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ABSTRACT

Rotationally accelerated shot peening imposes high strain rates and strain

accumulation on the surface of a pure nickel. As a result, a gradient structure is

developed from the surface to the interior of the bulk sample. In addition to

dislocation activities and deformation twinning, shear band is activated to

accommodate localized shear strains at the outmost surface. A high density of

defects accumulated during the strain hardening process is a prerequisite for the

shear banding deformation. The orientation relationship between the deformed

matrix and the shear bands, and thermally assisted mechanical rotation of

nanograins occurred during partial dynamic recrystallization, together reveal

the adiabatic nature of shear localization.

Introduction

In the last 30 years, gradient structures have attracted

much attention due to their positive effects on vari-

ous properties, such as tensile strength, fatigue

strength, impact toughness and corrosion resistance

for metallic materials [1–3]. Rotationally accelerated

shot peening (RASP) is one of the surface severe

plastic deformation (SPD) techniques that can induce

gradient structures in the surface layers of metallic

materials [4–6]. During RASP processing, the surface

layer is repetitively deformed under multidirectional

impacts from rotationally accelerated shots. Both the

strain rate and accumulated strain decrease with the

increasing depth due to the absorption and dissipa-

tion of impact energy through depth, resulting in a

significant grain refinement on the outmost surface

and gradually decreasing densities of defects with

increasing depth, namely the gradient structure [7].

The microstructural evolution and characteristic

microstructures at different depths of the gradient

structure are governed by deformation mechanisms,

which have hence been studied extensively in the last

decade [8–10]. Deformation mechanisms are affected

by intrinsic factors including crystal structure,
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stacking fault energy (SFE), grain size, and extrinsic

factors including strain, strain rate and temperature

[8, 11, 12]. For the materials with face-centered cubic

(fcc) structures, dislocation slip and deformation

twinning are the two major competing deformation

mechanisms during the SPD-induced grain refine-

ment processes [11]. Both dislocation slip and defor-

mation twinning in general contribute to strain

hardening and thus help sustaining uniform plastic

deformation [11, 13, 14]. However, when the strain

hardening rate can no longer catch up the increasing

flow stress [13, 14] and/or when some sorts of work

softening effects overwhelm, highly localized plastic

deformation mechanisms such as shear banding can

be activated [15–18]. According to studies[16, 18–21],

shear bands usually form under high strain and/or

high strain rate deformation. On one hand, shear

bands may contribute to effective grain refinement in

a highly localized manner [19–22], but on the other

hand, shear bands are likely to lead the catastrophic

failure of materials, unless special care is taken to

effectively constrain the plastic instability [23]. While

high strain and high strain rates are the characteris-

tics of many surface-SPD techniques including RASP,

surface mechanical attrition treatment (SMAT) [24]

and surface mechanical grinding treatment (SMGT)

[25], it is necessary to consider the effects of shear

bands on the formation of gradient structures.

In this work, comprehensive experiments and

analysis have been carried out to investigate the

gradient structure and shear bands induced by RASP

in pure nickel. Microstructural characterization of the

shear bands in the gradient structure is conducted at

different length scales, by electron back-scattered

diffraction (EBSD) and transmission electron micro-

scopy (TEM) analysis. The orientation relationship

between the matrix and shear band is analyzed. The

grain rotation occurred as a part of the dynamic

recrystallization in shear band is revealed. At last, the

shear bands as a contributing factor to the

microstructural heterogeneity induced by RASP are

discussed.

Material and methods

A commercial purity nickel (Ni, 99.3 wt%) was cho-

sen as the model material. RASP was conducted at

room temperature by using U1 mm GCr15 steel

bearing balls with a shooting velocity of 70 m/s for

5 min, to create gradient structures on both sides of

the Ni sample plate.

The microstructures of the samples were analyzed

by EBSD and TEM. The samples for EBSD analysis

were mechanically polished with 600, 800, and 1200

grit emery papers, subsequently fine polished to

mirror finish with diamond paste, and finally pol-

ished to remove strained surface layer by using OP-U

and OP-S suspensions. TEM samples were prepared

by standard mechanical grinding and ion beam-

thinned methods. EBSD analysis was performed

using a Zeiss Auriga scanning electron microscope,

with a step size of 40 nm. TEM analysis was per-

formed with a TECNAI-G2-20-LaB6 microscope

operating at 200 kV.

Results

Gradient structures

Figure 1 shows the microstructure of the as-received

Ni sample. The sample has coarse grains with ran-

dom orientations, and the average grain size is *
120 lm. Annealing twins are randomly observed,

and the average twin thickness is * 15 lm. Figure 2

shows the gradient structures observed from two

different regions (namely region 1 and region 2) on

the same surface of the RASP Ni sample. At region 1,

as shown in Fig. 2a, short and intermittent high angle

grain boundaries (HAGBs, traced by black lines) are

observed at the outmost surface layer within the

Figure 1 An EBSD map with the inverse pole figure (IPF)

coloring scheme, showing the microstructure of the coarse-grained

Ni sample.
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depth of * 1 lm. These HAGBs are a result of severe

plastic deformation-induced extreme grain refine-

ment [6, 11, 26]. With increasing depth beneath the

surface, the density of low angle grain boundaries

(LAGBs, traced by silver lines) decreases, indicating

that the plastic strain decreases. Figure 2b shows the

Kernel average misorientations (KAM) measured in

the gradient structure. KAM maps are commonly

used to represent internal plastic strain build-up in a

material [27–29]. In general, a higher KAM value

(refer to the color code in Fig. 2) suggests a larger

residual plastic strain, accommodated by a locally

increased geometrically necessary dislocation (GND)

density [23, 27]. As shown in Fig. 2b, the green and

yellow segments agglomerate to form intermittent

lines which mostly match the LAGBs shown in

Fig. 2a, suggesting that high densities of GNDs have

accumulated to form dislocation walls and LAGBs.

The density of the segments with high KAM values is

high at the outmost surface, and it decreases with the

increasing depth, suggesting the gradient distribu-

tion of GND density through the depth. In addition,

deformation twins marked by the white arrows

(Fig. 2a, b) were generated due to the high strain and

strain rate at the outmost surface. Although it is on

the same surface, the gradient structures observed at

region 2 (Fig. 2c, d) are different from region 1: (1)

The densities of HAGBs and LAGBs are higher in

Fig. 2c than that in Fig. 2a; (2) an adiabatic shear

band composed of ultrafine grains can be seen in the

middle of Fig. 2c; and (3) the density of the segments

with high KAM values is apparently higher in Fig. 2d

than that in Fig. 2b. Provided that adiabatic shear

bands are a result of localized high strain concen-

tration which is usually induced by high strain rate

deformation [20], region 2 evidently has experienced

higher strain rate than region 1. Apart from the shear

band, the densities of HAGBs, LAGBs and high KAM

segments are significantly higher in region 2 than in

region 1, indicating that region 2 has experienced

significantly higher strain. Apparently, the strain and

strain rate imposed by RASP is inhomogeneous

across the sample surface, leading to inhomogeneous

distribution of gradient structures. While shear bands

and deformation twins have occasionally developed

in the gradient structure, grain refinement in the

gradient structure is mainly achieved by the grain

subdivision mechanism involving the entanglement

Figure 2 Typical IPF and KAM maps showing the gradient

structure of the RASP sample. a The IPF map of region 1; b the

KAM map corresponding to a; c the IPF map of region 2; d KAM

map corresponding to c. (Twins are marked by white arrows.

HAGBs and LAGBs are traced by black and silver lines,

respectively. The color code for KAM component is provided to

the right of the figure).
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of dislocations, the formation of dense dislocation

walls (DDWs) and cell walls, transformation of

DDWs and cell walls into LAGBs, and the evolution

of LAGBs to HAGBs [30].

Shear banding

Stress and strain are highly concentrated in a shear

band, leading to significant grain refinement and

grain rotation inside the band [21]. As a result,

specific orientation relationships are created between

the fine-grained shear band and coarse-grained

matrix [11, 31]. To reveal orientation relationship

between the matrix and the shear band, {111} pole

figures derived from the matrix region and the shear

band region are shown in Fig. 3a, f, respectively. The

normal to the cross section (Fig. 2c) of the RASP Ni

sample corresponds to the centers of the pole fig-

ures (Fig. 3a, f). As shown in Fig. 3a, the {111} poles

spread to form arcs of 50–60�; correspondingly, the

majority of the boundaries in the matrix are LAGBs,

and the misorientation angles between adjacent cells

are low, as shown in Fig. 2c; hence, the overall large

misorientation revealed in Fig. 3a is due to the

accumulation of correlated LAGBs, rather than ran-

domly scattered HAGBs. In other words, the matrix

area shown in Figs. 2c and 3a is actually a strongly

deformed single coarse grain containing a large

number of LAGBs. Figure 3b–e shows the schematic

diagrams depicting 50�\112[ rotation from the

matrix to reach the texture of shear band. One grain

containing a set of {111} planes is chosen for the

demonstration of the rotation process, and the start-

ing positions of the poles are shown in Fig. 3b. For

the first step, the pole figure is shifted to have the

[112] pole placed to the center, and so the other poles

are all shifted correspondingly, as shown in Fig. 3c.

For the second step, the pole figure is rotated clock-

wise about the [112] pole for 50� to reach the orien-

tation as shown in Fig. 3d. For the last step, the [112]

pole is shifted to the starting position, and the other

poles are shifted correspondingly to complete the

rotation, as shown in Fig. 3e. Figure 3e matches well

with the actual pole figure of Fig. 3f, indicating that

the majority of the grains inside the shear band tend

to have similar rotation routes, in this particular case

50�\ 112[ rotation. Hence, shear banding has

caused both grain refinement and grain rotation from

the matrix grain.

Dynamic recrystallization

Another prevalent feature of the shear bands is that

there are noticeable numbers of recrystallized grains

having similar orientations but oriented away from

the dominant texture. Most of the recrystallized

grains are colored red and scattered inside the shear

band, as shown in Fig. 2c and Supplemental Fig. S1.

Figure 3 a The contoured

{111} pole figure derived from

the matrix region in Fig. 2c

(black triangles represent one

representative set of {111}

planes in the matrix); b–

e sequential steps for the

50�\112[ rotation that

transforms the matrix to the

textured shear band; (f) the

contoured {111} pole

figure derived from the shear

band region (black lozenges

represent the set of poles for

the rotated grain in the shear

band).

J Mater Sci (2023) 58:1670–1679 1673



Systematic analysis reveals that most of the recrys-

tallized grains have rotated 40�–50� about the [111]

pole, as elucidated in Fig. 4. As an example of the

analysis, a representative grain is chosen from inside

of the shear band, and the corresponding poles are

marked by black lozenges as shown in Fig. 4a. The

set of poles shown in Fig. 4a is transformed to the

schematic pole figure in Fig. 4b. This time the [111]

pole is chosen as the rotation axis and shifted to the

center of the pole figure, as shown in Fig. 4c. The pole

figure is rotated anti-clockwise about the [111] pole

for 40� to reach the orientation as shown in Fig. 4d.

Then, the [111] pole is shifted back to the starting

position, as shown in Fig. 4e. By the same procedure,

the chosen grain was rotated anti-clockwise about the

[111] pole for 40–50�, and the results fall into the

regions enclosed by the ellipses in Fig. 4f. Appar-

ently, the majority of the poles enclosed by the

ellipses are red, as shown in Fig. 4f, corresponding to

many of the recrystallized red grains observed inside

the shear band shown in Fig. 2c. According to the

literature [32, 33], transformation of the

S{123}\634[ texture to the cube{100}\001[ texture

by * 40–50�\111[ rotation is common during static

recrystallization of deformed fcc alloys. Therefore, it

implies that thermally assisted recrystallization has

occurred inside the shear band.

Heterogeneous deformation

A shear band beneath the RASP surface is captured

by TEM, as shown in Fig. 5. This shear band has a

width of less than 1 lm, as shown in Fig. 5a. Outside

the shear band, ultra-fined grains with an average

grain size of * 430 nm have been achieved due to

dislocation accumulation, as shown in Fig. 5b. How-

ever, the ultrafine grains are delineated by blurred

boundaries, indicating that grain refinement is still

ongoing without any noticeable recovery [11]. As

shown in the inset in Fig. 5b, only a limited number

of diffraction spots are visible, suggesting that the

grain sizes are comparatively large in the region

outside the shear band. In contrast, the sizes of the

grains inside the shear band have been significantly

refined to an average size of * 170 nm, as shown in

Fig. 5c. The randomly orientated nanograins inside

the shear band contribute to the formation of the

well-developed diffraction rings shown in the inset in

Fig. 5c. Figure 6a clearly shows some nanograins as

small as 20 nm (marked by arrows) in the shear band.

A nanotwin is seen in the nanograin with a size

of * 100 nm. It has been reported that the conven-

tional twinning mechanism involving fault-pairs may

cease to operate due to the lack of mobile dislocations

inside nanograins [34], and thereby, the nanotwin has

to form by emission of Shockley partials from the

grain boundary [35]. Since high temperature

Figure 4 a The contoured

{111} pole figure derived from

the shear band region in

Fig. 2c (black lozenges

represent a set of poles for a

grain in the shear band); b–

e sequential steps for the

40�\111[ rotation of a grain

as a part of the dynamic

recrystallization process; f the

{111} pole figure derived from

the shear band region (black

circles and ellipses enclose a

set of poles for the

recrystallized grains in the

shear band).
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suppresses deformation twinning, the existence of

nanotwins inside the shear band indicates that the

temperature raise due to adiabatic heating may not

be very high. In contrast, deformation twins have also

been observed in coarse grains outside of the shear

band, as shown in Figs. 2a and 6b. As shown in

Fig. 6b, some of the twins have detached from the

grain boundary, suggesting that the twins have

nucleated at the grain interior by the conventional

twinning mechanism. Provided that twinning in

nanograins requires significantly higher stress than

twinning in coarse grains, different twinning mech-

anisms found between inside and outside of the shear

band in the same surface layer indicate significant

heterogeneous deformation occurred due to the shear

banding [34, 35].

Discussion

Adiabatic shear localization

It has been well established that adiabatic shear

banding is the highly localized deformation governed

by a complex function of strain, strain rate and tem-

perature [15, 20]. As shown in Figs. 2d and 5a, high

densities of defects including both tangled

dislocations and dislocation substructures have

accumulated at the surroundings of the shear bands.

The GND density deduced from the area outside the

shear band in Fig. 2d is � 1:43 � 1015m�2 which is

higher than the GND density of � 0:97 � 1015m�2

deduced from Fig. 2b. This result indicates that a

high density of dislocations caused by strain accu-

mulation is a prerequisite for adiabatic shear banding

and thus agrees with the concept of dislocation pile-

up avalanche model for adiabatic shear banding [36].

Under repetitive impacts by RASP, strain continu-

ously accumulates on the surface layer of the Ni

sample, resulting in the accumulation of defective

structures including dislocation forests, dislocation

cells, microbands and sub-grain boundaries, which

provide barriers against dislocation motion [21, 37]. A

sudden collapse of these barriers, namely dislocation

avalanche, ultimately leads to the adiabatic shear

localization in the form of a shear band.

The strain rate at the outmost surface layer is

estimated to be 103–104 s-1 based on the theoretical

model for ball–plate dynamic indentation [38]. Pro-

vided that deformation twins were absent in the pure

Ni deformed at the strain rates of 102–103 s-1 [39], the

observation of deformation twins in Fig. 6b also jus-

tifies that a high strain rate of at least 104 s-1 was

Figure 5 a A low-magnification TEM image showing an

adiabatic shear band cutting across the gradient structure in the

surface layer of the RASP Ni sample; b a magnified TEM image of

the area marked ‘‘b’’ in a, showing ultrafine grains; c a magnified

TEM image of the area marked ‘‘c’’ in a, showing the adiabatic

shear band containing nanograins (the same selected-area aperture

was used to take selected-area electron diffraction patterns from

the shear band and the region outside the shear band).
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achieved at the outmost surface of the RASP sample.

The high strain rate on one hand accelerates the rate

of dislocation generation, and on the other hand

provides the momentum and stress required to trig-

ger the nucleation of shear band [21, 36]. Once the

shear band is nucleated, further straining will mainly

concentrate in the shear band, leaving surrounding

areas being strained at a much slower rate, resulting

in fast expansion and propagation of the shear band.

Meanwhile, strain concentration and high strain rate

in the shear band elevate the local temperature in the

blink of an eye, demonstrating the adiabatic nature

[10, 21, 40]. Provided that the shear banding process

is usually very fast, three orders of magnitude higher

than the externally imposed strain rate [22, 41], the

period for adiabatic heating and cooling in the shear

band is extremely short [21]. Nevertheless, the tem-

perature raise may not be high enough to drive full-

scale diffusional recrystallization, evidenced by

deformed grains with non-equilibrium GBs including

the one containing a nanotwin as shown in Fig. 6a.

Therefore, in addition to the heating and cooling

process, local stress and stored energy (in the form of

dislocation substructures and vacancies) will also

contribute to the dynamic recrystallization. Conse-

quently, recrystallized grains tend to nucleate ran-

domly from highly misoriented dislocation cells [16]

rather than from migration of HAGBs [42]. Never-

theless, according to the literature [16, 21], diffusion

during the cooling of the adiabatic shear band

accounts for variations in the total angles of rotation

of the recrystallized grains, explaining the reason for

the * 40–50�\111[ rotation of the recrystallized

grains elucidated in Fig. 4.

Microstructural heterogeneity
in the gradient structure

An ideal gradient structure is constituted of grains

with significantly varied sizes, but configured to a

gradient distribution of grain size [24, 43]. As a result,

the nanostructured layers provide high strength and

the coarse-grained core provides decent ductility.

There is essentially a transition region in-between the

nanostructures and coarse-grained structures to

accommodate the incompatibility induced due to

significantly different plastic behaviors occurred

concurrently, by generating and trapping a high

density of extra GNDs [5, 24]. Such a strong strain

incompatibility in a narrow region is the source of the

beneficial hetero-deformation-induced hardening

effects, if the transition region is well sand-

wiched/constrained by the high strength nanostruc-

tured layer and the ductile coarse-grained core.

However, an adiabatic shear band cutting through

the gradient structure as shown in Figs. 2c and 5

strongly distorts the ordered configuration, creating

an additional microstructural heterogeneity and local

stress concentration sites along the shear band.

Although there has not been any literature to-date to

report that shear bands deteriorate the mechanical

properties of bulk samples, many gradient-structured

materials have not shown outstanding combinations

of strength and ductility either as theoretically pre-

dicted [24, 44–48]. It is suspected that large shear

bands will be preferred crack nucleation sites during

plastic deformation of the gradient-structured mate-

rials and thus deteriorate the overall mechanical

properties. While shot-peening-based methods such

as RASP and SMAT are often used for making gra-

dient structures, careful conduct of experiments is

Figure 6 TEM images showing a nanograins and nanotwins

observed inside a shear band; b deformation twins found outside

the shear band.
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necessary to avoid or minimize the negative effects of

shear bands. Notwithstanding, the effects of shear

bands for grain refinement cannot be overlooked.

Therefore, we propose two ways for minimizing the

negative effects of shear bands: (1) disperse the shear

bands in the nanostructured region and prevent the

penetration of the shear bands to the transition

region; (2) avoid the formation of shear bands by

imposing uniform strain accumulation across the

specimen surface.

Conclusions

Gradient structure has been formed on a Ni sample

by RASP processing. While the high strain and strain

rate imposed by RASP caused significant grain

refinement at the outmost surface layers, shear bands

have also formed randomly due to non-uniform local

stress and strain concentrations. Detailed EBSD

analysis reveals that the 50�\112[ rotation route is

an important part of the grain refinement process that

occurred during shear banding. Adiabatic heating,

high local stress and stored energy contribute toge-

ther to drive partial dynamic recrystallization. The

recrystallized grains are usually as small as a few tens

of nanometer and demonstrate fur-

ther * 40–50�\111[ rotation from the deformed

nanostructure in the shear band. EBSD and TEM

results show that high densities of defects are the

prerequisite for adiabatic shear banding, supporting

the dislocation pile-up avalanche model. Although

shear banding is effective for grain refinement, large

shear bands cutting across the gradient-structured

layers introduced an additional heterogeneity which

may act as local stress concentration sites and even

preferred sites for crack initiations.
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