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ABSTRACT
In this paper the size- and shape dependences of 8 different integral and partial 
molar thermodynamic quantities are derived for solid and liquid nano-phases, 
starting from the fundamental equation of Gibbs: i) The integral molar Gibbs 
energies of nano-phases and the partial molar Gibbs energies of components 
in those nano-phases, ii) The integral molar enthalpies of nano-phases and the 
partial molar enthalpies of components in those nano-phases, iii) The integral 
molar entropies of nano-phases and the partial molar entropies of components in 
those nano-phases, and iv). The integral molar inner energies of nano-phases and 
the partial molar inner energies of components in those nano-phases. All these 8 
functions are found proportional to the specific surface area of the phase, defined 
as the ratio of its surface area to its volume. The equations for specific surface 
areas of phases of different shapes are different, but all of them are inversely 
proportional to the characteristic size of the phase, such as the diameter of a nano-
sphere, the side-length of a nano-cube or the thickness of a thin film. Therefore, 
the deviations of all properties discussed here from their macroscopic values are 
inversely proportional to their characteristic sizes. The 8 equations derived in this 
paper follow strict derivations from the fundamental equation of Gibbs. Only the 
temperature dependent surface energy of solids and surface tension of liquids 
will be considered as model equations to simplify the final resulting equations. 
The theoretical equations are validated for the molar Gibbs energy against the 
experimental values of liquidus temperatures of pure lead. The theoretical equa-
tions for the molar enthalpy are validated i). Against the experimental values of 
dissolution enthalpy differences between nano- and macro cobalt particles in the 
same liquid alloy and ii). Against the size dependent melting enthalpy of nano-
indium particles. In this way, also the theoretical equations for the molar entropy 
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and molar inner energy are validated as they are closely related to the validated 
equations for the molar Gibbs energy and molar enthalpy.

Introduction

Nano-materials contain at least one nano-phase. Nano-
phases have at least one of their dimensions below 
100 nm. The size- and shape-dependence of various 
properties of nano-phases and nano-materials is one of 
the important topics of nano-materials-sciences [1–36]. 
The theoretical papers usually develop different mod-
els to estimate the size dependence of the properties, 
and so the results are usually model-dependent. Most 
frequently, the size dependence of complex thermody-
namic quantities, such as melting point is discussed.

In this paper a strict thermodynamic derivation is 
offered for the size- and shape-dependence of eight 
basic thermodynamic functions: The integral molar 
properties of nano-phases and the partial molar prop-
erties of components in those nano-phases, with the 
following four properties considered: i) Gibbs energy, 
ii) entropy, iii) enthalpy, iv) inner energy. First, the 
size- and shape-dependence of the integral molar 
Gibbs energies are derived from the fundamental 
equation of Gibbs, and then these results are extended 
to other derived integral molar quantities. Further, 
partial molar quantities of components in nano-phases 
are derived from the corresponding integral molar 
quantities of the nano-phases.

From the fundamental equation of Gibbs 
to the size dependent molar Gibbs 
energies

Although this subject has been discussed by the author 
before [13, 18, 37], for completeness of the present 
paper let me shortly summarize the ideas and the 
results. The integral form of the fundamental equation 
of Gibbs is written in its simplified form as [38–40]:

where GΦ (J) is the Gibbs energy of solid or liquid 
phase Φ , HΦ (J) is the enthalpy of the phase, SΦ (J/K) 
is the entropy of the phase, �Φ∕g (J/m2) is the surface 
energy or surface tension of the solid or liquid phase 
with its surrounding gaseous phase, T (K) is the abso-
lute temperature in the phase, AΦ (m2) is the surface 
area of the phase. Now, let us define the amount of 

(1a)GΦ = HΦ − T ⋅ SΦ + AΦ ⋅ �Φ∕g

matter in that phase ( nΦ , mol), and the specific surface 
area of that phase ( A

sp,Φ , 1/m) as:

where V
m,Φ (m3/mol-phase) is the integral molar vol-

ume of the phase, defined from Eq. (1b) as:

Other integral molar quantities are defined simi-
larly as:

where G
m,Φ (J/mol-phase) is the integral molar Gibbs 

energy of phase Φ , H
m,Φ (J/mol-phase) is the integral 

molar enthalpy of the phase, S
m,Φ (J/mol-phaseK) is 

the integral molar entropy of the phase. Now, let us 
divide Eq. (1a) by nΦ , considering Eqs. (1b–g):

Equation (1h) can be also written as:

where Go

m,Φ
 (J/mol-phase) is the integral molar Gibbs 

energy of a large phase with A
sp,Φ = 0. The size- and 

shape-dependence of the molar integral Gibbs energy 
of a nano-phase is expressed in Eq. (1i) via the specific 
surface area, being inversely proportional to the char-
acteristic size of the nano-phase (see Table 1). Thus, the 
size-effect of the integral molar Gibbs energy of a 
nano-phase is also inversely proportional to the char-
acteristic size of the nano-phase.

(1b)nΦ ≡

VΦ

V
m,Φ

(1c)A
sp,Φ ≡

AΦ

VΦ

(1d)V
m,Φ ≡

VΦ

nΦ

(1e)G
m,Φ ≡

GΦ

nΦ

(1f)H
m,Φ ≡

HΦ

nΦ

(1g)S
m,Φ ≡

SΦ

nΦ

(1h)G
m,Φ = H

m,Φ − T ⋅ S
m,Φ + A

sp,Φ ⋅ V
m,Φ ⋅ �Φ∕g

(1i)G
m,Φ = G

o

m,Φ
+ A

sp,Φ ⋅ V
m,Φ ⋅ �Φ∕g
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The integral molar quantities of a nano-phase are 
connected with the partial molar quantities of compo-
nents in the same nano-phase as:

where x
i(Φ) is the mole fraction of component i in 

phase Φ , G
m,i(Φ) (J/mol-component) is the partial molar 

Gibbs energy (= the chemical potential) of component 
i in phase Φ , V

m,i(Φ) (m3/mol-component) is the par-
tial molar volume of component i in phase Φ , H

m,i(Φ) 
(J/mol-component) is the partial molar enthalpy of 
component i in phase Φ , S

m,i(Φ) (J/mol-componentK) 
is the partial molar entropy of component i in phase 
Φ . Combining Eq. (1h) with Eqs. (1j–m), the following 
equation follows for the partial molar Gibbs energy of 
component i in phase Φ:

Equation (1n) can be also written in a shorter form 
as:

where Go

m,i(Φ)
 (J/mol-component) is the partial molar 

Gibbs energy of a component in a large phase with 
A
sp,Φ = 0. Note, that T and A

sp,Φ are the state parame-
ters, so these quantities are equally present in Eqs. (1h, 
1n). Note also, that �Φ∕g in Eq. (1n) is not replaced by 
its partial quantity �

i(Φ∕g) , because in equilibrium 
�Φ∕g = �

i(Φ∕g) , according to the Butler equation [41–45]. 
As follows from Eqs. (1n–o), the size- and shape-
dependences of the partial molar Gibbs energies of the 

(1j)G
m,Φ =

∑
i

x
i(Φ) ⋅ Gm,i(Φ)

(1k)V
m,Φ =

∑
i

x
i(Φ) ⋅ Vm,i(Φ)

(1l)H
m,Φ =

∑
i

x
i(Φ) ⋅Hm,i(Φ)

(1m)S
m,Φ =

∑
i

x
i(Φ) ⋅ Sm,i(Φ)

(1n)
G
m,i(Φ) = H

m,i(Φ) − T ⋅ S
m,i(Φ) + A

sp,Φ ⋅ V
m,i(Φ) ⋅ �Φ∕g

(1o)G
m,i(Φ) = G

o

m,i(Φ)
+ A

sp,Φ ⋅ V
m,i(Φ) ⋅ �Φ∕g

components in a nano-phase are expressed via the 
specific surface area of the nano-phase, equally as the 
size- and shape-dependence of the integral molar 
Gibbs energy of the nano-phase is expressed by Eqs. 
(1h–i).

Simplified forms of Eqs. (1i, 1o) for solid 
and liquid nano‑phases

The size dependence of integral molar Gibbs energy 
of a nano-phase is due to the last term of Eqs. (1h–i). 
The problem with this expression is that the specific 
surface area is a hidden function of molar volume. 
To show this, let us define the amount of matter in 
the surface monolayer of the nano-phase ( n

s,Φ , mole) 
as:

where �Φ (m2/mol) is the molar surfacee area of the 
phase [46]. The ratio of the surface atoms situated in 
the outer monolayer of a nano-phase to the total num-
ber of atoms in the nano-phase ( yΦ , dimensionless) is 
defined as:

Substituting Eqs. (1b, 2a–b) into Eq. (1c):

Note that according to Eq. (2c), the state parameter 
A
sp,Φ is replaced by a new state parameter yΦ . Now, 

let us substitute Eq. (2c) into Eq. (1i):

Now, let me write the model equation for the last 
two terms of Eq. (2d) as [46]:

where k (dimensionless) is a ratio of broken bonds 
along the surface, H

m,c,Φ (J/mol) is the integral molar 
cohesive energy of the phase with a negative value, 
Δ
s
S
m,Φ (J/molK) is the integral molar excess surface 

entropy of the phase. It is supposed in this paper that 

(2a)n
s,Φ ≡

AΦ

�Φ

(2b)yΦ ≡

n
s,Φ

nΦ

(2c)A
sp,Φ = yΦ ⋅

�Φ

V
m,Φ

(2d)
G
m,Φ − G

o

m,Φ
= A

sp,Φ ⋅ V
m,Φ ⋅ �Φ∕g = yΦ ⋅ �Φ ⋅ �Φ∕g

(2e)�Φ ⋅ �Φ∕g ≅ −k ⋅H
m,c,Φ − T ⋅ Δ

s
S
m,Φ

Table 1   Specific surface areas of nano-phases of selected simple 
shapes

Shape Characteristic size (m) Specific surface area (1/m)

Sphere Diameter: D Asp,sphere = 6∕D

Cube Side length: a Asp,cube = 6∕a

Thin film Thickness: d Asp,thin−film = 2∕d
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the surface energy and surface tension are isotropic, 
for simplicity. Now, let us substitute Eq.  (2e) into 
Eq. (2d):

Equation (2f) is more suitable to our purposes com-
pared to Eq. (2d), as it does not contain any hidden 
function. Note: for the given size and shape of a nano-
phase the value of yΦ in Eq. (2f) has a constant value, 
as it is a state parameter. Similarly to Eq. (2f), the equa-
tion for the partial molar Gibbs energy follows from 
Eq. (1o) as:

where H
m,c,i(Φ) (J/mol) is the partial molar cohesive 

energy of component i in the phase with a negative 
value, Δ

s
S
m,i(Φ) (J/molK) is the partial molar excess sur-

face entropy of component i in the phase.

The size‑ and shape‑dependences of molar 
entropies of nano‑phases

The integral molar entropy of a phase follows from 
the integral molar Gibbs energy of the same phase as 
[39, 40]:

The difference between size-dependent and not 
size-dependent molar entropies are written by extend-
ing Eq. (3a) as:

where So
m,Φ

 (J/molK) is the integral molar entropy of a 
large phase with yΦ = A

sp,Φ  = 0. Now, let us take the 
first derivative of Eq. (2f) by temperature:

(2f)G
m,Φ − G

o

m,Φ
≅ −yΦ ⋅

(
k ⋅H

m,c,Φ + T ⋅ Δ
s
S
m,Φ

)

(2g)
G
m,i(Φ) − G

o

m,i(Φ)
≅ −yΦ ⋅

(
k ⋅H

m,c,i(Φ) + T ⋅ Δ
s
S
m,i(Φ)

)

(3a)S
m,Φ ≡ −

(
�G

m,Φ

�T

)

p,x
i(Φ)

(3b)S
m,Φ − S

o

m,Φ
= −

⎡
⎢⎢⎢⎣

�

�
G
m,Φ − G

o

m,Φ

�

dT

⎤
⎥⎥⎥⎦
p,x

i(Φ)

(3c)

⎡⎢⎢⎢⎣

�

�
G
m,Φ − G

o

m,Φ

�

dT

⎤
⎥⎥⎥⎦
p,x

i(Φ)

≅ −yΦ ⋅

�
k ⋅ C

p,m,Φ + Δ
s
S
m,Φ

�

Applying the model parameters of [46], 
Δ
s
S
m,Φ ≅ k ⋅ C

p,m,Φ for solid metals and Δ
s
S
m,Φ ≅ 0 for 

liquid metals. Then, Eq. (3c) can be re-written in a sim-
plified form as:

where z
s
≅ 2 for solid nano-particles and z

l
≅ 1 for liq-

uid nano-particles. As k ⋅ |||Hm,c,Φ
||| ≫ T ⋅

|||Δs
S
m,Φ

||| , in the 
first approximation A

sp,Φ ⋅ V
m,Φ ⋅ �Φ∕g ≅ −yΦ ⋅ k ⋅H

m,c,Φ 
follows from Eqs. (2d–e). Then, Eq. (3d) can be re-writ-
ten as follows, considering also Eq. (2d):

Now, let us substitute Eq. (3e) into Eq. (3b):

The partial molar entropy of a component in a phase 
can be obtained in a similar way, considering Eq. (2g):

where So
m,i(Φ)

 (J/molK) is the partial molar entropy of 
component i in a large phase with yΦ = A

sp,Φ  = 0. As 
follows from Eqs. (3f–g), molar entropies also depend 
on the size- and shape of the nano-phase via its spe-
cific surface area. Note, that because the sign of heat 
capacity is positive and the sign of cohesive energy is 
negative, the molar entropies shift towards more posi-
tive values by increasing the specific surface are and 
decreasing the characteristic size of the phase. This is 
because the local entropy of surface atoms is larger 
compared to that of the bulk atoms and because the 
ratio of surface atoms increases with decreasing the 
size of the phase.

(3d)

⎡⎢⎢⎢⎣

�

�
G
m,Φ − G

o

m,Φ

�

dT

⎤
⎥⎥⎥⎦
p,x

i(Φ)

≅ −yΦ ⋅ zΦ ⋅ k ⋅ C
p,m,Φ

(3e)

⎡⎢⎢⎢⎣

�

�
G
m,Φ − G

o

m,Φ

�

dT

⎤
⎥⎥⎥⎦
p,x

i(Φ)

≅
C
p,m,Φ

H
m,c,Φ

⋅ zΦ ⋅ A
sp,Φ ⋅ V

m,Φ ⋅ �Φ∕g

(3f)S
m,Φ ≅ S

o

m,Φ
−

C
p,m,Φ

H
m,c,Φ

⋅ zΦ ⋅ A
sp,Φ ⋅ V

m,Φ ⋅ �Φ∕g

(3g)

S
m,i(Φ) ≅ S

o

m,i(Φ)
−

C
p,m,i(Φ)

H
m,c,i(Φ)

⋅ zΦ ⋅ A
sp,Φ ⋅ V

m,i(Φ) ⋅ �Φ∕g
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The size‑ and shape‑dependences of molar 
enthalpies of nano‑phases

The integral molar enthalpy of a phase follows from the 
integral molar Gibbs energy of the same phase as [39, 
40]:

The difference between size-dependent and not 
size-dependent molar enthalpies are written by 
extending Eq. (4a) as:

where Ho

m,Φ
 (J/molK) is the integral molar enthalpy of 

a large phase with yΦ = A
sp,Φ  = 0. Now, let us substi-

tute Eqs. (2f, 3e) into Eq. (4b):

The partial molar enthalpy of a component in a 
phase can be obtained in a similar way, considering 
Eq. (2g):

(4a)H
m,Φ ≡ G

m,Φ − T ⋅

(
�G

m,Φ

�T

)

p,x
i(Φ)

(4b)

H
m,Φ −H

o

m,Φ
= G

m,Φ − G
o

m,Φ
− T ⋅

⎡
⎢⎢⎢⎣

�

�
G
m,Φ − G

o

m,Φ

�

dT

⎤
⎥⎥⎥⎦
p,x

i(Φ)

(4c)

H
m,Φ ≅ H

o

m,Φ
+

(
1 − T ⋅ zΦ ⋅

C
p,m,Φ

H
m,c,Φ

)
⋅ A

sp,Φ ⋅ V
m,Φ ⋅ �Φ∕g

(4d)

H
m,i(Φ) ≅ H

o

m,i(Φ)
+

(
1 − T ⋅ zΦ ⋅

C
p,m,i(Φ)

H
m,c,i(Φ)

)
⋅ A

sp,Φ ⋅ V
m,i(Φ) ⋅ �Φ∕g

where Ho

m,i(Φ)
 (J/molK) is the partial molar enthalpy of 

component i in a large phase with yΦ = A
sp,Φ  = 0. As 

follows from Eqs. (4c–d), molar enthalpies also depend 
on the size- and shape of the nano-phase via its spe-
cific surface area. Note, that at T = 0  K the size 

dependence of molar enthalpies is the same as that of 
the molar Gibbs energies. However, with increasing 
temperature, the size- and shape-dependence of molar 
enthalpies will become somewhat stronger compared 
to that of the molar Gibbs energy. It also follows from 
Eqs. (4c–d) that with increasing the specific surface 
area of the phase or reducing its size, molar enthalpies 
shift towards positive values, i.e. the cohesive energy 
weakens within the nano-phase. This is because the 
coordination number of surface atoms is smaller com-
pared to the bulk atoms and with reducing the size of 
the phase, the ratio of those surface atoms ( yΦ ) 
increases.

Let me note that both molar entropies and molar 
enthalpies shift similarly towards more positive values 
with decreasing size, in accordance with the Clausius 
equation. It is also worth to note that Eqs. (1i, 3f, 4c) 
obey the following equation: G

m,Φ = H
m,Φ − T ⋅ S

m,Φ , 
while Eqs. (1n, 3g, 4d) obey the following equation: 
G
m,i(Φ) = H

m,i(Φ) − T ⋅ S
m,i(Φ) . This further proves the 

validity of all these Eqs. (1i, n, 3f–g, 4c–d).

The size‑ and shape‑dependences of molar 
inner energies of nano‑phases

The integral molar inner energy of a phase follows 
from the integral molar Gibbs energy of the same 
phase as [39, 40]:

The difference between size-dependent and not 
size-dependent molar inner energies are written by 
extending Eq. (5a) as:

where Uo

m,Φ
 (J/molK) is the integral molar inner energy 

of a large phase with yΦ = A
sp,Φ  = 0.

Now, let us take the first derivative of G
m,Φ − G

o

m,Φ
 

by pressure after H
m,c,Φ in Eq.  (2f) is replaced by 

U
m,c,Φ + p ⋅ V

m,Φ:

(5a)

U
m,Φ ≡ G

m,Φ − T ⋅

(
�G

m,Φ

�T

)

p,x
i(Φ)

− p ⋅

(
�G

m,Φ

�p

)

T,x
i(Φ)

(5b)U
m,Φ −U

o

m,Φ
= G

m,Φ − G
o

m,Φ
− T ⋅

⎡
⎢⎢⎢⎣

�

�
G
m,Φ − G

o

m,Φ

�

dT

⎤
⎥⎥⎥⎦
p,x

i(Φ)

− p ⋅

⎡
⎢⎢⎢⎣

�

�
G
m,Φ − G

o

m,Φ

�

dp

⎤
⎥⎥⎥⎦
T,x

i(Φ)
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As k ⋅ |||Hm,c,Φ
||| ≫ T ⋅

|||Δs
S
m,Φ

||| , in the first approxima-
tion A

sp,Φ ⋅ V
m,Φ ⋅ �Φ∕g ≅ −yΦ ⋅ k ⋅H

m,c,Φ follows from 
Eqs. (2d–e). Multiplying and dividing Eq.  (5c) by 
H

m,c,Φ , this latter equation can be re-written as:

Now, let us substitute Eqs. (2f, 3e, 5d) into Eq. (5b):

The partial molar inner energy of a component in 
a phase can be obtained in a similar way, considering 
Eq. (2g):

where Uo

m,i(Φ)
 (J/molK) is the partial molar inner energy 

of component i in a large phase with yΦ = A
sp,Φ  = 0. As 

follows from Eqs. (5e–f), molar inner energies also 
depend on the size- and shape of the nano-phase via 
its specific surface area. Note, that at T = 0  K and 
p = 0 bar the size- and shape-dependence of molar 
inner energies is the same as that of the molar Gibbs 
energies, while at p = 0 bar it is the same as that of the 
molar enthalpy. However, with increasing tempera-
ture, the size- and shape-dependence of molar inner 
energies will become somewhat stronger compared to 
that for the molar Gibbs energy. Also, with increasing 
pressure, the size- and shape-dependence of molar 
inner energies will become somewhat stronger com-
pared to that for the molar enthalpy. However, this 
effect will have at least a 0.1% role only if pressure is 
above 100 bar = 10 MPa. It also follows from Eqs. (5e–f) 
that with increasing the specific surface area of the 
phase or reducing its size, molar inner energies shift 
towards positive values, similarly to the molar 
enthalpy.

(5c)

[
�

(
G
m,Φ−G

o

m,Φ

)

dp

]

T,x
i(Φ)

≅ −yΦ ⋅ k ⋅ V
m,Φ

(5d)

⎡⎢⎢⎢⎣

�

�
G
m,Φ − G

o

m,Φ

�

dp

⎤
⎥⎥⎥⎦
T,x

i(Φ)

≅
V
m,Φ

H
m,c,Φ

⋅ A
sp,Φ ⋅ V

m,Φ ⋅ �Φ∕g

(5e)
U

m,Φ ≅ U
o

m,Φ
+

(
1 − T ⋅ zΦ ⋅

C
p,m,Φ

H
m,c,Φ

− p ⋅

V
m,Φ

H
m,c,Φ

)
⋅ A

sp,Φ ⋅ V
m,Φ ⋅ �Φ∕g

(5f)
U

m,i(Φ) ≅ U
o

m,i(Φ)
+

(
1 − T ⋅ zΦ ⋅

C
p,m,i(Φ)

H
m,c,i(Φ)

−p ⋅
V
m,i(Φ)

H
m,c,i(Φ)

)
⋅ A

sp,Φ ⋅ V
m,i(Φ) ⋅ �Φ∕g

Experimental validation of the theoretical 
equations

Experimental validation of Eq. (1i)

Eqs. (1i, 3f, 4c, 5e) are used here to predict the maxi-
mum size effect of different integral molar properties, 
valid for 1 nm radius solid and liquid nano-particles 
(see Table 2). Characteristic values are given in Table 2 
for pure solid and liquid lead (Pb) at its melting point, 
as an example. As follows from Table 2, the size effects 
are quite large.

The condition of equilibrium between solid and liq-
uid Pb nano-particles is written as:

Table 2   Characteristic values for solid and liquid pure lead (Pb) 
at its melting point

*values are calculated for a sphere of 1 nm in radius

**195.9  kJ/mol (the sublimation energy at T = 0  K) + 6.9  kJ/mol 
(enthalpy change from 0  K till 298.15  K) + 8.5 (enthalpy change 
from 298.15 K till melting point) *** + 4.8 kJ/mol (heat of melting)

Quantity Unit Value Remark Source Eqs

p Pa 105 Average – –
T, Tm K 600.6 Melting point [47] –
Asp 1/m 3 109 Maximum* – (1c)
Vm,s m3/mol 1.88 10–5 Measured [48] –
�s∕g J/m2 0.533 Estimated [17] –
Cp,m,s J/molK 29.4 Measured [47] –
Hm,c,s kJ/mol  − 180.5** Estimated [49] –
zs – 2 Estimated [46] –
Gm,s − Go

m,s
kJ/mol  + 30.1 Maximum* – (1i)

Hm,s − Ho
m,s

kJ/mol  + 36.0 Maximum* – (4c)
Um,s − Uo

m,s
kJ/mol  + 36.0 Maximum* – (5e)

Sm,s − So
m,s

J/molK  + 9.81 Maximum* – (3f)
Vm,l m3/mol 1.94 10–5 Measured [48] –
�l∕g J/m2 0.458 Measured [50, 

51]
–

Cp,m,l J/molK 30.7 Measured [47] –
Hm,c,l kJ/mol  − 175.7*** Estimated [49] –
zl – 1 Estimated [46] –
Gm,l − Go

m,l
kJ/mol  + 26.7 Maximum* – (1i)

Hm,l − Ho
m,l

kJ/mol  + 29.5 Maximum* – (4c)
Um,l − Uo

m,l
kJ/mol  + 29.5 Maximum* – (5e)

Sm,l − So
m,l

J/molK  + 4.67 Maximum* – (3f)
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where Δ
m
G
m

 (J/mol) is the molar Gibbs energy change 
accompanying melting of Pb nano-crystals. Equa-
tion (6a) can be re-written as:

Substituting the values of 
(
G
m,l

− G
o

m,l

)
 = 26.7 kJ/mol 

and 
(
G
m,s

− G
o

m,s

)
 = 30.1 kJ/mol from Table 2 and the 

simplified expression for 
(
G
o

m,l
− G

o

m,s

)
 from [47] into 

Eq. (6b):

The solution of Eq. (6c): T
m

 = 172 K, which is the 
estimated melting point of pure Pb of 1 nm in radius. 
Replacing 

(
G
m,l

− G
o

m,l

)
−
(
G
m,s

− G
o

m,s

)
 in Eq. (6b) by 

Eq. (1i), the general equation is obtained instead of 
Eq. (6c) for pure Pb:

where r (m) is the radius of the spherical nano-particle, 
3/r is its specific surface area. In the first approxima-
tion 

(
V
m,s

⋅ �
s∕g − V

m,l
⋅ �

s∕l

)
≅ 1.14 ⋅ 10

−6 J/mol from 
Table 2 has a constant value. Substituting this value 
into Eq. (6d), the size dependent melting point of pure 
Pb is obtained as:

(6a)Δ
m
G
m
= G

m,l
− G

m,s
= 0

(6b)G
m,l

− G
m,s

=
(
G
m,l

− G
o

m,l

)
−
(
G
m,s

− G
o

m,s

)
+
(
G
o

m,l
− G

o

m,s

)
= 0

(6c)−3400 + 7.942 ⋅ (600.6 − T) ≅ 0

(6d)3

r

⋅

(
V
m,s

⋅ �
s∕g − V

m,l
⋅ �

s∕l

)
≅ 7.942 ⋅ (600.6 − T)

The values calculated by Eq. (6e) are shown in Fig. 1 
together with experimental liquidus data measured by 

Kofman et al. [52]. As follows from Fig. 1, our theo-
retical Eq. (6e) reproduces well the measured liquidus 
data. This proves the validity of our Eq. (1i) on the size 
dependence of the molar Gibbs energy. Note that due 
to the extended phase rule of Gibbs valid for nano-
phases [53], also a solidus line exists for nano-Pb [52]. 
This can be estimated by taking into account the solid/
liquid interface neglected above, as shown in details 
in [17, 54]. There are two further interesting details 
visible in Fig. 1:

•	 The melting point (= liquidus line) of the nano-crys-
tal approaches that of the macro-crystal (600.6 K) 
when the size of the nano-crystal approaches 
100 nm, in agreement with the general definition 
of nano-materials [15].

•	 The melting point of the nano-crystal approaches 
zero as its radius approaches r = 0.71 nm, being 
about 4 times larger than the atomic radius of lead 
(= 0.18 nm). It means, that a nano-particle with 
about 4 atoms along its diameter is the smallest 
nano-particle that can be considered as a solid 

(6e)T
m
≅ 600.6 −

4.29 ⋅ 10
−7

r

Figure 1   The size depend-
ence of melting point of pure 
lead (Pb). The continuous 
line is calculated by Eq. (6e). 
The dots are experimental 
liquidus points measured by 
[52]. The size of the dots cor-
responds to the experimental 
error.
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phase. It also means that nano-thermodynamics is 
not valid for phases with radii below 1 nm.

Experimental validation of Eq. (4c)

The size dependence of the molar enthalpy of cobalt 
(Co) nano-crystals is measured as the difference in 
enthalpies of dissolution between nano-Co and macro-
Co in the same liquid alloy at same temperature, result-
ing into identical liquid alloys. The measured molar 
enthalpy difference between nano-sized and macro-
sized Co crystals was found 7.5 ± 1.0 kJ/mol-Co at the 
average temperature of T = 1040 K for Co nano-parti-
cles with their measured BET surface area of (50 ± 10) 
103 m2/kg [7]. Multiplying this value by the density of 
Co (8,890 kg/m3), the specific surface area applied in 
this paper is obtained as: Asp = (4.45 ± 0.89) 108 1/m. As 

follows from the last row of Table 3, the experimental 
value of 7.5 ± 1.0 kJ/mol-Co and the theoretical value of 
8.1 ± 2.0 kJ/mol-Co overlap (see also Fig. 2). Thus, we can 
conclude that the equation for the size dependence of 
the molar enthalpy written by Eq. (4c) is also validated 
experimentally.

Another way to validate experimentally Eq. (4c) is 
to compare the experimental size dependence of molar 
melting enthalpy to our theoretical equation derived 
from Eq.  (4c). The size dependent molar melting 
enthalpy ( Δ

m
H

m
 , J/mol) is defined as:

(7a)Δ
m
H

m
≡ H

m,l
−H

m,s

Table 3   Characteristic values for solid cobalt (Co)

Quantity Unit Value Source Eqs

T K 1040 –
Asp 1/m (4.45 ± 0.89) 108 [7]
Vm,s m3/mol 6.63 10–6 [7] –
�s∕g J/m2 2.3 ± 0.1 [55] –
Cp,m,s J/molK 36.9 [47] –
Hm,c,s kJ/mol − 401 [49] –
zs – 2 [46] –
Gm,s − Go

m,s
kJ/mol 6.8 ± 1.7 – (1i)

Hm,s − Ho
m,s

kJ/mol 8.1 ± 2.0 – (4c)
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, 1/m

Figure  2   The molar enthalpy difference between nano-Co and 
macro-Co crystals as function of their specific surface area. The 
line is calculated by the data of Table 3 and by Eq. (4c). The dot 
was measured by dissolution calorimetry in [7]. Its size means 
the experimental error.

Table 4   Properties of solid and liquid indium (In) around its 
melting point

Quantity Unit Value Source Eqs

Tm K 430 [47] –
Cp,m,l J/molK 29.4 [47] –
Hm,c,l kJ/mol  − 236 [47] –
Vm,l m3/mol 1.64 10− 5 [56] –
�l∕g J/m2 0.560 [56] –
Cp,m,s J/molK 30.3 [47] –
Hm,c,s kJ/mol − 239 [47] –
Vm,s m3/mol 1.57 10–5 [56] –
�s∕g J/m2 0.618 [56] –
ΔmH

o
m

kJ/mol 3.26 [47] –
3 ⋅ [] kJ/molm  − 3.06 10–9 – (7b)

0
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,k
J/m

ol
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Figure 3   The molar enthalpy of melting of nano-In as function 
of the radius of its particles. The dotted line is calculated by the 
data of Table 4 and by Eq. (7b). The experimental intervals were 
measured by ultrasensitive scanning calorimetry and by transmis-
sion electron microscopy in [56].
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where H
m,l

 ( J/mol) is the size dependent molar 
enthalpy of the liquid phase and H

m,s
 (J/mol) is the 

size dependent molar enthalpy of the solid phase. 
Now, let us use Eq. (4c) to replace both terms in the 
right-hand side of Eq. (7a), neglecting the difference 
between the specific surface areas of solid and liquid 
phases and writing it through the radius (r, m) of a 
spherical nanoparticle:

where Δ
m
H

o

m
 (J/mol) is the molar enthalpy of melting 

of the macro-crystal with A
sp,l

= A
sp,s

 = 0. The physical 
properties of In around its melting point are collected 
in Table 4. Calculated data by Eq. (7b) are compared 
to experimental data in Fig. 3. One can see that the line 
calculated by the theoretical Eqs. (7b, 4c) is confirmed 
by the experimental data, confirming further the valid-
ity of Eq. (4c).

The validation of Eqs. (3f, 5e)

As the new Eqs. (1i, 4c) for the size- and shape 
dependencies of integral molar Gibbs energy and 
molar enthalpy of nano-phases are validated using 
experimental results (see the above two sub-sec-
tions), also the new equation for integral molar 
entropy of nano-phases Eq. (3f) can be considered 
as validated. Although this latter quantity is not 
measurable, but it obeys the well-known equation 
S
m,Φ =

(
H

m,Φ − G
m,Φ

)
∕T  . Similarly, the integral molar 

inner energy of condensed phases is known to have 
the same value as the integral molar enthalpy of the 
same condensed phases below 100 bar of pressure. 
Thus, the experimental validation of the integral 
molar enthalpy Eq. (4c) also validates the integral 
molar inner energy Eq. (5e), at least below 100 bar 
of pressure. Moreover, as partial molar quantities 
of components dissolved in nano-phases are closely 
related to integral molar quantities of the same nano-
phases, the validation of new Eqs. (1i, 3f, 4c, 5e) for 
integral molar quantities also validates the new Eqs. 
(1o, 3g, 4d, 5f) for partial molar quantities of compo-
nents in nano-phases.

(7b)Δ
m
H

m
≡ Δ

m
H

o

m
+

3

r

⋅

[(
1 − T ⋅

C
p,m,l

H
m,c,l

)
⋅ V

m,l
⋅ �

l∕g −

(
1 − T ⋅ 2 ⋅

C
p,m,s

H
m,c,s

)
⋅ V

m,s
⋅ �

s∕g

]

Conclusions

1.	 In this paper, the size- and shape dependences of 
8 different integral and partial molar thermody-
namic quantities are derived for solid and liquid 
nano-phases, starting from the fundamental equa-
tion of Gibbs: i) The integral molar Gibbs energies 
of nano-phases and the partial molar Gibbs ener-

gies of components in those nano-phases, ii) The 
integral molar enthalpies of nano-phases and the 
partial molar enthalpies of components in those 
nano-phases, iii) The integral molar entropies of 
nano-phases and the partial molar entropies of 
components in those nano-phases, and iv). The 
integral molar inner energies of nano-phases and 
the partial molar inner energies of components in 
those nano-phases. All these 8 functions have been 
found proportional to the specific surface area of 
the phase, defined as the ratio of its surface area to 
its volume. The equations for specific surface areas 
of phases of different shapes are different, but all 
of them are inversely proportional to the charac-
teristic size of the phase, such as the diameter of 
a nano-sphere, the side-length of a nano-cube or 
the thickness of a thin film. Therefore, the devia-
tions of all properties of nano-phases discussed 
here from their macroscopic values are inversely 
proportional to their characteristic size.

2.	 The 8 equations derived in this paper follow strict 
derivations from the fundamental equation of 
Gibbs. Only the temperature dependent surface 
energy of solids and surface tension of liquids are 
considered as model equations to simplify the final 
resulting equations.

3.	 The theoretical equation for the integral molar 
Gibbs energy is validated against the experimen-
tal values of liquidus temperatures of pure lead. 
The theoretical equation for the integral molar 
enthalpy is validated against the experimental val-
ues obtained for a). The dissolution enthalpy dif-
ferences between nano- and macro cobalt particles 
in the same liquid alloy and ii). The size dependent 
enthalpy of melting of indium nanoparticles. This 
also leads to the validation of the integral molar 
entropy and the integral molar inner energy (the 
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latter at least below 100 bar). Further, as partial 
and integral molar quantities are closely related, 
the above also validate the new equations obtained 
for the partial molar quantities of components in 
nano-phases.
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