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Abstract
Landscapes play an important role in many areas of biology, in which biological lives  
are deeply entangled. Here we discuss a form of landscape in evolutionary biol-
ogy which takes into account (1) initial growth rates, (2) mutation rates, (3) resource  
consumption by organisms, and (4) cyclic changes in the resources with time. The long-
term equilibrium number of surviving organisms as a function of these four parameters 
forms what we call a success landscape, a landscape we would claim is qualitatively 
different from fitness landscapes which commonly do not include mutations or resource 
consumption/changes in mapping genomes to the final number of survivors. Although 
our analysis is purely theoretical, we believe the results have possibly strong connec-
tions to how we might treat diseases such as cancer in the future with a deeper under-
standing of the interplay between resource degradation, mutation, and uncontrolled cell 
growth.
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1 Introduction

Never say “first.” Somebody has always been there before you. One of the authors, RHA, 
got into hot water at a talk he was giving among experts on protein folding. He pointed out 
that it wasn’t the protein folding experts, or even his thesis advisor Hans Frauenfelder (who 
has definitely been one of the pioneers of the concept of protein energy landscapes [1–3]), 
who has been the “first” to exploit the concept of landscapes in biology. We hope Professor 
Frauenfelder will not be upset to hear that one of the very early exponents of the utility of 
landscapes in quantitative evolutionary biology was Sewall Wright with his idea of fitness 
landscapes [4].

Others in this volume will give Hans Frauenfelder the credit he deserves for protein 
energy landscapes, so let’s take a walk several levels up in biological complexity and 
look at fitness landscapes. Simply put, a fitness landscape as originally defined was a map 
between variations in the genotype of an organism and variations in the growth rate, for 
a given environment [5]. Peaks in a fitness landscape represent genotypes which give the 
highest growth rates, and valleys represent the lowest growth rates, even negative growth 
[6]. In some sense, a fitness landscape is inverted from the normal physicist’s free-energy 
landscape such as for proteins, where low-lying free energies are most likely places for a 
protein structure, so beware. Wright showed how evolutionary dynamics could be graphi-
cally visualized on a fitness landscape by movement on the landscape as the genome 
changed [4].

Wright analyzed how genetic heterogeneity and metapopulation numbers could explain 
many aspects of evolution, including the speed of evolution and the way population sub-
structure and genetic drift could allow evolution from a lower to a higher peak of the fit-
ness landscape.

But in this article, we will be most concerned with the limitations of Wright’s fitness 
landscape in understanding evolutionary dynamics, and propose the replacement of the fit-
ness landscape with the success landscape. Unlike a fitness metric which values reproduc-
tion rates we will stress that a high growth rate also can result in more resource consump-
tion, thus there is a cost for too high a fitness. This implies that high reproduction rates can 
get selected out due to the subsequent degradation of resources with time. Further, we will 
discuss how mutations can be both too fast and too slow depending on growth rates and 
resource impacts, highlighting the hidden complexities in Wright’s intuitively appealing 
fitness landscape.

As we noted, fitness is defined by biologists as the reproduction rate of an organism: the 
faster you reproduce, the more fit you are [6]. The fundamental act of reproduction of off-
spring in biology means that after a discrete time step Δt = 1 , or generation, an individual 
will be replaced by a number of w individuals:

where w is defined as the absolute fitness. If w > 1 , then a population has a higher fitness 
and conversely if w < 1 , then the population will decrease with time and is doomed. In the 
continuum limit of time, we can approximate:

where we identify the growth rate to be g = ln(w) [7]. For w → 0 then g → −∞.
Of course growth can’t go on forever, even for Ponzi schemes [8]. Natural environ-

ments have limited resources, and the logistic model of population growth incorporates 

(1)N(t + 1) = wN(t) ,

(2)�tN(t) = gN(t) ,
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this fact. As the population grows toward the carrying capacity, effectively birth rates 
decline or death rates increase. The simplest differential equation that expresses this 
self-limiting growth is called the logistic equation [9]. In the simplest form of the  
logistic equation, the initial growth rate is modified by a fixed number Nc , the individual 
carrying capacity of the environment:

This can be solved analytically to get:

N(t) is a sigmoidal curve: the initial portion of the curve is exponential in time with 
growth rate g (assuming N(0) ≪ Nc ) but folds over as the carrying capacity Nc of the 
environment is reached, with final growth rate at t → ∞ approaching 0. Note that for the 
logistic equation as written having greater fitness simply increases the rate at which you 
reach the carrying capacity, but it does not change the carrying capacity Nc!

Of course, having a fixed carrying capacity is far too simple. It assumes that the car-
rying capacity Nc of the environment is some number, that the fitness w of the spe-
cies does not change with the number of individuals N(t), that the growth occurs in a 
spatially uniform environment and completely ignores genetic evolution, which would 
make w a function of both time and the number of individuals as the genotype changes 
in response to random mutations and stress-induced mutations.

As we stated, an important early idea which improved upon simple logistic growth 
was the fitness landscape of Wright in [4]. Figure 1 shows Wright’s simplified model. In 
this model, only two genes are present as the x and y axes, but related mutational pat-
terns exist within a metapopulation (a large population consisting of many small related 
populations). The metapopulation, representing a heterogenous but interconnected 
genetic space, then maps onto a complex fitness landscape.

There is a great deal of information in Fig.  1. A key panel is the upper right cor-
ner, Fig. 1C, which represents Wright’s realization that if the environment changes, as 
shown by the different fitness contours from center Subfigure 1B, that a highly adapted 
population is in extreme danger of going extinct since it is so far from the new genetic 
fitness maximum. We will not extensively discuss in this paper the lower right-hand 
corner, Fig. 1F, which represents Wright’s mechanism of enhanced evolution via a het-
erogenous genomic distribution of quasi-species.

While Wright’s approach is clearly better than the simplest logistic equation, in that 
it allows fitness to vary with individuals within the metapopulation (shown in his panel 
Fig. 1F , his approach assumes that only a pre-existing heterogenous genomic distribu-
tion given by mi can sustain a metapopulation with rapid environmental change. Wright 
was deeply concerned with evolution dynamics from a purely genetic level [10].

However, in terms of resources surely more individuals/area must degrade the local 
environment, and thus the carrying capacity must be a function in the case of a meta-
population of the number of agents ni in the i-th subpopulation, and even influence the 
mutation rate due to high stresses as resources decline [11]. The interplay between 
resources, populations that exploit the resources, and evolution remains a very difficult 
problem [12].

(3)�tN = g

(
1 −

N

Nc

)
N ,

(4)N(t) =
N(0)egt

1 −
N(0)

Nc

(1 − egt)
.
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However, we cannot ignore the problem of resource exploitation for it is certainly true 
that organisms DO degrade and exploit their resources, they must to survive. Thus, there 
must be another important landscape beneath the fitness landscape, the “deformable” 
resource landscape, very broadly defined, whose surface can be changed by externally 
imposed elements and the time and spatially dependent density of the organisms.

The number of dimensions in these landscapes is also a major factor. For a complex 
organism such as Homo sapiens, each multi-dimensional (20,000 dimensions correspond-
ing to 20,000 genes) voxel of Wright’s “fitness” landscape (genetic) maps from a high-
dimensional resource landscape. The resource landscape is basically a collective metabo-
lomic landscape but has other aspects as well as those which control how gene phenotypes 
determine the ultimate number of surviving agents.

This sounds horribly complicated, and it is, but one should not give up! Many of the 
dimensions (genes) are really points as per fixed Nc values in the logistic equation, i.e., 
mutating them has little effect. Presumably we can derive some useful features of these 
landscapes by considering only a few dimensions that are dominant in determining 
survival.

2  Theoretical considerations of toy success landscapes

We assume four factors determine success: (1) growth, (2) the commonly assumed 
genetic variations (mutations), (3) the not so commonly assumed exploitation of 
resources by organisms, and (4) the very rarely considered time-dependent externally 

Fig. 1  The fitness landscape as a function of two genes as a function of population size N, mutation rate u 
and selection pressure s (adapted from Wright [4]). We only concern ourselves here with panel (C) and (F)
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imposed resource changes. Externally imposed global resource changes which are then 
modified by organism exploitation we call changes in the environmental state.

Thus, environmental state changes are here broadly defined to capture those where 
access to, e.g., nutrients change with a cyclicity of seconds, hours, months, or years 
in most niches on the surface of Earth, as well as within the human body. It is fair to 
assume that in all environments on Earth where there is enough labile carbon to sus-
tain ecosystems with complex trophic paths, and therefore high biodiversity, the nutrient 
landscape is fluctuating with some rhythm, or several [13]. For example, the El Nino 
phenomenon limits the up-welling of nutrient-rich bottom water off the west coast of 
South America with an interval of a couple of years, whereas microalgae that produce 
oxygen in the day and respire it at night changes the shallow benthic marine environ-
ment on a daily basis. Similarly, oxygen concentrations fluctuate within the human body 
over seconds (affected by, e.g., intense muscle work), hours (affected by, e.g., sleep), 
and years (affected by aging). A contrasting setting is the deep continental biosphere, 
where the chemical landscape is relatively stable but the carbon cycle also so slow such 
that a complex foodweb is unfeasible [14, 15].

We consider a single “toy” gene in which a given sequence of basepairs is repre-
sented by a point on a finite-size one-dimension � ∈ [0, 2�] (see Fig. 2A). While a more 
thorough mathematical model for the genetic space should be higher dimensional and 
equipped with Hamming-like distance metric [16] (see Fig. 2B), this simple model can 
still capture many essential features of the success landscape. For every sequence � , the 
resultant number density n� can have discrete values for the maximum growth-rate g� 
and the over-population constraint Nc

�
:

Mutations turn the sequence from � into �′ with rate r�→�′:

(5)�tn� = g�

(
1 −

N

Nc
�

)
n� , N = ∮ n�d� .

Fig. 2  (A) A toy model of genetic variation on a temporal-changing environment. In genetic space � , for 
every environment state Γ there is a region of fit genetic variation � ∈ [Γ − Δ∕2,Γ + Δ∕2] while the rest 
is unfit. (B) A more realistic model of genetic variation on a temporal-changing environment, in which the 
genetic space is high-dimensional and equipped with a Hamming-like metric
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We represent the external environment by the state Γ and the amount of resource R, 
which determines growth-rates and the over-population constraint:

To keep things simple, we assume every environment state can be associated with a 
position Γ in the genetic space, so that for any environment state there is a region of size 
Δ consisting of fit genetic variations 𝜃> ∈ [Γ − Δ∕2,Γ + Δ∕2] where g𝜃>,Γ > 0 while the 
rest of the genetic space is unfit g𝜃<,Γ < 0.

At the simplest level, we can assume a cyclic variation in the environmental state, 
which we assume rotates at a rate Ω . In this way, we build in an advantage to mutations: 
a low mutation rate may punish an organism if the environment changes too rapidly so 
that gene sequences that once provided fitness are no longer useful in the new environ-
ment. This is our attempt to capture the essence of Wright’s challenge to overly special-
ized genetic populations as depicted in Fig. 1C. Figure 2 shows the interaction between 
the environment state and the genetic space.

For further simplification, we assume that the mutations can turn any sequence 
into another at the same rate r��→��� = r∕2� , the growth-rates for fit genetic variation 
g𝜃>,Γ = g (corresponds to fitness w𝜃>,Γ

= eg ) and for unfit genetic variation g𝜃<,Γ → −∞ 
(corresponds to fitness w𝜃<,Γ

= 0 ) so that unfit individuals die out quickly thus n𝜃< → 0 , 
therefore the non-trivial dynamics only happen inside the genetically fit region:

Resource dynamics are modeled here to provide a toy description of the map from 
the resource landscape, originally called the carrying capacity above, to the success 
landscape in the spirit of Wright. We assume a linear relationship, serving as a first-
order approximation [17, 18], between the over-population constraint and the resource:

where Nc
�,0

= 0 when there is no resource and Nc
�,Rc

= �Rc when the amount of resource is 
maximum.

We model how the population influences the environment, for example through the 
consumption of resource:

where the influence �� of individuals with genetic variation � depends on the number of 
offspring w� it can produce. As a consequence of energy conservation, we will assume the 
following first-order approximation:

(6)
�tn� = g�

(
1 −

N

Nc
�

)
n�

+ ∮ r��→�n��d�
� − ∮ r�→��n�d�

� .

(7)
�tn� = g�,Γ

(
1 −

N

Nc
�,R

)
n�

+ ∮ r��→�n��d�
� − ∮ r�→��n�d�

� .

(8)N = ∮ n𝜃d𝜃 = ∫
Γ+Δ∕2

Γ−Δ∕2

n𝜃>d𝜃> .

(9)Nc
�,R

= �R ,

(10)R = Rc − ∮ ��n�dn� ,
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The more offspring an individual can have, the more fit it is but at the cost of con-
suming more resource for reproduction. For unfit individuals, they cannot survive the 
environment state, cannot consume resources hence die out instantly.

To understand how Eq. (10) emerges, consider an environment with resource recov-
ery dynamics [19, 20]:

where 1∕� is the environment recovery rate and �� = �w� = �eg� is the consumption rate of 
an agents with gene variation � . If � is a small time-scale in the evolutionary dynamics (for 
example, as the system is reaching stationary), the change in R can happen very fast so that 
we can treat it as a background field:

which is the same as Eq. (10) after we make the identification � = ��.
In summary, after all the above simplifications, the population dynamics in our crude 

toy model is given by:

where for the fit sub-population:

and for the unfit sub-population:

This model basically describes environmental degradation.
We define success as maximizing the stationary number of survivors:

where Nst is the stationary number of survivors and Nc
Rc

= �Rc is the maximum carrying 
capacity.

2.1  Success in an unchanging environmental state and a constant resource

This is closest to the conventional models. For a fixed environment state Γ = Γ0 and 
unchanging resource that always stays at the maximum amount R = Rc , from Eq. (14) 
we have:

(11)�� = �w� = �eg� .

(12)�tR = −
Rc − R

�
− ∮ ��n�d� ,

(13)�tR → 0 ⇒ R ≈ Rc − ∮ ���n�dn� ,

(14)�tn� = G�n� + ∮
r

2�
n��d�

� − ∮
r

2�
n�d�

� ,

(15)G𝜃>
= g

(
1 −

N

𝛼
(
Rc − 𝛽egN

)
)

,

(16)G𝜃<
→ −∞ .

(17)S =
Nst

Nc
Rc

,
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At the stationary level, we have �tnst� = 0 , therefore:

Integrating ∫ Γ0+Δ∕2

Γ0−Δ∕2
d𝜃> for both sides gives:

Note that for the unphysical value S < 0 , the stationary solution corresponds to 
extinction of the population Nst = 0 thus S = 0.

Figure 4A describes the success surface for an environment with unchanging envi-
ronment state and constant resource. Intuitively, it is clear that a slow growth rate is 
not a good strategy here since the resources are not diminished by increasing organ-
isms, and that high mutation rates are also not a good strategy since you are most 
likely to arrive at a less fit genome.

2.2  Success in an unchanging environment state but a dynamic resource

Here, resources can be exploited, but there is no external drive to change the over-
all environmental state. For a fixed environment state Γ = Γ0 but with a dynamical 
resource, which is influenced by the number of agents, to take into account the back-
reaction from the environment, followed from Eq. (10) we replace Nc with Nc

R
= �R 

where R = Rc − �egNst in Eq. (20):

Note that for un-physical values S < 0 and S > 1∕𝛼𝛽eg (corresponds to negative 
resource R < 0 ), the stationary (infinite time) solution corresponds to extinction of the 
population Nst = 0.

Figure 4B describes the success surface for an environment with unchanging envi-
ronment state and dynamical resource. Note that here high growth rates are at a disad-
vantage since they exploit resources and depress the carrying capacity, and mutations 
again represent a risky bet. Thus, compared to Fig. 4A turning on resource exploitation 
reduces the advantages to growth.

(18)𝜕tn𝜃> = g

(
1 −

N

Nc
Rc

)
n𝜃> + r

N

2𝜋
− rn𝜃> .

(19)
0 = g

(
1 −

Nst

Nc
Rc

)
nst
𝜃>

+ r
Nst

2𝜋
− rnst

𝜃>

⇒ nst
𝜃>

=
Nst

2𝜋

1

1−
g

r

(
1−

Nst

Nc
Rc

) .

(20)

Nst = Δ
Nst

2�

1

1−
g

r

(
1−

Nst

Nc
Rc

)

⇒ S =
Nst

Nc
Rc

= 1 −
r

g

(
1 −

Δ

2�

)
.

(21)
Nst =

(
Nc
Rc
− ��egNst

)(
1 −

r

g

(
1 −

Δ

2�

))

⇒ S =
Nst

Nc
Rc

=
1(

1−
r

g

(
1−

Δ

2�

))−1

+��eg
.
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2.3  Success in a changing environment state but fixed resource

Here, there is no exploitation of resources by organisms but the external environment changes, 
in our simplified case periodically. For a time-changing environment state Γ(t) = Ωt but non-
dynamic resource, we change to the co-moving environmental frame:

From Eq. (14), the population dynamics in genetic space is given by:

At stationary times, we have �tnst�Ω = 0 , therefore:

Define:

from the boundary condition at the co-moving front nst
+Δ∕2

→ 0 we can solve (24):

Figure 3 shows the survivor distribution on genetic space as the population adapts to the 
changing environment in the co-moving frame.

Integrating ∫ +Δ∕2

−Δ∕2
d𝜃>

Ω
 for both sides gives:

(22)�Ω = � − Ωt , �tn�−Ωt = �tn�Ω − Ω��Ωn�Ω .

(23)
𝜕tn𝜃>

Ω
− Ω𝜕𝜃>

Ω
n𝜃Ω =

g

(
1 −

N

Nc
Rc

)
n𝜃>

Ω
+ r

N

2𝜋
− rn𝜃>

Ω
.

(24)−Ω𝜕𝜃>
Ω
nst
𝜃Ω

= g

(
1 −

Nst

Nc
Rc

)
nst
𝜃>
Ω

+ r
Nst

2𝜋
− rnst

𝜃>
Ω

.

(25)Ξ = 1 −
g

r

(
1 −

Nst

Nc
Rc

)
,

(26)nst
𝜃>
Ω

=
Nst

2𝜋

1 − exp
(

(𝜃>
Ω
−Δ∕2)rΞ

Ω

)

Ξ

Fig. 3  The survivor profile on genetic space as the population adapts to the changing environment: (A) 
When the change is slow. (B) When the change is fast
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In general, to proceed further we need to do a numerical evaluation to solve for Ξ . Define 
f (�) to be the solution for x satisfying the following equation:

note that for 𝛾 ≪ 1 then f (�) ≈ 1∕� − 1 − � , for 𝛾 ≫ 1 then f (�) ≈ − ln(�) . The solution 
for Ξ is given by:

(27)
Nst = Δ

Nst

2�

1−
Ω

ΔrΞ

(
1−exp

(
−

ΔrΞ

Ω

))

Ξ

⇒
2�

Δ
=

1−
Ω

ΔrΞ

(
1−exp

(
−

ΔrΞ

Ω

))

Ξ
.

(28)� =
1 −

1

x
(1 − e−x)

x
,

(29)Ξ =
Ω

Δr
f

(
2�

Δ

Ω

Δr

)
.

Fig. 4  The shape of surface surface S as a function of growth rate g and mutation rate r both in log-scale 
when Δ∕2� = 10−1 and: (A) The environment state is unchanging Ω = 0 and the resource is constant � = 0 , 
� = 0 . (B) The environment state is unchanging Ω = 0 and the resource is dynamical � = 1 , � = 1 . (C) The 
environment state is time-changing Ω = 10−2 and the resource is constant � = 0 , � = 0 . (D) The environ-
ment state is cyclically-changing at the rate Ω = 10−2 and the resource is exploitable � = 1 , � = 1 . On a 
side note, the terminology “extinction swamp” in these figures is inspired by “swampland” in string theory 
landscape [21]
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With Ξ , from Eq. (25) we can obtain the stationary number population Nst and then the 
success value S:

Figure 4(C) describes the success surface for an environment with time-changing environ-
ment state and constant resource, which correspond to Eq. (30). Here growth helps success 
because of fixed resources as in Fig. 4B, but too low a mutation rate removes the ability to 
adapt to a changing environment.

2.4  Success in a changing environment state and exploitable resource landscape

Finally, we consider the most realistic scenario, where we have both resource exploitation and 
externally imposed changes in the environment.

Figure 4D describes the success surface for an environment with time-changing environ-
ment state and dynamical resource, which is qualitatively different from the previous three 
conditions: it has a well-defined single peak in the (g,  r)-plane. This success peak can be 
understood both mathematically and intuitively.

Mathematically, while in general the position of the success peak cannot be found analyti-
cally, in the special case of slow-changing environment Ω → 0 we can approximate the posi-
tion (g, r) for maximum success. From Eq. (28) and Eq. (29), we obtain the approximation:

Plugging this in Eq. (30) gives:

Including the resource dynamics, this becomes:

Note that for un-physical values S < 0 and S > 1∕𝛼𝛽eg (corresponds to negative resource 
R < 0 ), the stationary solution corresponds to extinction of the population Nst = 0 . For 
unchanging environment Ω = 0 , Eq. (32) and Eq. (33) become Eq. (20) and Eq. (21).

We define:

so that Eq. (33) can be written as:

(30)S =
Nst

Nc
Rc

= 1 −
r

g
(1 − Ξ) .

(31)Ξ ≈
Δ

2�
−

Ω

Δr
−

2�

Δ

Ω2

Δ2r2
.

(32)S ≈ 1 −
Ω

Δg
−

2�

Δ

Ω2

Δ2gr
−

r

g

(
1 −

Δ

2�

)
.

(33)
S ≈

1(
1 −

Ω

Δg
−

2�

Δ

Ω2

Δ2gr
−

r

g

(
1 −

Δ

2�

))−1

+ ��eg
.

(34)F =
2�

Δ

Ω2

Δ2gr
+

r

g

(
1 −

Δ

2�

)
,

(35)
S ≈

1(
1 −

Ω

Δg
− F

)−1

+ ��eg
.
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For a fixed value of growth-rate g, the maximum value of S is where we have the 
function F(r) to be minimum, which followed from the inequality of arithmetic and geo-
metric means (also known as the AM-GM inequality) [22]:

The equal-sign is found at r = r∗ that satisfies:

For this value of the mutation rate, we plug the minimum value F(r∗) into Eq. (35) to 
obtain the success S as a function of g:

For small growth rate g ≪ 1 then eg ≈ 1 + g , we can further approximate:

The extrema of S can be found by solving for �gS = 0 , which in general gives two 
solutions but in the limit Ω → 0 it only has a single positive solution:

In summary, at the limit Ω → 0 , the peak position of the success landscape is given 
by:

which is located around:

The faster the changing rate Ω and the narrower the fit region Δ on genetic space, the 
faster the growth rate and the mutation rate has to be for the population to survive.
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Intuitively, the emergence of a success peak can be understood due to the confluence 
of resource exploitation (which is never a good thing) and the two-edged sword of muta-
tions which both allows for adaptation to changing externally imposed but also threatens 
the integrity of a fit genome through risky changes.

3  Conclusions

So what have we learned from the success landscape of the simple models we have 
considered in this paper? We can see how the change of season and the dynamics of 
resource shape the success surface as a function of growth and mutation rates.

If there is no time-changing environment state and no resource dynamics, then a high 
growth rate and low mutation rate can ensure the survival of the population. Of course, 
on the surface of Earth as well as within the human body, this scenario is not real-
istic. However, if we include resource dynamics while keeping the environment state 
unchanging, then moderate growth rate with a low enough mutation rate can help the 
population to be successful. Moreover, if we include both time-changing environment 
states and resource consumption, then the population also dies out if the mutation rate 
is too low. Combining both influences from time-changing resources and resource back-
reaction from interactions with the population, then there is a single peak in the whole 
success landscape for optimal survival strategy which is a combination of growth rates, 
mutation rates, and resource consumption.

The latter scenario is arguably the only realistic out of the four within landscapes 
that matters to modern animals and to humans, i.e., in niches on the surface of Earth 
or within the human body where the access to resources are ceaselessly fluctuating. 
The finding of a single peak in the success landscape of a species can contribute to 
our understanding of species-species interactions as well as of clade diversifications and 
extinctions.

Perhaps the most interesting part of this exercise is the strongly asymmetric shape of 
the success peak in Fig. 4D. That is, a fixed mutation rate of r∗ ∼ 5 × 10−2 and a chang-
ing growth rate there is a slow climb to maximum success as the growth rate decreases 
due to resource exploitation, but once the peak is past there is a very precipitous drop in 
success with small relative decreases in growth. On the other hand, for a fixed growth 
rate of g∗ ∼ 3 × 10−1 success does not change much as mutation rates are increased from 
low values, in fact one moves almost along a ridge line, but once the peak is passed rela-
tive increases in mutation lead to rapid extinction.

Although this is a toy model, we feel that there is enough of reality connected to it to 
suggest that for a complex disease such as cancer where uncontrolled cell growth, high 
mutation rates, easily exploited and exhausted resources and rapid externally driven 
changes in the due to clinical interventions such as chemotherapy our toy model might 
be of some utility in providing guidance to lead a cancer cell population via chemo-
therapy along the success landscape on the steepest gradient into an extinction swamp. 
It won’t be easy. Our results suggest for example that, in administering a drug that say 
inhibits growth, coming from low drug levels up paradoxically the tumor might grow in 
size rather than shrink, only to abruptly die with increasing dose beyond the maximum 
in size. The asymmetry of the success peak tells the oncologist that finding the quickest 
approach to shrinking a tumor is not so simple or intuitive.
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