
ENERGY MATERIALS

High-performance supercapacitor and antifouling

biosensor based on conducting polyaniline-hyaluronic

acid hydrogels

Nianzu Liu1,2, Yihui Ma2, Zhenying Xu2, Yingshu Guo1,* , and Xiliang Luo2,*

1School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353,

China
2Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular

Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Received: 2 August 2022

Accepted: 1 December 2022

Published online:

14 December 2022

� The Author(s), under

exclusive licence to Springer

Science+Business Media, LLC,

part of Springer Nature 2022

ABSTRACT

We report a polyaniline-hyaluronic acid (PANI-HA) hydrogel that combines

rigid conducting polymer with flexible HA. The supramolecular assembly of

PANI and HA via boronic acid bonds yields PANI-HA hydrogel with unique

microstructure, electrical conductivity and hydrophilicity and exhibits excellent

supercapacitor performance and electrochemical sensing for immunoglobulin G

(IgG). The PANI-HA hydrogel electrode shows high specific capacitance

(369 F g-1, with 0.5 A g-1 current density) and good cycling stability (85%

capacity retention after 1000 galvanostatic charge–discharge cycles). In addition,

the PANI-HA hydrogel-based electrode can also be used as an electrochemical

biosensor for IgG detection, and the presence of highly hydrophilic HA sup-

ports low-fouling target analysis. The modified electrode exhibits good sensi-

tivity, wide detection range (0.1 ng mL-1–10 lg mL-1), and a low detection

limit (0.043 ng mL-1) for IgG detection. We demonstrate a strategy to fabricate

supramolecular hydrogel-modified electrodes and explore their potential

applications in supercapacitors and biosensors.
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GRAPHICAL ABSTRACT

High-performance supercapacitor and antifouling biosensor were fabricated

based on polyaniline-hyaluronic acid hydrogel.

Introduction

In recent years, conducting polymer hydrogels have

attracted great attention due to their high mechanical

properties, low cost, and ease of synthesis [1–3].

Many supercapacitor devices based on conducting

polymer hydrogels have emerged and also exhibit

excellent energy storage properties [4–6]. Polyaniline

(PANI) possesses distinct chemical properties,

including simple doping mechanism, diverse and

reversible redox behaviors, and high conductivity

after protonation [7, 8]. As one of the commonly used

conducting polymers, PANI conjugated p–electron
skeleton has unique electrochemical properties,

including high conductivity, reversibility between

unique redox states and excellent biocompatibility

[9, 10]. Its uncovered amino groups are susceptible to

biomodification. Furthermore, the electrochemical

characteristic peak signal of PANI corresponds to the

transition of leucoemeraldine/emeraldine, which is

extremely critical and useful in the field of electro-

chemical sensing [11, 12]. It has been used in many

applications such as rechargeable batteries [13, 14],

sensors [15–18], field effect transistors [19], catalytic

supports [20–22] and supercapacitors [23, 24]. Bai

et al. reported a pure PANI hydrogel synthesized by

a fast in situ polymerization method, exhibiting high

specific capacitance of 636 F g-1 and good cycling

stability as a supercapacitor (* 83% capacitance

retention after 10,000 cycles) [25].

However, apart from capacitor efficiency, another

neglected issue is the mechanical properties and

long-term stability of the device [26]. The introduc-

tion of flexible polymer materials into rigid con-

ducting polymer hydrogels is expected to enhance

the long-term stability of the device while increasing

the specific capacitance. For example, Liu et al. pro-

posed a low-temperature polymerization strategy to

prepare anisotropic polyvinyl alcohol/polyaniline

(PVA/PANI) hydrogels [27]. Its high mechanical

strength and bicontinuous phase structure achieve an

extremely high energy density of 27.5 W h kg-1. Ma

et al. prepared a flexible solid-state supercapacitor

based on PANI-PVA hydrogel with large capacity
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(306 mF cm-2 and 153 F g-1) [26]. This PANI-PVA

hydrogel-based supercapacitor maintained about

100% capacity after 1000 mechanical folding cycles.

Another important application of these materials

based on rigid conducting polymers and flexible

polymers is to develop an antifouling electrochemical

biosensor [28–30]. For example, PANI has been

widely used in electrochemical sensing due to its

high electrical conductivity, reversible redox behav-

ior, and abundant doping mechanisms [11, 12, 31].

However, the practical applications of low-cost and

fast-response electrochemical biosensors were lim-

ited, due to the severe biofouling in complex bio-

logical environments [32–34]. Proteins can non-

specifically attach to the electrode surface, resulting

in loss of sensitivity and reduced accuracy. Many

antifouling materials have emerged to resist non-

specific adsorption by providing highly hydrophilic

and electrically neutral interfaces, such as poly-

ethylene glycol (PEG) [35, 36], hyaluronic acid (HA)

[37, 38], zwitterionic polymers [39, 40], peptides

[11, 12], etc. Among them, HA is a hydrophilic

anionic polysaccharide rich in carboxyl and hydroxyl

groups, and its high hydrophilicity is capable of

resisting non-specific protein adsorption [41]. Indeed,

combining the unique electrical properties of PANI

with the soft HA promises some tantalizing

possibilities.

In this work, we choose HA as the soft material and

conducting polymer PANI as the rigid polymer to

improve structural stability and electrical conductiv-

ity of the hydrogel. The boronic acid groups can

crosslink HA and PANI to form PANI-HA hydrogels

[26]. PANI-HA hydrogels are supramolecular

assembly at the molecular level via APS as an oxi-

dant. The PANI-HA hydrogel was in situ gelled on

the glassy carbon electrode (GCE) and modified with

5% Nafion solution to adhesive the material. We

fabricated a supercapacitor based on this conducting

polymer hydrogel with large electrochemical capaci-

tance (369 F g-1, with 0.5 A g-1 current density),

outperforming other reported supercapacitors.

Moreover, considering the high hydrophilicity and

biocompatibility of the PANI-HA hydrogel, it helps

to resist non-specific protein adsorption and provide

an appropriate microenvironment for biomolecular

recognition. An antifouling electrochemical biosensor

based on PANI-HA hydrogel was constructed for

detecting immunoglobulin G (IgG). This IgG sensing

system shows a wide detection range (0.1 ng mL-1–

10 lg mL-1) and low detection limit (0.043 ng mL-1).

We demonstrate the potential application of the

prepared hydrogels in supercapacitor and biosensor

with satisfactory performance, which provides a new

idea for the application of conducting polymer-based

flexible hydrogels.

Materials and methods

Chemicals

All reagents used in this work were of analytical

grade. 3-Aminophenylboronic acid hydrochloride

(ABA), hyaluronic acid (HA), 4-(N-

Maleimidomethyl)cyclohexane-1-carboxylic acid

3-sulfo-N-hydroxysuccinimide ester sodium salt

(sulfo-SMCC), and Nafion solution were purchased

from Sigma-Aldrich. Aniline (AN), ammonium per-

sulfate (APS), and hydrochloric acid (HCl) were

obtained from Sinopharm Chemical Reagent Co., Ltd.

Peptide aptamer (CHWRGWVA) were synthesized

and purified by Hefei Bank-peptide Biological Tech-

nology Co., Ltd., in which the -HWRGWVA has been

reported to specifically recognize IgG, and the ter-

minal cysteine (C–) is used for anchoring [12, 32, 42].

IgG, human serum albumin (HSA) and other proteins

were supplied by Shanghai Sangon Biotech Co., Ltd.

Apparatus

The morphology of the PANI hydrogel and PANI-

HA hydrogel electrode were characterized by scan-

ning electron microscope (SEM) (JEOL JSM-7500F,

Hitachi High-Technology Co., Ltd.). Fourier-trans-

form infrared spectroscopy (FTIR) (Nicolet iS20,

Thermo Scientific Co., Ltd.), thermogravimetry

(TGA) (TA Q50, TA Instruments Co., Ltd), and X-ray

diffraction (XRD) (MinFlex 600, Rigaku Co., Ltd.)

characterizations were performed to discuss the

composition, structure, and properties of pure PANI,

PANI hydrogel, and PANI-HA hydrogel. Static water

contact angle (WCA) was used to measure the wet-

tability of hydrogel-modified electrodes (JC2000D1,

Shanghai Zhongchen Instrument Co., Ltd). All elec-

trochemical measurements in this work were per-

formed at room temperature using a CHI 660E

Electrochemical Workstation (Shanghai CH Instru-

ment Co., Ltd.).
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Synthesis of PANI-HA and PANI hydrogel

0.48 mL 0.06 mM aniline and 0.32 mL 2 mM APS

were cooled to 0 �C and then were rapidly mixed and

reacted for 6 h at 4 �C to obtain pure PANI. The

cooled 0.48 ml mixed solution containing 0.06 mM

aniline, 0.004 mM ABA, and 0.2 mM HCl were

quickly mixed with the cooled 0.32 mL 2 mM APS

and reacted for 6 h at 4 �C to yield PANI hydrogel.

The cooled 0.48 ml mixed solution containing

0.06 mM aniline, 0.004 mM ABA, and 0.2 mM HCl

was quickly mixed with 0.2 mL 4 mg mL-1 HA and

cooled 0.32 mL 2 mM APS, and then reacted for 6 h

at 4 �C to obtain PANI-HA hydrogel.

Preparation of PANI-HA hydrogel
and PANI hydrogel-modified electrodes.

During the gelation process, before the hydrogel was

completely formed, 5 lL mixed solution was added

onto the clean glassy carbon electrode (GCE). Then,

5 lL of ethanol-dispersed 5% Nafion solution was

added onto the electrode surface. Electrodes modi-

fied with PANI-HA hydrogel (PANI-HA hydrogel

electrodes) were successfully prepared by placing the

modified electrode in the reaction at 4 �C for 6 h. The

preparation process of electrodes modified with

PANI hydrogel (PANI hydrogel electrodes) is simi-

lar, except that there is no HA mixed in the gelation

process. Finally, the hydrogel-based electrodes were

immersed in PBS (0.2 M, pH 7.4) for 6 h to remove

impurities.

Electrochemical measurement
of supercapacitor

The supercapacitor performance of the modified

electrodes was performed on a CHI 660E workstation

based on a conventional three-electrode system

(working, reference, and counter electrode are PANI-

HA hydrogel or PANI hydrogel-based electrode, Ag/

AgCl electrode, and platinum wire, respectively) at

room temperature. Its performance was characterized

by cyclic voltammetry (CV), galvanostatic charge–

discharge (GCD) tests. CV measurements were per-

formed in the potential range of -0.2 to 0.8 V at a scan

rate of 10–200 mV s-1 in 0.5 M HClO4. The GCD

measurements were conducted by sweeping from 0

to 0.8 V at current densities of 0.5 A g-1–30 A g-1 in

0.5 M HClO4 [26, 43].

Construction of PANI-HA hydrogel-based
antifouling electrochemical biosensor

As shown in Fig. 4a, PANI-HA hydrogel electrodes

were immersed in 2 mM sulfo-SMCC for 1 h and

then incubated with peptide aptamer for 1 h. As a

dual-activator, sulfo-SMCC binds the amino group

on PANI to the sulfhydryl group on the cysteine

terminal of the peptide, thereby modifying the pep-

tide aptamer to the sensing interface [11, 12]. Finally,

the obtained biosensing interface was rinsed repeat-

edly with DI water before use.

Antifouling and sensing
of the electrochemical biosensor

The non-specific adsorption of interfering proteins at

electrode interface was reflected by soaking the

PANI-HA hydrogel and PANI hydrogel electrodes in

different concentrations of HSA for 1 h. The peak

current changes were recorded before and after

soaking the protein. For detection of target molecules,

the peptide/PANI-HA hydrogel electrodes were

recruited in specific concentrations of IgG for 60 min,

followed by repeated rinses with DI water. The signal

response was measured by differential pulse

voltammetry (DPV) in the range of - 0.5 to 0.5 V.

Electrochemical measurement of biosensor

The sensing performance of the PANI-HA hydrogel

electrode was also performed based on a traditional

three-electrode system (working, reference and

counter electrodes are peptide/PANI-HA hydrogel

electrode, Ag/AgCl electrode and platinum wire,

respectively) at room temperature. DPV was used to

record biosensor response data with potential incre-

ment of 4.0 mV and an amplitude of 50 mV. Signal

suppression (%) shows the ratio of peak current

changes before and after target recognition (Signal

suppression (%) = (iblank - itarget)/iblank 9 100).

Results and discussion

Material characterization

During the PANI-HA hydrogel synthesis, aniline was

first copolymerized with ABA to form PANI with

boronic acid group (Fig. 1a), and then the hydrogel
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was synthesized through the intermolecular interac-

tion between the boronic acid group on PANI and the

hydroxyl group on HA (Fig. 1b) since HA can

undergo gelation in the presence of boric acid [44].

Furthermore, the boronic acid groups on ABA can

copolymerize with aniline and thus covalently bind

to PANI. As shown in Fig. 2a, the synthesized PANI

hydrogel and PANI-HA hydrogel rapidly formed a

dark green hydrogel within few minutes. The gela-

tion process of PANI hydrogel and PANI-HA

hydrogel in the first minute was recorded in Fig. S1.

As shown in Fig. 2b, the hydrogel state cannot be

synthesized without aniline and APS, indicating the

necessity of aniline and APS in the synthesis process.

The microscopic morphologies of the freeze-dried

PANI hydrogel and PANI-HA hydrogel were then

characterized by scanning electron microscopy

(SEM). As shown in Fig. 2c, d, both hydrogels are

composed of stacked spherical particles with a size of

10 nm and exhibit a porous network nanostructure.

Furthermore, PANI-HA hydrogel possesses more

abundant pores than PANI hydrogel, which is

attributed to the looser structure provided by the

high molecular weight HA as the flexible unit in the

Figure 1 a Synthesis of

PANI-bearing boronic acid

groups. b A schematic

molecular structure of PANI-

HA hydrogel showing the

crosslink between PANI and

HA.

Figure 2 a Photograph of PANI-HA hydrogel and PANI

hydrogel. b Pictures of reactions with different reagents. Vial 1

has no APS; vial 2 has no AN. SEM image of PANI-HA hydrogel

c and PANI hydrogel d showing the porous structure. e Static

water contact angles of bare GCE, PANI hydrogel and PANI-HA

hydrogel-modified electrode. Bare GCE: 75.65�, PANI hydrogel
electrode: 49.26�, PANI-HA hydrogel electrode: 32.25�.
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hydrogel [45]. Moreover, the properties of HA rich in

polar groups lead to its easy binding to water mole-

cules through ion solvation, thus forming a porous

structure [46]. Conducting polymer network struc-

tures with high porosity are expected to improve

interfacial conductivity and supercapacitor perfor-

mance. The pure PANI (without boronic acid

groups), PANI hydrogel and PANI-HA hydrogel

were characterized by FTIR. As shown in Fig. S2,

peaks around 1560 and 1480 cm-1 correspond to

vibrations of the benzene ring in PANI [47]. Fur-

thermore, the peak around 800 cm-1 is assigned to B–

O vibration [48]. Peak at 1236 cm-1 in the PANI-HA

hydrogel corresponds to the expansion vibration of

C–O, and the peak at 1020 cm-1 corresponds to the

expansion vibration of C–O–C [26]. As displayed in

Fig. S3, the XRD plots of pure PANI (without boronic

acid groups), PANI hydrgoel and PANI-HA hydro-

gel show that peaks around 24� are assigned to PANI

[49]. The peaks around 59� correspond to boronic

acid, and one peak around 20� corresponding to HA

[50], demonstrating that constructed PANI hydrogel

and PANI-HA hydrogel present ordered structures at

the nanoscale. As shown in Fig. S4, the water content

of both PANI hydrogel and PANI-HA hydrogel

samples was determined to be 42 wt% by thermo-

gravimetry. We characterized the interfacial

hydrophilicity by static water contact angle (WCA)

test, as shown in Fig. 2e, the contact angle of bare

electrode is 75.65�, showing hydrophobicity. The

contact angle data of the PANI-HA hydrogel and

PANI hydrogel electrodes illustrate high

hydrophilicity, respectively, which is attributed to the

high water retention and high hydrophilicity of the

hydrogels. The HA-containing PANI hydrogel elec-

trode exhibits a smaller contact angle, which is due to

the fact that HA contains more polar groups, which

can bind more water molecules to form a hydration

layer to withstand the non-specific adsorption of

interfering proteins. The hydrophilic environment

also provides a highly biocompatible microenviron-

ment for the identification.

Supercapacitor characterization

In order to study the electrochemical properties of the

prepared hydrogels, the two hydrogels were in situ

gelled on bare GCE, and sealed with 5% Nafion

solution to prepare hydrogel electrodes. The PANI-

HA hydrogel and PANI hydrogel electrodes were

characterized by cyclic voltammetry (CV) and gal-

vanostatic charge–discharge (GCD) technologies.

Figure 3a shows the CV curves with PANI-HA

hydrogel electrode and bare GCE, respectively. The

PANI-HA hydrogel electrode displayed a rectangular

CV curve, which is typical of electrochemical double-

layer supercapacitors. As shown in Fig. S5, charac-

teristic redox peaks of PANI were observed from CV

curves on both hydrogel-based electrodes, indicating

the transition of PANI between different redox states.

Figures 3b, c and S6 exhibit the symmetrical GCD

curves of the PANI-HA hydrogel and PANI hydrogel

electrodes at different current densities, respectively,

indicating that both electrodes have highly reversible

charge–discharge behaviors. As shown in Fig. 3d,

both electrodes show good rate performance, when

the current density increases from 0.5 to 30 A g-1.

The specific capacitance of the PANI-HA hydrogel

electrode is higher than that of the PANI hydrogel

electrode in different current density ranges, which is

attributed to the introduction of flexible HA into the

conducting polymer hydrogel network, the provided

high porosity and high specific surface area conduc-

tive skeleton improve the electrochemical properties.

Furthermore, the specific capacitances of the PANI-

HA hydrogel electrodes and PANI hydrogel elec-

trodes were calculated from the GCD data in the

range of 0.5–30 A g-1 current densities (Table S1).

The capacitance of the PANI-HA hydrogel electrode

measured at 0.5 A g-1 reaches 369 F g-1, which is

comparable to previously reported conducting poly-

mer-based electrodes and even better than previous

reports (Table S2).

It is believed that the expansion and contraction of

conducting polymers during charge and discharge

generally lead to poor long-term cycling stability [26].

As shown in Figures S7a, b, both the PANI-HA

hydrogel electrode and PANI hydrogel electrode

were scanned for 100 GCD cycles at a current density

of 0.5 A g-1, exhibited excellent electrochemical sta-

bility. Moreover, as shown in Figures S7c, d, after

1000 GCD cycles at a current density of 30 A g-1, the

capacity retentions of PANI-HA hydrogel electrode

and PANI hydrogel electrode were 85% and 72.1%,

respectively. The good electrochemical stability of the

PANI-HA hydrogel electrode is attributed to the

introduction of HA, which enhances the mechanical

properties and anti-interference of the hydrogel

structure, thereby supporting and protecting the

PANI framework during expansion and contraction.
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Antifouling performance

HA is a hydrophilic anionic polysaccharide rich in

carboxyl and hydroxyl groups [41]. The flexible HA

containing polar groups combined with the high

water retention properties of hydrogel structure

make the PANI-HA hydrogel electrodes highly

hydrophilic to form a hydration layer to resist non-

specific protein adsorption. In order to explore the

possibility of constructing a sensing platform with

PANI-HA hydrogel, the PANI-HA hydrogel-based

electrodes were further covalently bound with pep-

tides that could specifically recognize IgG proteins

(Fig. 4a). As shown in Fig. 4b, the fabrication process

of the sensing interface and the feasibility of the

detection were characterized by differential pulse

voltammetry (DPV) technology. The characteristic

peak (47.3 lA) of the bare GCE appears around

0.15 V in 5.0 mM [Fe(CN)6]
3-/4- (curve a). After

PANI-HA hydrogel was modified on the electrode

(curve b), the PANI-HA hydrogel electrode exhibited

a larger peak current (61.2 lA) in PBS (0.2 M, pH 7.4)

at 0.07 V corresponding to the transition of standard

redox forms of PANI [11, 31]. Large current response

was attributed to the excellent conductive network

provided by conducting polymer-based hydrogels.

When the peptide was modified onto PANI-HA

hydrogel electrode (curve c), the peak current

decreased significantly (10.3 lA) due to the poor

conductivity of the peptide. After incubation of the

target IgG, specific recognition of proteins and pep-

tides hinders charge transfer, resulting in a continued

decrease (8.6 lA) in peak currents. The above results

demonstrate the successful construction of the sens-

ing interface.

Due to the excellent hydrophilicity of the PANI-

HA hydrogel interface, the non-specific adsorption of

proteins and cells can be effectively avoided. We

explored and compared the antifouling properties of

PANI-HA hydrogel electrodes and PANI hydrogel

electrodes against different concentrations of human

serum albumin (HSA). After incubation in HSA

solution for 1 h, there were little signal change on

PANI-HA hydrogel electrode (Fig. 4c). The signal

suppression is shown in Fig. 4d; after the PANI-HA

hydrogel electrode was soaked in 0.01 mg mL-1 HSA

for 1 h, the signal only changed within 4%. Even after

soaking in a high-concentration HSA (2 mg mL-1),

the signal suppression can also be controlled at about

10%, which is 36.5% suppressed compared to the

PANI hydrogel electrode.

Figure 3 a CV plots of PANI-

HA hydrogel electrode and

bare GCE tested at a scan rate

of 0.1 V s-1 in 0.5 M HClO4

solution. GCD curves of

b PANI-HA hydrogel

electrode and c PANI hydrogel

electrode in 0.5 M HClO4 at

different current densities

solution (0.5, 1, 2, and 5 A

g-1). d Specific capacitance

plots of PANI-HA hydrogel

electrode and PANI hydrogel

electrode at varied GCD

current densities.
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Determination of IgG

To obtain the optimal detection performance, we

optimized the incubation time of the target IgG. As

shown in Fig. S8, the signal suppression increased

with the increasing incubation time, and the equi-

librium was reached after 1 h of incubation time,

indicating that the peptide binding to the target IgG

reached saturation. Therefore, 1 h was chosen as the

optimal incubation time.

Under optimal sensing conditions, we evaluate the

sensing response of this antifouling electrochemical

biosensor to IgG. The electroactive surface is contin-

uously blocked with the increasing target concentra-

tion, resulting in a sequential decrease in peak

current (Fig. 5a). The response range of the IgG

biosensor is 0.1 ng mL-1–10 lg mL-1. The corre-

sponding regression is signal suppression

(%) = 5.325 log C (g mL-1) ? 63.99 (R2 = 0.995)

(Fig. 5b). The PANI-HA hydrogel-based electro-

chemical biosensor shows a lower limit of detection

(LOD) of 0.043 ng mL-1 (S/N = 3), which is lower

than many reported IgG sensors (Table S3). Such a

lower LOD may be attributed to the high active sur-

face area of PANI-HA hydrogel (producing a sensi-

tive signal) and the brilliant biocompatibility of HA

(offering a biocompatible microenvironment for the

identification).

Specificity and stability of the biosensor

We selected high-concentration protein molecules

(1 lg mL-1) with different isoelectric points and dif-

ferent molecular weights as interfering proteins to

explore the specificity of PANI-HA hydrogel elec-

trodes. As shown in Fig. 5c, the electrochemical

biosensor exhibited a greater current response to low

concentrations of the target IgG (1 ng mL-1), indi-

cating excellent specificity. Moreover, we tested the

long-term storage stability of the PANI-HA hydrogel

electrode, and the results show that the signal

retention was higher than 96% within 7 days

Figure 4 a Construction of an antifouling IgG biosensor based on

PANI-HA hydrogel electrode for highly sensitive detection of IgG.

b DPV curves corresponding to the electrode modification process

(a: bare GCE in 5.0 mM [Fe(CN)6]
3-/4-. b: PANI-HA hydrogel

electrode, c: peptide/PANI-HA hydrogel electrode, and d:

1 ng mL-1 IgG/peptide/PANI-HA hydrogel electrode in PBS

(0.2 M, pH 7.4)). c DPV curves of PANI-HA hydrogel electrode

after soaking in different concentrations (0.01, 0.1, 1, and

2 mg mL.-1) of HSA for 1 h. d Comparison of antifouling

performance of PANI-HA hydrogel electrode (black column) and

PANI hydrogel electrode (red column).
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(Fig. 5d), indicating the possibility of its long-term

application.

Conclusion

We have successfully prepared a PANI-HA hydrogel

combining a rigid conducting polymer PANI and a

soft polymer HA. In terms of supercapacitor perfor-

mance, the PANI-HA hydrogel electrode shows a

large specific capacitance and brilliant cycling sta-

bility compared to the pure PANI hydrogel, which is

attributed to the increased porosity and specific sur-

face area of PANI-HA hydrogel. In addition, PANI-

HA hydrogel-based electrode can achieve an

antifouling interface due to the presence of highly

hydrophilic HA. The prepared biosensing platform

based on PANI-HA hydrogel also exhibited good

sensitivity, wide detection range, and low detection

limit for IgG detection. We provide a new idea for the

application of conducting polymer-based flexible

hydrogels.
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