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Abstract
Our goal is to match some dynamical aspects of biological systems with that of networks 
of coupled logistic maps. With these networks we generate sequences of iterates, convert 
them to symbol sequences by coarse-graining, and count the number of times combinations 
of symbols occur. Comparison of this with the number of times these combinations occur 
in experimental data—a sequence of interbeat intervals for example—is a measure of the 
fitness of each network to describe the target data. The most fit networks provide a cartoon 
that suggests a decomposition of the experimental data into a component that may be pro-
duced by a simple dynamical subsystem, and a residual component, the result of detailed, 
particular characteristics of the system that generated the target data. In the space of all 
network parameters, each point corresponds to a particular network. We construct a fitness 
landscape when we assign a fitness to each point. Because the parameters are distributed 
continuously over their ranges, and because fitnesses are estimated numerically, any plot of 
the landscape involves a finite sample of parameter values. We’ll investigate how the local 
landscape geometry changes when the array of sample parameters is refined, and use the 
landscape geometry to explore complex relations between local fitness maxima.

Keywords Coupled logistic maps · Fractals · Chaotic dynamics · Fitness landscape

1 Introduction

The geometrical notion of landscapes has been an effective tool for visualization of many 
issues in biology. Examples include Sewall Wright’s fitness landscapes [1, 2] and Chap-
ter  3 of [3] to study changes of genotype frequencies, Conrad Waddington’s epigenetic 
landscapes [4, 5] to study developmental biology (René Thom credited epigenetic land-
scapes as playing a pivotal role in the development of catastrophe theory [6]), and Hans 
Frauenfelder’s energy landscapes [7–10] to study protein dynamics.

Here we’ll take a different approach. Following H. Joel Jeffrey’s geometric representa-
tion of nucleotide sequences [11, 12], we take time series (our examples include interbeat 
intervals from electrocardiographic (ECG) data and a lead from an electroencephalogram 
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(EEG)), partition the values into four disjoint bins (in Sect. 2 we explain why we use four 
bins), and then note the number of consecutive pairs, triples, quadruples, and quintuples 
of bin numbers that occur. By converting a data sequence into bin numbers as shown in 
Fig. 1, we move the analysis into the field of symbolic dynamics [13–15]. The method we 
develop here is a way to visualize some aspects of symbolic dynamics.

For networks of coupled logistic maps, we assemble a dictionary of coupled maps, 
indexed by the coupling strength, logistic map parameters, and number of logistic maps in 
the network; the dictionary entry is the numbers of consecutive pairs, triples, quadruples, 
and quintuples of bin numbers. Comparison of these numbers with the corresponding num-
bers for data sequences generates a fitness landscape of dictionary entries with respect to 
the data set.

The landscape base has as coordinates the logistic map parameters and the coupling 
strength. For networks of M maps these coordinates are (r1,… , rM , c) , where ri is the 
parameter of the ith logistic map Li(x) = rix(1 − x) , and c is the coupling strength. See Eq. 
(3). That is, the dimension of the base is M + 1 . We can visualize the landscape as a sur-
face over a 2-dimensional base only for a “network” of one map, that is, M = 1 . For more 
maps we’ll plot cross sections of the landscapes to study its properties.

We do not interpret a close match of experimental data to a dictionary entry as evi-
dence the particulars of the dictionary entry coupled maps correspond to subsystems of the 
processes generating the experimental data. Rather, coarse properties of the coupled maps 
estimate the complexity of the natural process that accounts for some fraction of dynamics 
of the natural system. We have no expectation of discovering a model of the system, but 
a cartoon of part of its workings. Any model requires detailed knowledge of the system 
mechanics. We look for a simple formal guide to illuminate investigation of some major 
aspects of the experimental dynamics.

2  Driven IFS

Iterated function systems (IFS) were presented by John Hutchinson [16] and popularized by  
Michael Barnsley [17] as a simple method to generate fractal images. Suppose a self- 
similar shape A is composed of pieces A1,… ,An , each similar to A. If the transformations Ti  

Fig. 1  Bin numbers
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satisfy Ti(A) = Ai for i = 1,… , n , then {T1,… , Tn} is the IFS for the shape A. If we apply 
the Ti in random order from an initial point (x0, y0),

then A is the limit set of {(x1, y1), (x2, y2),…} . This process is the random IFS algorithm.
Jeffrey’s mechanism to visualize nucleotide sequences is a variant to the random IFS 

algorithm. Following Jeffrey, we use these transformations

Applied to these transformations, the random IFS algorithm produces the filled-in unit 
square.

Any departure from uniform fill of the unit square reveals a departure from uniform 
randomness of the symbol sequence i1, i2, i3,… . So far as we know, Ian Stewart first ques-
tioned how to interpret the pattern when transformations are selected in non-random order 
[18]. There Stewart used a three transformation IFS that generates a Sierpinski gasket and 
consequently divides the data into three bins. Departures from uniform randomness in the 
data are reflected in departures from uniform fill of the gasket, difficult to see because the 
gasket already has many holes. Departures from the uniform fill of a square are much eas-
ier to see. Because the order in which the transformations are applied is driven by a data 
sequence, this method is called driven IFS.

To interpret driven IFS images, we use the address of a region on the unit square. 
Denote the (filled-in) unit square by S. We see these decompositions:

and so on. For example, the address of the region TiTjTk(S) is ijk. Note the order of the 
address digits is the order of the composition of the transformations that determine the 
region. The number L of digits in an address is the length of the address. The L = 1 and 
L = 2 addresses are shown in Fig. 2.

For example, in Fig.  3 we see the IFS driven by the nucleotide sequence for the 
enzyme amylase, which converts starches into sugars. As the amylase sequence is read, 
apply T1 when the symbol C (for cytosine) is read, T2 for A (adenine), T3 for T (thymine), 
and T4 for G (guanine). Note the driven IFS points are not at all uniformly spread across 

(x1, y1) = Ti1 (x0, y0), (x2, y2) = Ti2 (x1, y1), (x3, y3) = Ti3 (x2, y2),…
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Fig. 2  The L = 1 addresses (left), 
L = 2 addresses (right)
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the square. For example, the sparseness of the points in address 41 represents the fact 
that guanine only rarely follows cytosine in this sequence.

Nucleotide sequences occur in an alphabet of four symbols, so a map from nucleo-
tides to transformations is straightforward. For numerical sequences, including inter-
vals between heartbeats, some choices must be made. Suppose the data sequence 
is x1, x2,… , xn . The range of the sequence is [min({xi}), max({xi})] , which has length 
R = max({xi}) −min({xi}) . To divide the range into four bins, one mapped to each Ti , 
we need three bin boundaries. While many choices are can be made, we’ll focus on two 
families of bins:

equal-size bins. Set B1 = min({xi}) + R∕4 , B2 = min({xi}) + R∕2 , and 
B3 = min({xi}) + 3R∕4.

equal-weight bins. Set the bin boundaries so the four bins [min({xi}),B1) , [B1,B2) , 
[B2,B3) , and [B3, max({xi})] have about the same number of points.

Equal-size bins are sensitive to the metric relations between data sequence entries, 
but a few values that are much larger than, or much smaller than, most of the others can 
result in only a few points in bin 4 or in bin 1. This reduces the discriminatory power 
of the driven IFS. Typically, equal-weight bins, also called a maximum-entropy parti-
tion, do not suffer from this reduction of discriminatory power; they are sensitive to the 
ordering relations, not the magnitudes, of the data. Whether we want to avoid the vis-
ual consequence of extreme data values depends on whether we think an extreme value 
could be the result of an external force unrelated to the system dynamics, or represents 
an important feature of the system dynamics.

To find the boundaries of equal-weight bins, let {yi} be the list made by sorting the 
list {xi} in increasing order. Then B1 = y[N∕4] , B2 = y[N∕2] , and B3 = y[3N∕4] , where N is 
the number of data points and [q] is the integer part of q. If the sequence contains many 
equal values, and a bin boundary happens to be one of those values, then no set of 
boundary values may produce bins with equal point counts.

We will use driven IFS to visualize patterns generated by data sequences and the top 
matches from the dictionary entries. Mostly, though, we’ll focus on the construction of 
fitness landscapes by comparing address occupancies.

Fig. 3  Amylase driven IFS
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3  Logistic maps

As Robert May [19] pointed out in 1976, the logistic map

is a very simple system that, depending on the value of the parameter r, can exhibit very 
complicated behavior. Chapter 1 of [20] gives a comprehensive introduction to the varieties 
of dynamics seen in time series

generated by iterating the logistic map.
We’ll focus mostly on the range 3.5 ≤ r ≤ 4 . The chaotic dynamics of the logistic map 

occurs for some, but not all, of these r values. Within this range are infinitely many win-
dows of periodic behavior. Networks of these logistic maps may exhibit behaviors com-
plicated enough to capture some of the dynamics of cardiac or other biological data. To 
underscore the range of possible application, we’ll make two comments.

By excluding the initial range of period-doublings from our network parameters, we 
have not ignored the dynamics of biological systems that undergo period-doublings, for 
example, the Hindmarsh–Rose neuronal model [22, 23], because in the range 3.5 ≤ r ≤ 4 
the logistic map exhibits infinitely stable periodic cycles, each of which is followed by its 
own family of period-doublings.

Second, some biological systems have return maps that are not unimodal. For our net-
works of logistic maps, we have constructed the return map from the sequence of iterates. 
Put another way, because we know the generating dynamics, we know the natural sampling 
time. This is not so clear for some biological data (though it is for cardiac interbeat inter-
vals), so the effect of sampling time choice may be better mapped to the network second-
return map (xi, xi+2) or higher return maps, which need not be unimodal.

4  Model networks of coupled logistic maps

Recall Li(x) = rix(1 − x) . Then the general network of M coupled logistic maps is

where xjn is the current value of the jth variable, and xj
n+1

 is the next value. To guar-
antee that all the variables remain in the interval [0,  1], we impose the condition 
ci,1 + ci,2 +⋯ + ci,M = 1 for each i, 1 ≤ i ≤ M.

Varying the ci,j can produce any network coupling topology. For example, all ci,i = 1 is 
the network of M independent logistic maps, while each ci,j = 1∕M is the homogeneously 
coupled network.

Here we focus on the cross section of parameter space determined by nearest-neighbor 
coupling with all the coupling strengths determined by a single parameter, c. Specifically, 

Lr(x) = r ⋅ x ⋅ (1 − x)

(2)x0, x1 = Lr(x0), x2 = Lr(x1),…
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1. all ci,i = 1 − c,
2. for 2 ≤ i ≤ M − 1 , ci,i−1 = ci,i+1 = c∕2 , and
3. c1,2 = c1,M = c∕2 and cM,M−1 = cM,1 = c∕2

This last condition guarantees that logistic maps 1 and M are nearest neighbors, so topologi-
cally the network consists of logistic maps arranged around a circle.

We’ll think of these logistic maps as agents in a larger system, and we’ll study the average 
of the states of the agents, a macroscopic system property. That is, to this network we associ-
ate the time series

then drive the IFS with this series.

5  A fitness function

The number of points in, say, address 12, divided by the total number of points in the driven 
IFS, estimates the probability of the pair transition 2 → 1 . In principle this estimate can be 
generalized to addresses of any length, but because the data strings are of finite length, the 
reliability of this estimate decreases with address length. Our approach to this problem is to 
limit our calculations to L = 5 addresses, sample the coefficient of variation of these address 
occupancies, and discount addresses with fewer than five points. In Sect. 7 we’ll describe why 
we made these choices.

Suppose A is an IFS driven by a data set, and B is a driven IFS from our dictionary. To 
assess the fitness of B at capturing the dynamics of A, we define the length-L fitness by

where N is the number of points in the data list and Ai1i2…iL
 is the number of points in the 

region of attractor A with address i1i2 … iL . The term N − L + 1 is the number of consecu-
tive length-L strings in a sequence of length N: we see N − 1 consecutive pairs, N − 2 con-
secutive triples, and so on.

One way to visualize what �(A,B,L) measures is to overlay the driven IFS attractors A and 
B and see how well the points of one overlap the points of the others. This is akin to a differ-
ence density map in protein crystallography.

For example, take A to be the attractor of the driven IFS generated by iterating two logistic 
maps with r1 = 3.82 , r2 = 3.53 , and c = 0.7 , and B the attractor with r1 = 3.93 , r2 = 3.65 , 
and c = 0.2 . These driven IFS are shown in Fig. 4.

For this example, suppose A is a dictionary entry with the data of its time series iter-
ates partitioned with equal-size bins. Further, suppose B represents the target data with bins 
selected so the number of data points in each bin of B matches, as closely as possible, the 
number of points in the corresponding bin of A. With data generated by 10,000 iterates of each 
network, we find

zn = (x1
n
+ x2

n
+⋯ + xM

n
)∕M

(4)�(A,B,L) =
N − L + 1 −

1

2

∑4

i1,i2,…,iL=1
�Ai1i2…iL

− Bi1i2…iL
�

N − L + 1

�(A,B, 2) = 0.901, �(A,B, 3) = 0.817, �(A,B, 4) = 0.722, �(A,B, 5) = 0.604
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(With this choice of bins for B we always have �(A,B, 1) = 1.0 , so we needn’t mention the 
L = 1 fitness again.) We see that increasing the address length reduces � . This is expected: 
longer addresses subdivide shorter addresses and so improve the discriminatory power of 
�.

6  Complications: transients, intermittency, and multiple attractors

Comparisons based on address occupancy assume that the driven IFS points have converged 
to the attractor generated by the network. An obvious complication is that the initial IFS points 
may not lie on this attractor. Dropping some initial points before collecting address occupancy 
data is the standard approach to these transient values. In the early days of fractal geometry 
(the early 1980s), programmers dropped the first few points generated by an IFS algorithm 
in order to remove the annoying nimbus of points that surrounded the attractor. Soon enough 
people realized that if the goal is to generate the attractor of the IFS, the annoying nimbus can 
be avoided by taking the initial point to be that fixed point of one of the IFS transformations. 
For our applications, we do not know if any fixed point belongs to the attractor, so we return to 
the early idea of dropping some initial points.

A more subtle issue is intermittency: the dynamics are approximately periodic, punctuated 
by short excursions into more complex behavior. In Fig. 5 we see a time series for the average 
value of two logistic maps, r1 = 3.83 and r2 = 3.75 , coupled with c = 0.14817 , illustrating a 
2-cycle with intermittency. Interleaving two significantly different dynamics complicates any 
interpretation of the driven IFS. In Sect. 7 we describe an approach to handle intermittency; 
another approach is outlined in Sect. 11.

Another issue is that a network can have several attractors. Single logistic maps exhibit 
only one attractor for each r-value. The situation can be more complex for networks of even 
two logistic maps. For example, in Fig. 6 we see the equal-size bin driven IFS for the two-map 
network r1 = 3.93 , r2 = 3.24 , and c = 0.9 , with these initial values: x1

0
= 0.8, x2

0
= 0.4 for the 

left plot and x1
0
= 0.8, x2

0
= 0.8 for the right.

For both, we drop the first 100 points and plot the next 10,000. This network exhibits 
multiple attractors. That some parameter values can give rise to different attractors cannot 

Fig. 4  Driven IFS A (left), B (middle), and their overlay (right). In the right graph we’ve made the points of 
A larger and gray to ease visual comparison

Fig. 5  Intermittency for two 
coupled logistic maps
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be ignored. Simply averaging the address occupancies when substantially different attrac-
tors occur can only give a nonsensical result. If time series from different initial values give 
substantially different address occupancies, we assume they generate different attractors, both 
valid for the parameter values. In this case, a single dictionary entry (logistic parameters, cou-
pling constant) has multiple sets of address occupancies, each of which must be compared 
against the target data.

A final comment about Fig. 5 in light of the notion of multiple attractors: maybe inter-
mittency can be interpreted as two attractors, in this case a 2-cycle and a chaotic regime, 
and the 2-cycle points lie very close to points of the chaotic attractor. The finite accuracy 
of computer-generated iterates can induce jumps from one attractor to the other. Unless 
we observe similar behavior in biological time series, or unless an open set of initial val-
ues lead to a single attractor, these particular networks will not be good cartoons of those 
systems.

7  Dictionary construction

Because the potential sample space of networks contains infinitely many points, we made 
choices to capture some interesting aspects of the space while keeping the dictionary a rea-
sonable size for computational use. To course-grain the sample space, we limited the preci-
sion of c to 0.1 and the precision of r to 0.01, for r ranging between 3.57 and 4, where the 
lower bound of r is chosen near the Myrberg–Feigenbaum point ≈ 3.5699 , the parameter 
value marking the onset of chaos for a single logistic map. The range 3.57 ≤ r ≤ 4 contains 
chaotic behavior, as well as infinitely many windows of periodic behavior. The diction-
ary for single logistic maps is complete from 3.57 ≤ r ≤ 4.00 in steps of 0.01. For more 
than one logistic map, the combinations of parameter values which give chaotic or periodic 
behavior are not as straightforward. Combinations of logistic coefficients r in the chaotic 
range can produce limit cycles for certain values of c, and combinations with some logistic 
coefficients r less than the Myrberg point can produce chaotic time series when coupled to 
maps with r-values in the chaotic range. The oscillators influence each other in unpredict-
able ways. In Fig. 7 we see the driven IFS and the return map, a plot the points (zi, zi+1) , 
for two coupled logistic maps, both with r-values in the chaotic range. For the smaller cou-
pling value, the return map suggests limit cycle behavior; while a slight increase in c pro-
duces something much more intricate.

We produced 500 dictionary entries per value of c for each of 2, 3, and 4 coupled logis-
tic maps by sampling from the values of r. At least one value of r must be in the chaotic 
range for the system to behave chaotically (according to all observations so far), so 
we sampled from r = 3.57, 3.58, ...3.99, 4.00 . For the other maps, we sampled from 

Fig. 6  Same network, different 
initial points
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r = 3.40, 3.41, ..., 3.99, 4.00 , which was chosen to include a significant parameter range of 
periodic dynamics, enabling the inclusion of some of the state space for multiple coupled 
maps which behave chaotically but originate from periodic functions. We applied a Fourier 
transform to the data series to detect periodicity, and discarded combinations of parameter 
values which produce cycles of size 16 or less.

The reliability of the average address occupancy data in the dictionary increases 
with the number of points in the generating sequence; however, using longer time series 
increases computation time. We looked at the maximum and average standard deviations 
of the address occupancies for 50 runs of different lengths (5,000 to 50,000 in steps of 
5,000) for a few sample systems. The average standard deviations seemed to level off 
at about 25,000 points, so the dictionary entries were produced from time series of this 
length.

We generated each entry in the dictionary from a 25,000-point time series, divided into 
50 equal parts. As we saw in Sect. 6, time series may contain regimes of different behaviors. 
Again, we are not interested in fixed points or cycles because they are characterizable by 
other means. Also, driven IFS is not an effective tool to detect a low-period cyclic window 
in a more complex pattern because a cycle of length n produces a driven IFS that consists 
of n points, not easily visible in a more full background. To account for this, for each 500-
point part of the time series, we applied the Fourier transform to detect periodicity. If the 
part of the time series produced a clean (i.e. not noisy) cycle of size 16 or less, we removed 
that part from the address occupancy calculations. For the parts not discarded by the Fourier 
sieve, we took the average number of points in each address from all of the parts to store as 
the address occupancies, up through the L = 5 addresses. In this way, each data string was 
passed through the Fourier transform twice: first, to ensure that the overall behavior of the 
25,000-point series was not as a whole periodic, and second, to remove the 500-point sec-
tions which were periodic.

We dropped the first 50 points of the data sequence before setting the bin boundaries 
and computing the address occupancies because these points are often transient and out-
side the range of long-term system behavior. The bins we used for the dictionary entries 
were equal-sized. We chose to do one long 25,000 point run that was then split into parts 
rather than fifty 500-point runs in order to give one set of bin boundaries for the system.

After the bin boundaries were set, the address occupancies up through L = 5 were cal-
culated for each of the 50 parts of the data list, minus those removed from the Fourier 
sieve, and the average address occupancies were stored to comprise one entry of the dic-
tionary. Rather than store the absolute address occupancies themselves, we store the rela-
tive occupancies, which enables the dictionary entries to be compared to a data list of any 
length.

Fig. 7  The driven IFS and return map for the average of two logistic maps, r1 = 4.0 , r2 = 3.88 , and 
c = 0.895 (left) and c = 0.905 (right)
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8  Fitness landscapes

To illustrate landscape construction, we take as target a network of three logis-
tic maps, Eq. (3) with r1 = 3.95 , r2 = 3.60 , r3 = 3.91 , and with coupling strengths 
c1,1 = c2,2 = c3,3 = 0.8 and all other ci,j = 0.1 . One way to guarantee that the length-1 
address occupancy fractions of the target sample approximately match those of each 
dictionary entry is to use equal-weight bins. A simulation of this network with 50,000 
iterates and equal-weight bins produces the length-2 address occupancies shown in 
Fig. 8. The map of length-2 addresses is the right image of Fig. 2.

We build a cartoon dictionary, a simplified version of the main dictionary described 
in Sect. 7, with only three coupled logistic maps.

For the parameter space we take 0 ≤ c ≤ 1 and 3.5 ≤ r ≤ 4 . In Fig. 9 we plot the fit-
ness of the dictionary entries with the parameter space sampled on a 20 × 20 , a 30 × 30 , 
and a 40 × 40 grid. While the general trends in the coarser grids are repeated in the finer, 
as they must be, finer grids reveal more variation. The complex interleaving of periodic 
and chaotic windows for a single logistic map suggests, though does not prove, an ever-
increasing complexity of these landscapes when sampled on smaller scales. Fractality of 
landscapes is investigated in [24], Sects. 8.3 and 8.5 of [25], and [26]. We’ll explore this 
in Sects. 9 and 10.3.

The possible fractality of the fitness landscape can be investigated visually by a 
sequence of magnifications. In Fig. 10 we see two zooms into the right plot of Fig. 9. 
For that image, the axes ranges are 0 ≤ c ≤ 1 , 3.5 ≤ r ≤ 4 , and 0 ≤ � ≤ 1 . In the left 
image of Fig. 10, we have 0.5 ≤ c ≤ 1 , 3.75 ≤ r ≤ 4 , and 0 ≤ � ≤ 1 ; for the right image 
the ranges are 0.75 ≤ c ≤ 1 , 3.875 ≤ r ≤ 4 , and 0.5 ≤ � ≤ 0.8 . In terms of the r-c param-
eter plane, the left image is the upper right quadrant of the parameter plane of Fig. 9, 

Fig. 8  Length-2 address occu-
pancies (left) and driven IFS 
(right)
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Fig. 9  A fitness landscape with the c and r ranges divided into 20, 30, and 40 intervals. Slightly different 
viewpoints aid visualization of the surface

224 N. Driver, M. Frame



1 3

and the right image is the upper right quadrant of the left image. At least over this range, 
magnification does appear to reveal roughness across levels.

The plots of Fig.  9 are a cross section of the full landscape: in the parameter space 
[3.5, 4]3 × [0, 1] , the r-values lie on the diagonal segment between (3.5, 3.5, 3.5) and (4, 4, 
4). Other paths are possible.

The left graph of Fig. 11 shows the fitness plot above the cross section r1 = r2 = r and 
r3 = 7.5 − r , so as r1 = r2 ranges from 3.5 to 4, r3 ranges from 4 to 3.5. The right graph of 
Fig. 11 shows the fitness plot above the cross section r2 = r and r1 = r3 = 7.5 − r . These 
cross sections suggest that the complete fitness landscape is fractal. More detailed tests are 
needed in order to establish this. Fractality of landscapes has consequences for maintain-
ing genetic diversity in a population: roughness implies the existence of many nearby local 
maxima and gradient ascent can trap, at least temporarily, individuals in many of these 
maxima, thus maintaining genetic diversity. In terms of our dictionary matches, this offers 
a range of ways to parse important processes in the system that generates the data.

9  Landscape roughness

Gregory Sorkin [24] studied the effectiveness of simulated annealing to find minima of 
energy landscapes. He argued that if a landscape is fairly regular, if it has peaks of similar 
heights and valleys of similar depths, then moving from one valley to another can require 
a considerable energy level, while selecting a global minimum from among all the valleys 
can require a much lower energy level. Sorkin concluded that simulated annealing is not an 
efficient search protocol for regular landscapes.

On the other hand, simulated annealing can be efficient on fractal landscapes: at high 
energy the highest peaks are crossed, and as the energy decreases a hierarchy of peaks is 
crossed, finding lower local minima. Sorkin defined a landscape to be fractal of type h if

Fig. 10  Landscape magnifica-
tions
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To test the fractality of a landscape, plot log(average fitness) against log(distance between 
parameters) for a range of distances. We measure distance with the taxicab metric

If the points fall close to a straight line, then at least over that range of distances the land-
scape is fractal of type twice the slope of the line.

Sorkin describes another approach, based on the statistics of random walks on energy 
landscapes. The simplicity of our parameter space supports our use of the simpler log-log 
approach.

We sample pairs of points �⃗x, �⃗y randomly distributed across the parameter space, with 
the condition that the distance between the pairs sampled is considerably smaller than the 
diameter of the parameter space. This avoids “edge effects” which perturb the graph. For 
all pairs the same distance apart, we average the square of the difference in fitnesses and 
assess the linearity of the log-log plot. (See Fig. 12)

Many examples are explored in [24, 26]. We’ll investigate the fractality of fitness land-
scapes for a biological example in Sect. 10.3. As Sorkin noted, hierarchical roughness of a 
landscape allows fairly modest moves in parameter space to allow the exploration of a sig-
nificant portion of that space; in more regular landscapes a considerable amount of energy 
is needed to move from one local minimum to another.

If we think of evolution, or coevolution, at work on fitness landscapes, then we see rea-
sons that evolution favors fractal landscapes. A thoughtful exploration of evolution acting 
on many levels is given in [27].

10  Results

Here we present some results of applications of the dictionary. We first test dictionary 
entries against data generated from logistic map systems, giving both a sense of the unique-
ness of systems with different parameter values as well as the synchronization of certain 
systems to produce the dynamics of systems with other combinations of parameter values. 
We then present the results of matching the dictionary to ECG data and EEG data and offer 
an interpretation of the findings.

(5)E(d) = ⟨
�
𝜑
�
�⃗x
�
− 𝜑

�
�⃗y
��2⟩ ∼ dist

�
�⃗x, �⃗y

�2h

d = dist
((
r1,… , rn, c

)
,
(
r�
1
,… , r�

n
, c�

))
= |r1 − r�

1
| +⋯ + |rn − r�

n
| + |c − c�|

Fig. 12  A log-log plot of Eq. (5)
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10.1  Finding logistic maps with dictionary entries

We found the best matches for a logistic map with the single map entries in the dictionary. 
For example, 25,000-point time series from logistic maps with r = 3.93 (in the diction-
ary) and r = 3.6454 (not in the dictionary) were compared to the 42 entries of the single 
map portion of the dictionary. In Fig. 13 we see results of single map tests: the driven IFS 
(equal-size bins) for input (left images) and dictionary best-match (middle images), and 
plots of the dictionary entry versus �(IFSinput, IFSentry, L) for L = 2, 3, 4, 5 for two tests of 
single logistic map data with r = 3.93 (top row) and r = 3.6454 (bottom row).

In the first example, the dictionary entry for the same value of r as the input logistic 
data was found (the peak value in the plots of � ). For the second example, the value of 
r = 3.6454 , which itself is not an r-value in the dictionary, found the best match in the 
entry for r = 3.64 , and the second best match for the entry r = 3.65 . The values of r imme-
diately surrounding these values had high values of � as well, shown in Table 1.

For single logistic maps for each value of r = 3.57 − 4.00 in steps of 0.01, the dictionary 
almost always found the best match for L = 2, 3, 4, 5 � at the entry with the corresponding 
value of r. This was not the case for r = 3.58 and r = 3.84 , both of which found nearby values 
of r ( r = 3.57 and r = 3.85 , respectively). Out of the 42 values of r included in the diction-
ary, these two which did not find the correct match were near periodic ranges and are a noisy 
4-cycle and a 3-cycle, respectively. This further supports our claim that this tool is not sensi-
tive for studying periodic behavior.

Fig. 13  Driven IFS plots and � graphs against dictionary entry number. The dark curve corresponds to 
L = 2 , the middle to L = 3 , and the light curve to L = 4

Table 1  Highest values of � for 
r = 3.6454 logistic map data

r �2 �3 �4 �5

3.66 0.999 0.960 0.903 0.872
3.65 0.999 0.989 0.978 0.941
3.64 0.999 0.999 0.999 0.999
3.63 0.999 0.912 0.824 0.780

227Fitness landscapes for coupled map lattices



1 3

For the next test we took each value of r = 3.57 − 4.00  in steps of 0.01 contained in 
the dictionary of single maps and added noise, � = ±0.005 , to r. The input test data like-
wise found entries in the dictionary corresponding to the nearest values for r, within ±0.03 
for � for L = 4 and ±0.02 for � for L = 5 . For example, test data produced from r = 3.876 
had the highest correlations (�(IFStest, IFSentry, 4) = 0.90) with the dictionary entry cor-
responding to r = 3.88 . Test data produced from r = 3.653 had the highest correlations 
(�(IFStest, IFSentry, 5) = 0.988) with the r = 3.64 entry in the dictionary. As Fig. 14 suggests, 
the highest � values of the dictionary entries for single map systems can discriminate for the 
value of r within a range of ±0.03 for L = 4 and a range of ±0.02 for L = 5.

Next, a system of two coupled logistic maps with (r1, r2, c) = (3.81, 3.62, 0.35) was com-
pared to the two-map dictionary entries. Because our dictionary construction limits c values to 
0, 0.1,… , 0.9, 1.0 , this system of coupled maps is not a dictionary entry. The comparison tool 
found several good matches; we’ll mention one: (r1, r2, c) = (3.73, 3.68, 0.7) . Comparison of 
address occupancies of this system with those of the target system gives these fitnesses � for 
L = 2, 3, 4, and 5:

This is particularly interesting, because while its driven IFS plot and address occupancies, 
and its return map, are very close to those of the target system, both seen in Fig. 15, its 
parameters aren’t. So in terms of address occupancies and driven IFS and return map plots, 
or in terms of the fitness function � , the parameter space is partitioned into subsets of 
approximately constant value. Whether these regions are smooth submanifolds, fractal sub-
sets, or something else altogether, remains to be determined.

0.995, 0.973, 0.941, and 0.908

0.02

0.01

0.01
40

d

n

0.02

0.01

0.01
40

d

n

Fig. 14  The difference d between the r values of the target logistic map and of the best dictionary matches n 
for L = 4 (left) and L = 5 (right)

Fig. 15  The driven IFS and return map of the target system (left), the dictionary entry (r1, r2, c) = (3.73,

3.68, 0.5) (right)
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The return map resembles a portion of a parabola. The maximum height of return map 
points is 0.92621. The logistic map Lr(x) = rx(1 − x) has maximum height r/4, and plotting 
the return map along with the graph of L3.70484 , we see that the graphs coincide.

A possible explanation is that the individual logistic maps that make up the net-
work have synchronized. Synchronization of chaotic processes is a familiar occurrence, 
described clearly in Chapter 7 of [28]. In this case, something more complex happens. In 
Fig. 16 we see a plot of the differences of the individual logistic maps of the network, for 
iterates 9,900 through 10,000. The scale of the vertical line is −0.02 ≤ y ≤ 0.02 . If the 
maps synchronize, these differences would converge to 0. Something else has happened 
here: The differences oscillate, but not quite periodically. Because we’ve not plotted the 
first 9,900 points, almost surely any transients have died out long before the plotted points. 
Yet the parabola appears clean, not fuzzy, so this plot signals a more complex dynamics. 
Nevertheless, this approximate synchronization provides an explanation for some of the 
sets in the partition of parameter space.

10.2  An ECG example

The driven IFS algorithm can be applied to any sequence ordered by time. For data we 
took the 2002 PhysioNet challenge [29] to simulate cardiac data, and to differentiate simu-
lated and physiological data. The data are the RR intervals from 50 ECG recordings and 
simulations. Because R is the peak of the QRS complex in an ECG, the intervals between R 
peaks are the intervals between heartbeats.

The challenge was to distinguish which of the 50 signals were real cardiac data, and 
which were simulations. Using the key in [30], we apply the comparison tool to sample 
rr08, real cardiac data. The length of the data set is the number of heartbeats in a day, 
giving 97,659 RR intervals for this sample. From this we generate driven IFS with the 
first 10,000 points. The left graph of Fig.  17 is the driven IFS of the rr08 data with 
equal-size bins. The plot is mainly a backward Z, a consequence of most bin changes 
being between adjacent bins. For example, only rarely is a very small interbeat interval 
followed immediately by a very long interval. While this structure is easy to understand, 

Fig. 16  Differences in individual 
maps

Fig. 17  Driven IFS for the rr08 cardiac data with equal-size bins (first) and equal-weight bins (second), the 
best equal-size dictionary match (third), and the best equal-weight dictionary match (fourth)

229Fitness landscapes for coupled map lattices



1 3

it is not particularly useful for detecting a cartoon with a good match to the experimen-
tal data. The middle graph of Fig. 17 is the rr08 driven IFS with equal-weight bins.

The best equal-size dictionary match for the rr08 data is for a 4-map system with 
r1 = 3.69 , r2 = 3.81 , r3 = 4.0 , and r4 = 3.61 , with c = 0 . For this system the fitness � is

For all 110 best matches, some with 2 maps, some with 3 maps, some with 4 maps, all have 
c = 0.

The best 3-map equal-weight dictionary entry has r1 = 3.98 , r2 = 3.99 , r3 = 3.63 , 
with c = 1.0 . For this system the fitness � is

In Fig. 18 we see the log-log plot of the length-2 address fitness of networks of two 
logistic maps when matched to the ECG data of the rr08 sample. This plot is generated 
using the method presented in Sect. 9. The points suggest a linear fit in log-log coordi-
nates. Linear regression gives a slope of 0.02, but a 90% confidence interval includes a 
slope of 0, so we cannot deduce a positive slope. We’ll get a similar plot in Sect. 10.3 
and discuss interpretations there.

Of course, the network whose driven IFS is pictured in the right image of Fig. 17 is 
far from a perfect match with the ECG data. It is unrealistic to expect that the dynamics 
of a system as complex as the heart could be captured completely by a small number 
of uncoupled logistic maps. On the other hand, at least in terms of bin occupancies, 
the fitness function calculations suggest that about 70% of the heart’s behavior can be 
described in this way. Subtract out the parts of cardiac dynamics that can be accounted 
for by the behavior of a few simple oscillators, and then look to the electrophysiology of 
cardiac ion channels for guidance in the residual behavior. This may be the most obvi-
ous use of our dictionary fitness landscape.

Visualization remains tricky. For 4 maps the parameter space is 5-dimensional, so a 
plot of the fitness landscape lies in 6-dimensional space. A careful analysis of the land-
scape roughness could direct more effective searches without landscape visualization. 
This is another way that geometry can aid our understanding of biology.

10.3  An EEG example

The fractal properties of EEG data have been explored by many, notably Accardo [31] 
and Kulish [32]. As another biological time series, we took open-source EEG data from 

0.735, 0.689, 0.640, 0.608, for L = 2, 3, 4, 5

0.669, 0.571, 0.550, 0.534, for L = 2, 3, 4, 5

Fig. 18  Log-log plot for ECG 
data
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Schalk [33] through PhysioNet. They supplied the EEGs for 109 volunteers performing 
several tasks, recorded using the BCI2000 system with the standard 64 electrodes on an 
international 10-10 system sampling at 160 samples per second. We took the baseline 
(eyes open, no motor or visual tasks) time series for the S004 subject’s 5th electrode, 
which had 9760 points, corresponding to about 1 minute of data. The time series with 
equal-weight bin boundaries is shown in Fig. 19.

The left image of Fig. 20 shows the driven IFS for the EEG data of Fig. 19. The mid-
dle image is the best equal-weight bins dictionary match among 2-map systems. The 
system parameters are r1 = 3.94 , r2 = 3.43 , and c = 0 . The fitnesses � are

The right image of Fig.  20 shows a good dictionary match for a 4-map system with 
r1 = 3.88 , r2 = 3.9 , r3 = 3.65 , r4 = 3.96 , and c = 0.1 . The fitnesses � are

Both these dictionary matches do a decent job of reproducing some of the distribu-
tion of points on the diagonal, as well as some of the off-diagonal clusters. The 4-map 
network also reproduces some of the sub- and super-diagonals, lines parallel to the diag-
onal. As in Sect. 10.2, we see that our simple networks reproduce some, but not all, of 
the interesting dynamics of this EEG signal. We’ll discuss the implications in Sect. 12.

In Fig. 21 we see the log-log plot to assess landscape roughness. The plot is quite simi-
lar to that of the ECG data. How are we to understand this slope which appears close to 0? 
For example, in calculations of mass dimension, the relation m(r) = krd between the mass 
contained within a sphere and the radius of that sphere implies that a log-log plot gives 

0.5800, 0.5911, 0.5525, 0.5236 for L = 2, 3, 4, 5.

0.6958, 0.5339, 0.5142, 0.4980 for L = 2, 3, 4, 5.

Fig. 19  An EEG time series with equal-weight bin boundaries

Fig. 20  Left: the IFS driven by the EEG data of Fig. 19. Center: a 2-map match. Right: a 4-map match
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points on a line of slope d. Because a larger sphere contains more mass, the slope d is posi-
tive. In our landscape, we measure how the average of the square of the difference of fit-
nesses scales with the distance between points in parameter space. Linear regression gives 
a slope of 0.02, but a 90% confidence interval includes a slope of 0 so all we can safely say 
is that eventually the average squared difference seems to stay approximately constant. This 
effect is not monotone: local increases and decreases are interwoven throughout the range 
of scales we have investigated. This signals a rough landscape, though perhaps not fractal 
in Sorkin’s sense.

Comparison of Figs. 18 and 21 show they are very similar. This means only that these 
two fitness landscapes have similar roughnesses. This does not imply that the landscapes 
are nearly identical, but it does suggest that search strategies such as simulated annealing 
would be comparably effective at finding best matches for both surfaces.

One final observation about this graph. The plots in Figs. 18 and 21 were sampled on a 
grid with Δr = Δc = 0.005 . The dark points of Fig. 22 also are sampled on this grid. The 
lighter points are sampled with Δr = Δc = 0.0025 . Note that at least for these two exam-
ples the width of the point scatter increases as the size of the sample grid decreases. This 
suggests that the more closely we look, the wider the variation of the average fitnesses. The 
complexity of this landscape is consistent with the intricate interweaving of periodic and 
chaotic behavior displayed in the familiar logistic map bifurcation diagram.

11  Future directions

In this section we’ll outline some directions in which the dictionary can be refined.
The simplest approach to categorize driven IFS images is to note whether a given 

address is empty. Because IFS are driven by time series of finite length, we need proper 

Fig. 21  Log-log plot for EEG 
data
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Fig. 22  Dark points are sampled 
on a coarser grid, light points on 
a finer grid
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statistics to determine if an address is empty due to an exclusion in the data rather than too 
little data. One approach is presented in Appendix A.92 of [34].

Building the dictionary around average address occupancies for each network is predi-
cated on the unicity of the attractor of each network. As we have seen in Sect. 6, this is 
not always the case. For systems exhibiting multiple attractors, the average occupancies of 
these attractors will not give values that accurately represent any attractor. Our sampling of 
initial value space suggests that multiple attractors are uncommon, but they do occur. One 
approach is to compare the address occupancies of each new sample with the running aver-
ages. If the differences fall outside a set range, the new sample will start a new dictionary 
entry with the same network parameters.

Intermittency and regime change present related, but more subtle, problems because the 
time series switch again and again between attractors. The Lyapunov exponent (Sect. 2.2 
of [21] or Appendix A.94 of [34]) may allow automated dictionary generation to separate 
a time series into different regimes. The Lyapunov exponent, which measures the average 
rate of divergence of nearby iterates, can be estimated by ln |df∕dz| averaged along a time 
series. On the left side of Fig. 23, we see the time series for the average of two logistic 
maps, with r1 = 3.93 , r2 = 3.94 , and c = 0.1 . The dynamics are uniformly chaotic, and the 
running average of the Lyapunov exponent calculation appears to converge nicely, even 
when the vertical scale is magnified in the plot below the top graph. The middle ( r1 = 3.83 , 
r2 = 3.51 , c = 0.1001 ) shows an intermittent time series, the right ( r1 = 3.83 , r2 = 3.75 , 
c = 0.14816 ) exhibits switching between multiple attractors. The magnification of these 
Lyapunov sequences shows more complex behavior with little evidence of convergence. 
In particular, note that regime changes appear to correlate with changes in the Lyapunov 
plots, suggesting an approach to testing for multiple regime attractors.

The top right graph of Fig. 23 may cause some confusion. Two regions of the time series 
appear to be 2-cycles, yet the Lyapunov exponents are positive. Because periodic attractors 
are signaled by negative Lyapunov exponents, the time series and Lyapunov graphs may 
seem inconsistent. If we magnify the vertical scale of the apparent 2-cycle, we see the dis-
tance between the upper and lower points increases with time. This growing separation is 
the source of the positive Lyapunov exponent.

Additionally, with estimates of transformation probabilities by address occupancies, 
f (�) curves can be calculated using the method described in Sect. 17.3 of [35] or Sect. 7.3 
of [34]. Comparison of f (�) curves may give a way to sieve the dictionary during the com-
parison with a given system.

Furthermore, the thickness of the return maps can be used as a measure of synchroniza-
tion, and the embedding dimension as a measure of the amount of memory in the network.

The complexity of the fitness landscapes generated by comparing experimental data to 
the whole dictionary suggests an alternate approach: abandon the current static diction-
ary and replace it with an adaptive dictionary. For example, find the closest match from a 

z,

t

z,

t

z,

t

Fig. 23  Top: time series (gray) and Lyapunov exponent (black) computation. Bottom: magnification of 
the vertical scale for the Lyapunov calculations. Left to right: 0.32 ≤ � ≤ 0.40 , 0.225 ≤ � ≤ 0.25 , and 
0.43 ≤ � ≤ 0.49
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handful of sample systems randomly scattered through parameter space. Then build dic-
tionary entries near this first match. Select the best and sample the parameter space on 
increasingly finer grids, exploiting hierarchical distributions in parameter space.

Alternately, network features could be explored sequentially: ascertain the coupling 
topology first, then the number of maps, the strengths of the couplings, and finally narrow 
down possible values of the logistic coefficients, r.

We know that systems with different parameters can produce remarkably similar behav-
iors. For example, two coupled r = 4 logistic maps with 0.3 ≤ c ≤ 0.7 synchronize to gen-
erate the dynamics of a single r = 4 logistic map. While this may seem to be a complica-
tion, if these commonalities can be mapped, even roughly, then the search strategy can be 
sharpened to include only one representative from each region.

12  Conclusion

Robert May [19] and others have shown that complex dynamics may result from simple 
nonlinear systems. But most biological systems are not simple. Nevertheless, some aspects 
of the behavior of complex systems may result from the coherent action of groups of 
agents, perhaps not organized in a biologically obvious way. Comparison of time series 
data with a robust dictionary of nonlinear systems leads to the construction of a fitness 
landscape. Understanding the roughness of this landscape can guide efficient searches. 
Simulated annealing, parameter space random walks of gradually decreasing step size, is 
a promising approach. The identification of the closest matches may provide some insight 
into hidden dynamical processes. Our experiments are a first step in this direction.
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