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Abstract
We define G to be a planar graph with maximum degree Δ. Suppose Δ ≥ 8 and G
has no adjacent p,q-cycles for some p, q ∈ {3, 4, 5, 6, 7, 8}, then G can be totally
colored by (Δ + 1) colors.
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1 Introduction

In this paper, all graphs considered are finite, simple and undirected.We refer the read-
ers to Bondy and Murty (1982) for undefined notions and terminologies. Supposing
that G is a graph, then V is used to denote the vertex set and d(v) is used to denote
the degree of v. Similarly, we respectively use F and d( f ) to denote the face set, the
degree of f . Moreover, E is used to denote the edge set. Let Δ to be the maximum
degree of a graph and δ to be the minimum degree. We respectively use i-vertex, i+-
vertex and i−-vertex to denote the vertex v when d(v) = i , d(v) ≥ i , or d(v) ≤ i . A
i-face, i+-face, or i−-face can be similarly defined. We use (l1, l2, . . . , lk) to denote
a k-face whose boundary vertices are consecutively l1-vertex, l2-vertex …lk-vertex.
We use nk( f ) to denote the number of k-vertices incident with f , use nk(v) to denote
the number of k-vertices adjacent to v and use fk(v) to denote the number of k-faces
incident with v. A k-total-coloring for G is coloring of V ∪ E that no two adjacent
or incident elements in V ∪ E receive a same color by using k colors. If G has a
k-total-coloring, then we say that G can be totally colored by k colors. And G is total-
k-colorable if G can be totally colored by k colors. Suppose G has a k-total-coloring
but does not have a (k − 1)-total-coloring. Then k is the total chromatic number of G
defined as χ ′′. It is obvious to find that the lower bound of χ ′′ isΔ+1. Behzad (1965)
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and Vizing (1968) posed the Total Coloring Conjecture (TCC) independently for the
upper bound of χ ′′.
Conjecture 1 For any graph, Δ + 1 ≤ χ ′′(G) ≤ Δ + 2.

Total Coloring Conjecture has attracted a lot of researchers’ attention. But this conjec-
ture is still unsolved even for planar graphs. Kostochka (1996) confirmed TCC with
Δ ≤ 5. For planar graphs, the conjecture is open only when Δ = 6 (see Kostochka
1996; Sanders and Zhao 1999). Some researchers found that it is possible for some
specific graphs to prove that χ ′′(G) = Δ + 1. It is proved that it is a NP-complete
problem to judge whether χ ′′(G) = Δ + 1 for a simple graph G by Sánchez-Arroyo
(1989). However, if G is a planar graph with a large maximum degree, then it is pos-
sible to prove that χ ′′(G) = Δ + 1. It was proved that χ ′′(G) = Δ + 1 when G is
a planar graph with Δ(G) ≥ 9 (see Borodin et al. 1997; Wang 2007; Kowalik et al.
2008). It is still an unsolved problem to judge whether a planar graph can be totally
colored by (Δ + 1) colors for Δ = 6, 7 and 8. There are many results obtained by
adding restrictions for a planar graph with Δ(G) = 8 in Du et al. (2009), Hou et al.
(2008), Tan et al. (2009), Wang et al. (2014). Recently, a result for a planar graph with
Δ(G) = 8 has been proved in Wang et al. (2017), that is, suppose Δ ≥ 8 and G has
no adjacent p,q-cycles for some p, q ∈ {3, 4, 5, 6, 7}, then G can be totally colored
by (Δ + 1) colors. Next we generalize the result and get this following result.

Theorem 1 Let G be a planar graph with maximum degree Δ ≥ 8. Suppose G has no
adjacent p,q-cycles for some p, q ∈ {3, 4, 5, 6, 7, 8}, then G can be totally colored
by (Δ + 1) colors.

2 Reducible configurations

Since Theorem 1was proved forΔ ≥ 9 inKowalik et al. (2008).We only need to prove
the theorem for Δ = 8 in this paper. Let G = (V , E) to be a minimal counterexample
to Theorem 1, that is to say, the number of |V | + |E | is as small as possible. So every
proper subgraph of G has a 9-total-coloring.

Lemma 1 (Borodin et al. 1997)

(a) G is 2-connected.
(b) Suppose u1u2 is an edge of G and d(u1) ≤ 4. Then d(u1)+d(u2) ≥ Δ+2 = 10.
(c) Suppose G82 is a proper subgraph of G and it is induced by all the edges joining

8-vertices to 2-vertices. Then G82 is a forest.

Lemma 2 (Chang et al. 2013) G cannot contain subgraph isomorphic to the configu-
rations depicted in Fig. 1. A vertex is marked by • if all neighbors are depicted in G
and 7 − v denotes the vertex whose degree is seven.

Lemma 3 (Xu et al. 2014) Suppose v ∈ V , d(v) = 8 and d ≥ 6. If v is consecutively
adjacent to v1, v2, . . . , v8, then let v be incident with f1, f2, . . . , f8 and f j (1 ≤ j ≤
7) be incident with v j and v j+1. As for f8, it is incident with v8 and v1. If d(v1) = 2
and it is adjacent to v and u1. Then G cannot contain the following configurations
(see Fig. 2):
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Fig. 1 Reducible configurations of Lemma 2

Fig. 2 Reducible configurations of Lemma 3

(1) There exists an integer k (2 ≤ k ≤ 7) such that d( f j ) = 4 (1 ≤ j ≤ k),
d(vk+1) = 2 and d(vi ) = 3 (2 ≤ i ≤ k).

(2) There exist two integers k and t (2 ≤ k < t ≤ 7) such that d(vk) = 2, d(vi ) = 3
(k + 1 ≤ i ≤ t), d( ft ) = 3 and d( f j ) = 4 (k ≤ j ≤ t − 1).

(3) There exist two integers k and t (3 ≤ k ≤ t ≤ 7) such that d(vi ) = 3 (k ≤ i ≤ t),
d( fk−1) = d( ft ) = 3 and d( f j ) = 4 (k ≤ j ≤ t − 1).

(4) There exist two integers k (2 ≤ k ≤ d − 2) and d, such that d(vd) = d(vi ) = 3
(2 ≤ i ≤ k), d( fk) = 3 and d( f j ) = 4 (0 ≤ j ≤ k − 1).

Lemma 4 (Wang et al. 2017) Suppose v is a 6-vertex of G. If v is incident with a
3-cycle (u, v, w) where u or w is a 4-vertex, then n4−(v) = 1.

Lemma 5 (Shen and Wang 2009) G cannot contain (4−, 6, 6)-cycles.

3 Discharging

We will use discharging method to accomplish the proof of Theorem 1. By Euler’s
formula |V | − |E | + |F | = 2, we obtain

∑

v∈V
(2d(v) − 6) +

∑

f ∈F
(d( f ) − 6) = −6(|V | − |E | + |F |) = −12 < 0

We define ω(x) to be the original charge. Let ω(v) = 2d(v) − 6 for each v ∈ V
and ω( f ) = d( f ) − 6 for each f ∈ F . So

∑
v∈V∪F ω(x) < 0. We define ω(x → y)

to be the amount of total charge which is transferred from x to y. We will give suitable
discharging rules and distribute original charge to receive a new charge. We have
two rounds of discharging rules. After the first round of discharging, we get a new
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charge of x ∈ V ∪ F denoted as ω∗(x). After the second round of discharging,
we get a new charge of x ∈ V ∪ F denoted as ω′(x). If there exist no discharging
rules for x ∈ V ∪ F , then ω′(x) = ω∗(x) = ω(x). It is obvious that the total
charge of G is unchangeable in the process of redistributing charge. So we have∑

x∈V∪F ω′(x) = ∑
x∈V∪F ω(x) = −6χ(�) = −12 < 0.We can get a contradiction

by proving that
∑

x∈V∪F ω′(x) ≥ 0.
These are the first round of discharging rules:

R1. Every 8-vertex sends 1 to its each adjacent 2-vertex.
R2. Suppose f is a face incident with v and d(v) = 4 or 5. If d( f ) = 5, then

ω(v → f ) = 1
3 . If d( f ) = 4, then ω(v → f ) = 1

2 . At the end, v sends spare
charge to its incident 3-faces evenly.

R3. If a 6-vertex and a 7+-vertex is incident with a same 3-face, then the 7+-vertex
sends 5

4 to the 3-face.

R4. Every 3-face receives d( f )−6
d( f ) from its adjacent 7+-faces.

If the charge of a 5−-face is still negative after the first round of discharging rules,
in other words, we have ω∗( f ) < 0, then we carry on the second round discharging:

R5. If ω∗( f ) < 0, then f receives | ω∗( f )
n6+ (v)

| from each incident 6+-vertices which does
not send any charge to f .

Lemma 6 Suppose v is a vertex incident with the face f .

1. If d(v) = 6, thenwehaveω(v → f ) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
4 , if d( f ) = 3 and n4( f ) = 1,
11
10 , if d( f ) = 3 and n5( f ) ≥ 1,

1, if d( f ) = 3 and n6+ ( f ) = 3,
7
8 , if d( f ) = 3, n5− ( f ) = 0 and n7+ ( f ) = 1,
1
2 , if d( f ) = 3 and n7+ ( f ) = 2,
2
3 , if d( f ) = 4 and n3− ( f ) = 1,
1
2 , if d( f ) = 4 and n3− ( f ) = 0,
1
3 , if d( f ) = 5.

2. If d(v) ≥ 7, thenwehaveω(v → f ) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2 , if d( f ) = 3 and n3− ( f ) = 1,
5
4 , if d( f ) = 3 and n3− ( f ) = 0,

1, ifd( f ) = 4 and n3− ( f ) = 2,
3
4 , if d( f ) = 4, n3− ( f ) = 1 and n4( f ) = 1,
2
3 , if d( f ) = 4, n3− ( f ) = 1 and n5+ ( f ) = 3,
1
2 , if d( f ) = 4 and n3− ( f ) = 0,
1
3 , if d( f ) = 5.

Proof Suppose f is incident with v and d( f ) ≥ 4. Then it is easy to know that
Lemma 6 is right by R2 and R5. If d(v) ≥ 7 and d( f ) = 3, then f is incident with
at most one 3−-vertex, so ω(v → f ) ≤ 3

2 . If f is not incident with a 3-face, then

ω(v → f ) ≤ 3− 1
2

2 = 5
4 . Now we consider the case where d(v) = 6 and d( f ) = 3

noted as (u, v, w). It is easy to find that the vertex u and the vertex w is equivalent.
By lemma 1 (b), 6-vertex is not adjacent to 3−-vertices. If d(u) = 4, then d(w) ≥ 7
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by Lemma 5. So ω(v → f ) ≤ 3 − 5
4 − 1

2 = 5
4 . If d(u) = 5 and d(w) = 6, then

ω(v → f ) ≤ 3− 4
5

2 = 11
10 . Suppose d(u) = d(w) = 5. If u is incident with five 3-faces,

then w is incident with at least two 6+-faces. So ω(v → f ) ≤ 3 − 4
5 − 4

3 ≤ 11
10 . If u

is incident with four 3-faces, then u and u are incident with at least one 6+-face. So
ω(v → f ) ≤ 3−1×2 ≤ 11

10 . Suppose d(u) = d(w) = 6. Then ω(v → f ) ≤ 3
3 = 1.

If d(u) ≥ 7 and d(w) ≥ 6, then the u sends 5
4 to f by R4, so ω(v → f ) ≤ 3− 5

4
2 = 7

8 .
If d(u) = d(w) ≥ 7, then ω(v → f ) ≤ 3 − 5

4 × 2 = 1
2 . 	


Lemma 7 Suppose d(v) = 8 and v is consecutively adjacent to v1, v2, . . . , v8. Let v

be incident with f1, f2, . . . , f8 and f j (1 ≤ j ≤ 7) be incident with v j and v j+1. As
for f8, it is incident with v8 and v1. If d(v1) = d(vt ) = 2 (t ≥ 3) and d(vi ) ≥ 3
(2 ≤ i ≤ t − 1), then we have

∑t−1
i=1 ω(v → fi ) ≤ 5

4 t − 9
4 .

Proof By Lemma 2, we know that min{d( f1), d( ft−1)} ≥ 4. Firstly, suppose
d( f1) = 4 and d( ft−1) = 4. If min{d( f2), d( f3), . . . , d( ft−2)} ≥ 5, then t ≥ 4, so∑t−1

i=1 ω(v → fi ) ≤ 1×2+ 1
3 (t−3) ≤ 5

4 t− 9
4 . Ifmin{d( f2), d( f3), . . . , d( ft−2)} = 4

and max{d( f2), d( f3), . . . , d( ft−2)} = 5, then
∑t−1

i=1 ω(v → fi ) ≤ t − 2 + 1
3 ≤

5
4 t − 9

4 . If max{d( f2), d( f3), . . . , d( ft−2)}=min{d( f2), d( f3), . . . , d( ft−2)} = 4,

then
∑t−1

i=1 ω(v → fi ) ≤ t − 3 + 3
4 × 2 ≤ 5

4 t − 9
4 by Lemma 3. Suppose

min{d( f2), d( f3), . . . , d( ft−2)} = 3 and max{d( f2), d( f3), . . . , d( ft−2)} = 4.
Whetherd( f2) = 3ord( f2) = 4,wehaveω(v → f1)+ω(v → f2) ≤ max{1×2, 3

4+
5
4 } = 2 by Lemma 3. Similarly,ω(v → ft−2)+ω(v → ft−1) ≤ max{1×2, 3

4 + 5
4 } =

2. Moreover, v sends more charge to 3-faces than 4-faces, so we assume that v is inci-
dentwith 3-faces asmore as possible. Hence,

∑t−1
i=1 ω(v → fi ) ≤ 2×2+ 5

4×(t−5) ≤
5
4 t− 9

4 . Supposemax{d( f2), d( f3), . . . , d( ft−2)}=min{d( f2), d( f3), . . . , d( ft−2)} =
3, then f j (2 ≤ j ≤ t−2) receives atmost 54 from v byLemma3.Hence,

∑t−1
i=1 ω(v →

fi ) ≤ 3
4 × 2 + 5

4 × (t − 3) ≤ 5
4 t − 9

4 . Secondly, suppose min{d( f1), d( ft−1)} =
4 and max{d( f1), d( ft−1)} ≥ 5. If max{d( f2), d( f3), . . . , d( ft−2)} ≥ 4, then∑t−1

i=1 ω(v → fi ) ≤ 1 × 2 + 1
3 + 3

2 + 5
4 × (t − 5) ≤ 5

4 t − 9
4 . Other-

wise, if max{d( f2), d( f3), . . . , d( ft−2)}=min{d( f2), d( f3), . . . , d( ft−2)} = 3, then∑t−1
i ω(v → fi ) ≤ 3

4 + 1
3 + 3

2 + 5
4 × (t − 4) ≤ 5

4 t − 9
4 . Finally, suppose d( f1) ≥ 5

and d( ft−1)} ≥ 5. Then
∑t−1

i=1 ω(v → fi ) ≤ 1
3 × 2+ 3

2 × 2+ 5
4 × (t − 5) ≤ 5

4 t − 9
4 .	


In the rest of this paper, we can check that ω′(x) ≥ 0 for every x ∈ V ∪ F which
is a contradiction to our assumption. Let f ∈ F . If d( f ) ≥ 7, then ω′( f ) ≥ ω( f ) −
d( f )−6
d( f ) ×d( f ) = 0 byR4. If f is a 6-face, thenω′( f ) = ω( f ) = 0. Supposed( f ) ≤ 5.

If n6+( f ) ≥ 1, then ω′( f ) ≥ 0 by R5. Otherwise, if n6+( f ) = 0, then n5( f ) = d( f ).
If d( f ) = 3 and f is noted as (u1, u2, u3), then d(u1) = d(u2) = d(u3) = 5. By R2,
4+-face receives at most 1

2 from incident 4-vertices or 5-vertices. Suppose f3(ui ) ≤ 3
(i = 1, 2, 3). Then ω(ui → f ) ≥ 1, so ω′( f ) ≥ (3− 6) + 1× 3 = 0. Suppose there
exists f3(ui ) ≥ 4. Without loss of generality, we assume that f3(u3) ≥ 4. Then we
have f3(u1) ≤ 4 and f3(u2) ≤ 4. Otherwise, f3(u1) = 5 or f3(u2) = 5, then for any
integers p, q ∈ {3, 4, 5, 6, 7, 8}, there exists a vertex incident with adjacent p-cycles
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and q-cycles. So it is a contradiction to the condition of Theorem 1. If f3(u1) = 4,
then u1 is incident with a 9+-face and u2 is incident with at least two 6+-faces, so
ω(u1 → f ) ≥ 1 andω(u2 → f ) ≥ 1.Consequently,ω′( f ) ≥ (3−6)+ 4

5+1+ 4
3 > 0.

Similarly,weknow that if f3(u2) = 4, thenω′( f ) > 0. Suppose f3(u1) = f3(u2) = 3.

Then u1 and u2 is incident with at least one 6+-face, so ω(ui → f ) ≥ 4− 1
2

3 = 7
6 ,

(i = 1, 2). Consequently, ω′( f ) ≥ (3 − 6) + 4
5 + 7

6 × 2 > 0. If d( f ) = 4, then
ω′( f ) ≥ (4− 6) + 1

2 × 4 = 0 by R2. If d( f ) = 5, then ω′( f ) ≥ (5− 6) + 1
3 × 5 > 0

by R2. So for every f ∈ F , we prove that ω′( f ) ≥ 0. Next, we consider that v ∈ V .
Suppose d(v) = 2. Then it is clear that ω(v) = −2, so ω′(v) = −2 + 1 × 2 = 0
by R1. If d(v) = 3, then ω′(v) = ω(v) = 0. Suppose d(v) = 4 or d(v) = 5. Then
ω′(v) = 0 by R2.

If v is a 6+-vertex and it is consecutively adjacent to v1, v2, . . . , vd . Let v be
incident with f1, f2, . . . , fd and f j (1 ≤ j ≤ d − 1) be incident with v j and v j+1.
As for fd , it is incident with vd and v1. Suppose d(v) = 6. Then v is not incident with
3−-vertices by Lemma 1 (b) and v is incident with at most two 3-faces incident with
a 4-vertex by Lemma 4. Clearly, ω(v) = 2d(v) − 6 = 6. Hence, if f3(v) ≤ 3, then
ω′(v) ≥ 6− ( 54 × 2+ 11

10 × 1+ 2
3 × 3) > 0 by R4. Suppose f3(v) = 4. If f5+(v) ≥ 1,

then ω′(v) ≥ 6 − ( 54 × 2 + 11
10 × 2 + 2

3 + 1
3 ) > 0. If f4(v) = 2, then another three

boundary vertices of each two 4-faces are adjacent to v, that is, all vertices of the two
4-faces are 4+-vertices. Hence, w′(v) ≥ 6− ( 54 × 2+ 11

10 × 2+ 1
2 × 2) > 0. Suppose

f3(v) ≥ 5. If v is adjacent to a 5-vertex v0 and f is a 3-face incident with v and v0,
then f3(v0) ≤ 3, so ω(v0 → f ) ≥ 1 and ω(v → f ) ≤ 1. Suppose f3(v) = 5. If
f5+(v) = 1, then ω′(v) ≥ 6 − ( 54 × 2 + 1 × 3 + 1

3 ) > 0. If f4(v) = 1, then another
three boundary vertices of the 4-faces are adjacent to v, that is, the 4-face is incident
with four 4+-vertices. Hence, ω′(v) ≥ 6 − ( 54 × 2 + 1 × 3 + 1

2 ) = 0.
Suppose f3(v) = 6, that is, d( f1) = d( f2) = . . . = d( f6) = 3. By Lemma

4, v is incident with at most one 4-vertex. So we may assume that d(v6) = 4, then
d(v1) ≥ 7 and d(v5) ≥ 7 by Lemma 5. Suppose f6+(v6) = 2. Then ω(v6 → f5) ≥ 1
and ω(v6 → f6) ≥ 1, so ω(v → f5) ≤ 1 and ω(v → f6) ≤ 1. Therefore,
ω′(v) ≥ 6 − 1 × 6 = 0. Otherwise, f5−(v) ≥ 3. Let fl be the 5−-face incident with
v6 except f5 and f6. Suppose d( fl) = 5. Then it is a contradiction to the condition
of Theorem 1. Suppose d( fl) = 4. Then v6 is adjacent to v4 and v1 is adjacent to v3.

So we know that f6+(v6) = 1 and ω(v6 → fi ) ≥ 2− 1
2

2 = 3
4 (i = 5, 6). Therefore,

ω(v → fi ) ≤ 3 − 5
4 − 3

4 ≤ 1 (i = 5, 6), and ω′(v) ≥ 6 − 1 × 6 = 0. Suppose
d( fl) = 3. Then each of the boundary vertices of f is adjacent to v. If v6 is adjacent
to v4 and v1 is adjacent to v4, then d(v4) ≥ 7 by Lemma 5. So ω(v4 → f4) = 5

4 and
ω(v5 → f4) = 5

4 , then ω(v → f4) ≤ 1
2 and ω′(v) ≥ 6 − ( 54 × 2 + 1 × 3 + 1

2 ) = 0.
If v6 is adjacent to v3 and v1 is adjacent to v3, then d(v3) ≥ 7 by Lemma 5. Suppose

d(v2) ≥ 6 and d(v4) ≥ 6. Then ω(v → fi ) ≤ 3− 5
4

2 = 7
8 (i = 1, 2, 3, 4). Hence,

ω′(v) ≥ 6 − ( 54 × 2 + 7
8 × 4) = 0. Suppose d(v2) = 5 or d(v4) = 5. Without of

generality, assume that d(v4) = 5. Then ω(v4 → f3) ≥ 1 and ω(v4 → f4) ≥ 1. So
ω(v → f3) ≤ 3 − (1 + 5

4 ) = 3
4 and ω(v → f4) ≤ 3 − (1 + 5

4 ) = 3
4 . Therefore,

ω′(v) ≥ 6 − ( 54 × 2 + 1 × 2 + 3
4 × 2) = 0.
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Fig. 3 n2(v) = 0 and f3(v) = 6

Suppose d(v) = 7. Then ω(v) = 2d(v) − 6 = 8. Clearly, we have f3(v) ≤ 6 and
n2−(v) = 0 byLemma1 (b). Suppose each of the 3-faces incidentwith v is not incident
with a 3-vertex. If f3(v) = 6, then f9+(v) = 1, soω′(v) ≥ 8− 5

4×6 > 0. If f3(v) = 5,
then each of the 4-faces incident with v is incident with at most one 3−-vertex. So
ω′(v) ≥ 8− ( 54 ×5+ 3

4 ×2) > 0. If f3(v) ≤ 4, then ω′(v) ≥ 8− ( 54 ×4+1×3) = 0.
Suppose v is incident with at least one 3-face which is incident with a 3-vertex.
Then each of the 4-faces is incident with at most one 3−-vertex. By Lemma 2, v is
incident with at most two 3-faces which is incident with a 3-vertex. If f3(v) = 6,
then f9+(v) = 1, so ω′(v) ≥ 8 − ( 32 × 2 + 5

4 × 4) = 0 by Lemma 6. Suppose
f3(v) = 5. If f5+(v) ≥ 1, then ω′(v) ≥ 8 − ( 32 × 2 + 5

4 × 3 + 2
3 + 1

3 ) > 0 by
Lemma 6. Otherwise, suppose f4(v) = 2. If there exist two 3-faces incident with a
3-vertex, then each of the 4-faces incident with v is not incident with 3−-vertices. So
ω′(v) ≥ min{8− ( 32 ×2+ 5

4 ×3+ 3
4 + 1

2 ), 8− ( 32 ×1+ 5
4 ×4+ 3

4 ×2} = 0. Suppose
f3(v) ≤ 4. Then ω′(v) ≥ 8− ( 32 × 2+ 5

4 × 2+ 3
4 × 3) > 0 by Lemma 6. If d(v) = 8,

then ω(v) = 2× 8− 6 = 10 and f3(v) ≤ 6. We will consider the following cases by
discussing the number of n2(v) by Lemmas 6 and 7.

Case 1. n2(v) = 0. Suppose f3(v) = 6. If f5+(v) ≥ 2 or f6+(v) ≥ 1, then
ω′(v) ≥ 10− ( 32 × 6+ 1) = 0 by Lemma 6. Otherwise, f5+(v) ≤ 1 and f6+(v) = 0.
Suppose f5(v) = 1 and f4(v) = 1. Then there exists only one case that satisfies the
condition of Theorem 1. We show this case in Fig. 3(1). It is clear that another three
boundary vertices of each 4-faces are adjacent to v, and v is incident with at least one
3-facewhich is not incidentwith a 3-vertex byLemma2. If the 4-face is incidentwith at
most one 3-vertex, thenω′(v) ≥ 10−( 32 ×5+ 5

4 + 3
4 + 1

3 ) > 0. Otherwise, the 4-face is
incident with two 3-vertex, then v is incident with at least two 3-faces each of which is
not incidentwith a 3-vertex byLemma2.Hence,ω′(v) ≥ 10−( 32×4+ 5

4×2+ 3
4+ 1

3 ) >

0. Suppose f4(v) = 2. Then there exist only two cases that satisfies the condition of
Theorem 1. We show these cases in Fig. 3 (2) and (3). In Fig. 3 (2), v is incident with
at least four 3-faces each of which is adjacent to a 8+-face. By R4, if there exists
a 8+-face adjacent to a 3-face, then 8+-face sends 1

4 to its adjacent 3-face, so each

of the 3-face adjacent to a 8+-face receives at most
3− 1

4
2 = 11

8 from the boundary
vertices. There exist at most one 4-face incident with two 3-vertices in Fig. 3 (2). By
Lemma 2, v is incident with at least one 3-face which is not incident with a 3-vertex,
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so ω′(v) ≥ 10− ( 32 + 11
8 ×4+ 5

4 +1+ 3
4 ) = 0. In Fig. 3 (3), v is incident with at least

four 3-faces each of which is adjacent to a 8+-face. By Lemma 2, v is incident with
at most one 4-face incident with two 3-vertices. If each of the two 4-faces is incident
with at most one 3-vertex, thenω′(v) ≥ 10−( 32 ×2+ 11

8 ×4+ 3
4 ×2) = 0. Otherwise,

v is incident with one 4-face which is incident with two 3-vertices, then there exist at
least three 3-faces each of which is not incident with a 3-vertex by Lemma 2. Hence,
ω′(v) ≥ 10− ( 32 ×3+ 5

4 ×3+1+ 3
4 ) = 0. Suppose f3(v) = 5. Then by the condition

of Theorem 1, we have f5+(v) ≥ 1, so ω′(v) ≥ 10 − ( 32 × 5 + 1 × 2 + 1
3 × 2) > 0.

Case 2. n2(v) = 1. After transferring charge from v to 2-vertex, the remaining
charge of v is 2 × 8 − 6 − 1 = 9.

Case 2.1. Suppose the 2-vertex is incident with a 3-cycle. It is clear that f3(v) ≤ 6
and each of the 3-faces is not incident with a 3-vertex by Lemma 2. So v is incident
with at most one 3-face that receives 3

2 from v. If f3(v) = 6, then by the condition of
Theorem1,we know that f6+(v) ≥ 1 or f5+(v) ≥ 2, soω′(v) ≥ 9−( 32+ 5

4×5) > 0 by
Lemma6. Suppose f3(v) = 5. If f4(v) = 3, then there are at least two (2+, 4+, 4+, 8)-
faces between the three 4-faces by Lemma 2. Hence,ω′ ≥ 9−( 32 + 5

4×4+1+ 3
4×2) =

0. If f4(v) ≤ 2, then we have ω′(v) ≥ 9 − ( 32 + 5
4 × 4 + 1 × 2 + 1

3 ) > 0. Suppose
f3(v) = 4. If f4(v) = 4, then there exist at least two (2+, 4+, 4+, 8)-faces between
the four 4-faces by Lemma 2. Hence, ω′ ≥ 9 − ( 32 + 5

4 × 3 + 1 × 2 + 3
4 × 2) > 0.

If f4(v) ≤ 3, then ω′(v) ≥ 9 − ( 32 + 5
4 × 3 + 1 × 3 + 1

3 ) > 0. If f3(v) ≤ 3, then
ω′(v) ≥ 9 − ( 32 + 5

4 × 2 + 1 × 5) = 0.
Case 2.2. Suppose the 2-vertex is not incident with a 3-cycle. Then f3(v) ≤ 6.

Suppose f3(v) = 6. Then the six 3-faces are consecutively adjacent and f9+(v) = 1,
so there exist at least four (4+, 4+, 8)-faces between the six 3-faces by Lemma 3.
Consequently, ω′(v) ≥ 9 − ( 32 × 2 + 5

4 × 4 + 1 × 1) > 0 by Lemma 6. Suppose
f3(v) = 5. Then f6+(v) ≥ 1 by the condition of Theorem 1. If f4(v) = 2, then another
three the boundary vertices of each 4-faces are adjacent to v. So v is incident with at
least two (4+, 4+, 8)-faces and one (2+, 4+, 4+, 8)-face by Lemma 3. Hence,ω′(v) ≥
9−( 32 ×3+ 5

4 ×2+1×1+ 3
4 ×1) > 0. If f4(v) = 1, then v is incident with at least one

(4+, 4+, 8)-face by Lemma 3. Hence,ω′(v) ≥ 9−( 32 ×4+ 5
4 ×1+1×1+ 1

3 ×2) > 0.
If f4(v) = 0, thenω′(v) ≥ 9−( 32 ×5+ 1

3 ×3) > 0. Suppose f3(v) = 4. Then we have
f4(v) ≤ 3according to the conditionofTheorem1. If f4(v) = 3, thenv is incidentwith
at least two (4+, 4+, 8)-faces. Hence,ω′(v) ≥ 9−( 32 ×2+ 5

4 ×2+1×3+ 1
3 ×1) > 0.

If f4(v) ≤ 2, then ω′(v) ≥ 9 − ( 32 × 4 + 1 × 2 + 1
3 × 2) > 0. Suppose f3(v) = 3. If

v is incident with a 5+-face, then ω′(v) ≥ 9 − ( 32 × 3 + 1 × 4 + 1
3 ) > 0. Otherwise,

f4(v) = 5, then v is incident with at least three (2+, 4+, 4+, 8)-faces. Hence, ω′(v) ≥
9− ( 32 ×3+1×2+ 3

4 ×3) > 0. If f3(v) ≤ 2, then ω′(v) ≥ 9− ( 32 ×2+1×6) = 0.
Case 3. n2(v) = 2. Then 2×8−6−2 = 8 and there are four cases where 2-vertices

are located. We show these cases in Fig. 4. In Fig. 4(1), ω′(v) ≥ 8− ( 54 × 8− 9
4 ) > 0

by Lemma 7. In Fig. 4 (2), ω′(v) ≥ 8−[( 54 ×3− 9
4 )+ ( 54 ×7− 9

4 )] = 0. In Fig. 4 (3),
ω′(v) ≥ 8−[( 54×4− 9

4 )+( 54×6− 9
4 )] = 0. In Fig. 4 (4),ω′(v) ≥ 8−2×( 54×5− 9

4 ) = 0
by Lemma 7.

Case 4. n2(v) = 3. Then 2×8−6−3 = 7 and there are five cases where 2-vertices
are located. We show these cases in Fig. 5. In Fig. 5(1), ω′(v) ≥ 7− ( 54 × 7− 9

4 ) > 0
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Fig. 4 n2(v) = 2

Fig. 5 n2(v) = 3

Fig. 6 n2(v) = 4

by Lemma 7. In Fig. 5 (2), ω′(v) ≥ 7−[( 54 ×3− 9
4 )+ ( 54 ×6− 9

4 )] > 0. In Fig. 5 (3),
ω′(v) ≥ 7−[( 54 ×4− 9

4 )+ ( 54 ×5− 9
4 )] > 0. In Fig. 5 (4), ω′(v) ≥ 7−[2× ( 54 ×3−

9
4 )+ ( 54 ×5− 9

4 )] = 0. In Fig. 5 (5), ω′(v) ≥ 7−[2× ( 54 ×4− 9
4 )+ ( 54 ×3− 9

4 )] = 0
by Lemma 7.

Case 5. n2(v) = 4. Then 2×8−6−4 = 6 and there are eight caseswhere 2-vertices
are located. We show these cases in Fig. 6. In Fig. 6(1), ω′(v) ≥ 6− ( 54 × 6− 9

4 ) > 0
by Lemma 7. In Fig. 5 (2) and (4), ω′(v) ≥ 6− [( 54 × 5− 9

4 ) + ( 54 × 3− 9
4 )] > 0. In

Fig. 6 (3) and (7), ω′(v) ≥ 6 − 2 × ( 54 × 4 − 9
4 ) > 0. In Fig. 6 (5) and (6), ω′(v) ≥
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6−[2×( 54 ×3− 9
4 )+( 54 ×4− 9

4 )] > 0. In Fig. 6 (8),ω′(v) ≥ 6−4×( 54 ×3− 9
4 ) = 0

by Lemma 7.
Case 6. n2(v) ≥ 5. Suppose n2(v) = 5. Then 2× 8− 6− 5 = 5 and f3(v) ≤ 2. If

f3(v) = 2, then f6+(v) ≥ 4 by Lemma 2. Consequently,ω′(v) ≥ 5− 3
2 ×2−1×2 = 0

by Lemma 6. Suppose f3(v) = 1. Then f6+(v) ≥ 3 and f4(v) ≤ 4. If f4(v) = 4, then
each of the four 4-faces is a (2+, 4+, 4+, 8)-face. Hence,ω′(v) ≥ 5−( 32×1+ 3

4×4) >

0. If f4(v) ≤ 3, then ω′(v) ≥ 5 − ( 32 × 1 + 1 × 3 + 1
3 ) > 0. Suppose f3(v) = 0.

Then f6+(v) ≥ 2. If f4(v) = 6, then each of the six 4-faces is a (2+, 4+, 4+, 8)-
face. So ω′(v) ≥ 5 − 3

4 × 6 > 0. If f4(v) = 5, then v is incident with at least four
(2+, 4+, 4+, 8)-faces. So ω′(v) ≥ 5 − (1 × 1 + 3

4 × 4 + 1
3 × 1) > 0. If f4(v) ≤ 4,

then ω′(v) ≥ 5 − (1 × 4 + 1
3 × 2) > 0. Suppose n2(v) = 6. Then f3(v) ≤ 1

and 2 × 8 − 6 − 6 = 4. If f3(v) = 1, then f4(v) ≤ 2 and f6+(v) ≥ 5. Hence,
ω′(v) ≥ 4−( 32 +1×2) > 0. If f3(v) = 0, then f6+(v) ≥ 4. Soω′(v) ≥ 4−1×4 = 0.
Suppose n2(v) ≥ 7. Then f3(v) = 0 and f6+(v) ≥ 6, so ω′(v) ≥ 10− 8− 1× 2 = 0.

In summary, we prove that ω′(x) ≥ 0 for each x ∈ V ∪ F . Therefore,∑
x∈V∪F ω′(x) ≥ 0. We get a contradiction and accomplish the proof of Theorem

1.
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