6 - 3 = 7$ and there are five cases where 2-vertices are located. We show these cases in Fig. [5.](#page-8-1) In Fig. [5\(](#page-8-1)1), $\omega'(v) \ge 7 - (\frac{5}{4} \times 7 - \frac{9}{4}) > 0$

Fig. 4 $n_2(v) = 2$

 (1)

Fig. 5 $n_2(v) = 3$

Fig. 6 $n_2(v) = 4$

by Lemma [7.](#page-4-0) In Fig. [5](#page-8-1) (2), $\omega'(v) \ge 7 - \left[\left(\frac{5}{4} \times 3 - \frac{9}{4}\right) + \left(\frac{5}{4} \times 6 - \frac{9}{4}\right)\right] > 0$. In Fig. 5 (3), $\omega'(v) \ge 7 - \left[\left(\frac{5}{4} \times 4 - \frac{9}{4}\right) + \left(\frac{5}{4} \times 5 - \frac{9}{4}\right)\right] > 0$ $\omega'(v) \ge 7 - \left[\left(\frac{5}{4} \times 4 - \frac{9}{4}\right) + \left(\frac{5}{4} \times 5 - \frac{9}{4}\right)\right] > 0$ $\omega'(v) \ge 7 - \left[\left(\frac{5}{4} \times 4 - \frac{9}{4}\right) + \left(\frac{5}{4} \times 5 - \frac{9}{4}\right)\right] > 0$. In Fig. 5 (4), $\omega'(v) \ge 7 - \left[2 \times \left(\frac{5}{4} \times 3 - \frac{9}{4}\right) + \left(\frac{5}{4} \times 5 - \frac{9}{4}\right)\right] = 0$. In Fig. 5 (5), $\omega'(v) \ge 7 - \left[2 \times \left(\frac{5}{4} \times 4 - \frac{9}{4}\right) + \left(\frac{5}{4}$ by Lemma [7.](#page-4-0)

Case 5. $n_2(v) = 4$. Then $2 \times 8 - 6 - 4 = 6$ and there are eight cases where 2-vertices are located. We show these cases in Fig. 6 In Fig. [6\(](#page-8-2)1), $\omega'(v) \ge 6 - (\frac{5}{4} \times 6 - \frac{9}{4}) > 0$ by Lemma [7.](#page-4-0) In Fig. [5](#page-8-1) (2) and (4), $\omega'(v) \ge 6 - \left[\left(\frac{5}{4} \times 5 - \frac{9}{4} \right) + \left(\frac{5}{4} \times 3 - \frac{9}{4} \right) \right] > 0$. In Fig. [6](#page-8-2) (3) and (7), $\omega'(v) \ge 6 - 2 \times (\frac{5}{4} \times 4 - \frac{9}{4}) > 0$. In Fig. 6 (5) and (6), $\omega'(v) \ge$

 $\circled{2}$ Springer

 $6 - [2 \times (\frac{5}{4} \times 3 - \frac{9}{4}) + (\frac{5}{4} \times 4 - \frac{9}{4})] > 0$ $6 - [2 \times (\frac{5}{4} \times 3 - \frac{9}{4}) + (\frac{5}{4} \times 4 - \frac{9}{4})] > 0$. In Fig. 6 (8), $\omega'(v) \ge 6 - 4 \times (\frac{5}{4} \times 3 - \frac{9}{4}) = 0$ by Lemma [7.](#page-4-0)

Case 6. $n_2(v) \ge 5$. Suppose $n_2(v) = 5$. Then $2 \times 8 - 6 - 5 = 5$ and $f_3(v) \le 2$. If $f_3(v) = 2$, then $f_{6^+}(v) \ge 4$ by Lemma [2.](#page-1-1) Consequently, $\omega'(v) \ge 5 - \frac{3}{2} \times 2 - 1 \times 2 = 0$ by Lemma [6.](#page-3-0) Suppose $f_3(v) = 1$. Then $f_{6+}(v) \ge 3$ and $f_4(v) \le 4$. If $f_4(v) = 4$, then each of the four 4-faces is a $(2^+, 4^+, 4^+, 8)$ -face. Hence, $\omega'(v) \ge 5 - (\frac{3}{2} \times 1 + \frac{3}{4} \times 4)$ 0. If $f_4(v) \le 3$, then $\omega'(v) \ge 5 - (\frac{3}{2} \times 1 + 1 \times 3 + \frac{1}{3}) > 0$. Suppose $f_3(v) = 0$. Then $f_{6+}(v) \ge 2$. If $f_4(v) = 6$, then each of the six 4-faces is a $(2^+, 4^+, 4^+, 8)$ face. So $\omega'(v) \ge 5 - \frac{3}{4} \times 6 > 0$. If $f_4(v) = 5$, then v is incident with at least four $(2^+, 4^+, 4^+, 8)$ -faces. So $\omega'(v) \ge 5 - (1 \times 1 + \frac{3}{4} \times 4 + \frac{1}{3} \times 1) > 0$. If $f_4(v) \le 4$, then $\omega'(v) \ge 5 - (1 \times 4 + \frac{1}{3} \times 2) > 0$. Suppose $n_2(v) = 6$. Then $f_3(v) \le 1$ and $2 \times 8 - 6 - 6 = 4$. If $f_3(v) = 1$, then $f_4(v) \le 2$ and $f_{6+}(v) \ge 5$. Hence, $\omega'(v) \ge 4 - (\frac{3}{2} + 1 \times 2) > 0$. If *f*₃(*v*) = 0, then *f*₆+(*v*) ≥ 4. So $\omega'(v) \ge 4 - 1 \times 4 = 0$. Suppose $n_2(v) \ge 7$. Then $f_3(v) = 0$ and $f_{6^+}(v) \ge 6$, so $\omega'(v) \ge 10 - 8 - 1 \times 2 = 0$.

In summary, we prove that $\omega'(x) \geq 0$ for each $x \in V \cup F$. Therefore, $\sum_{x \in V \cup F} \omega'(x) \geq 0$. We get a contradiction and accomplish the proof of Theorem [1.](#page-1-0)

Acknowledgements We thanks for the support by Shandong Provincial Natural Science Foundation of China under Grant ZR2020MA045.

Funding The authors have not disclosed any funding.

Data availability Enquiries about data availability should be directed to the authors.

Declarations

Competing interests The authors declare no competing interests.

References

Behzad M (1965) Graphs and their chromatic numbers. Ph.D. Thesis, Michigan State University Bondy JA, Murty USR (1982) Graph theory with applications. North-Holland, NewYork

- Borodin OV, Kostochka AV, Woodall DR (1997) Total colorings of planar graphs with large maximum degree. J Graph Theory 26:53–59. [https://doi.org/10.1002/\(SICI\)1097-0118\(199709\)26:1<53::AID-](https://doi.org/10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO;2-G)[JGT6>3.0.CO;2-G](https://doi.org/10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO;2-G)
- Chang J, Wang HJ, Wu JL (2013) Total coloring of planar graphs with maximum degree 8 and without 5-cycles with two chords. Theor Comput Sci 476:16–23. <https://doi.org/10.1016/j.tcs.2013.01.015>
- Du DZ, Shen L, Wang Y (2009) Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable. Discrete Appl Math 157:2778–2784. <https://doi.org/10.1016/j.dam.2009.02.011>
- Hou JF, Zhu Y, Liu ZG, Wu JL (2008) Total colorings of planar graphs without small cycles. Graphs Comb 24:91–100. <https://doi.org/10.1007/s00373-008-0778-8>
- Kostochka AV (1996) The total chromatic number of any multigraph with maximum degree five is at most seven. Discrete Math 162:199–214. [https://doi.org/10.1016/0012-365X\(95\)00286-6](https://doi.org/10.1016/0012-365X(95)00286-6)
- Kowalik Ł, Sereni J-S, *Škrekovski R (2008)* Total-colorings of plane graphs with maximum degree nine. SIAM J Discrete Math 22:1462–1479. <https://doi.org/10.1137/070688389>
- Sánchez-Arroyo A (1989) Determining the total coloring number is NP-hard. Discrete Math 78:315–319. [https://doi.org/10.1016/0012-365X\(89\)90187-8](https://doi.org/10.1016/0012-365X(89)90187-8)
- Sanders DP, Zhao Y (1999) On total 9-coloring planar graphs of maximum degree seven. J Graph Theory 31:67–73. [https://doi.org/10.1002/\(SICI\)1097-0118\(199905\)31:1<67::AID-JGT6>3.0.CO;2-C](https://doi.org/10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.0.CO;2-C)
- Shen L, Wang YQ (2009) Total colorings of planar graphs with maximum degree at least 8. Sci China Ser A Math 52:1733–1742. <https://doi.org/10.1007/s11425-008-0155-3>
- Tan X, Chen HY, Wu JL (2009) Total colorings of planar graphs without adjacent 4-cycles. Lecture Notes Oper Res 10:167–173
- Vizing VG (1968) Some unsolved problems in graph theory. UspekhiMat Nauk 23:117–134
- Wang WF (2007) Total chromatic number of planar graphs with maximum degree ten. J Graph Theory 54:91–102. <https://doi.org/10.1002/jgt.20195>
- Wang HJ, Wu LD, Wu JL (2014) Total coloring of planar graphs with maximum degree 8. Theor Comput Sci 522:54–61. <https://doi.org/10.1016/j.tcs.2013.12.006>
- Wang HJ, Gu Y, Liu B (2017) Total coloring of planar graphs without adjacent short cycles. J Comb Optim 33(1):265–274. <https://doi.org/10.1007/s10878-015-9954-y>
- Xu RY, Wu JL, Wang HJ (2014) Total coloring of planar graphs without some chordal 6-cycles. Bull Malays Math Sci Soc 520:124–129. <https://doi.org/10.1007/s40840-014-0036-6>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.