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ABSTRACT

Transitional metal oxides have attracted increasing attention as the most

promising anode material for lithium-ion batteries (LIBs). However, due to the

poor ionic conductivity and great structural changes in the process of Li?

insertion and extraction, the performance of the pristine materials in batteries

still has a far way to go to satisfy requirements. In this article, using spherical

ZIF-12 as a pyrolysis precursor, two Co3O4 hollow core-shell carbon

nanocomposites (CHS@C and CHS@CG) were fabricated via a molecular pre-

cursor pyrolysis strategy. The synergistic effect of the yolk-shell hollow nano-

sphere structure shortens the diffusion path of ions, increases the contact area

between the electrode and electrolyte, and provides a buffer space for the vol-

ume change in the electrochemical reaction. Both materials have excellent

structural stability and good electrical conductivity. In comparison, the perfor-

mance of CHS@CG is better, and the reversible specific capacity reaches 831

mAh�g-1 at 0.2 C after 400 cycles. In the galvanostatic charge–discharge process,

the Coulombic efficiency reaches nearly 100%, exhibiting a good reversible

cycle. The synthesis method of these electrode materials can provide a reference

for making other energy storage equipments.
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GRAPHICAL ABSTRACT

Introduction

With the rapid development of the world economy

and the shortage of nonrenewable resources such as

fossil fuels, finding alternative green energy has

become an urgent research topic for researchers [1].

Lithium-ion batteries (LIBs) have attracted extensive

attention and in-depth research in light of their

advantages of high energy density, large output

power, cycle stability, no memory effect, long lifes-

pan, and environmental friendliness [2]. Today, LIBs

have become the dominant power source in our lives,

from small portable electronic devices to large electric

and hybrid electric vehicles [3, 4]. However, graphite,

as a widely used anode material, has ideal cycling

performance, and its low theoretical specific capacity

seriously affects the performance of LIBs [5]. Based

on this, researchers have constantly looked for

excellent anode materials in recent years. Transition

metal oxides (TMOs) as electrode materials have

attracted significant attention for their rich resources

and high capacity [6–8]. For example Fe2O3 [9], Fe3O4

[10], NiO [11], CuO [12], MnO2 [13], and various

TMOs (M = Ni, Co, Cu, Ti, etc.) [14, 15] have been

intensively studied in LIBs. Among these metal oxi-

des, Co3O4 nanomaterials are the most prominent

anode materials for LIBs in light of their high theo-

retical specific capacities, diversity of oxidation

valence, and environmental friendliness. Co3O4 can

be obtained from natural abundant and inexpensive

resources [16, 17]. However, there are also some

severe drawbacks that are similar to those of other

pristine TMOs, such as perishing cycle stability and

poor ionic conductivity.

To overcome the unilateral problem of materials,

combining the advantages of different materials,

using a carbon layer to wrap cobalt tetroxide is a

breakthrough attempt [18]. Hollow structured

micro-/nanospheres, due to their unique electro-

chemical properties, such as low density, large

specific surface area, good thermal stability, strong

surface permeability, and relatively large internal

space, are attracting increasing research [19–24].

Specifically, yolk-shell nanostructure materials as a

special structure of LIB anode materials have

received robust attention. In contrast to the general

core-shell structure, the yolk-shell nanostructure

materials with a movable space inside the protecting

shell can effectively adjust the spatial variation

compared to hollow nanostructures [25]. As a

promising precursor at present, metallic organic

frameworks (MOFs) have highly ordered permanent

pore structures [26] and have been commonly pre-

pared for hollow structures after thermal decompo-

sition [27, 28]. Through high-temperature pyrolysis,

abundant organic ligands in MOFs become well-sui-

ted carbon sources for the synthesis of porous carbon

and metal-doped carbon [29]. With this consideration
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in mind, Co3O4 yolk-shell hollow spheres covered by

carbon are considered to be suitable for use in the

upgrade of LIBs. For example, Chen and coworkers

synthesized Co3O4 hollow nanofiber through tem-

plate-based engineering, and Lou and coworkers

designed a multistep approach to prepare hierarchi-

cal tubular structures, both of which showed some-

what improved reversible specific capacity [30–32].

Some MOFs, such as MOF-5, MOF-74, ZIF-8, ZIF-11,

ZIF-67, and ZIF-68, have been used as templates for

fabricating nanoporous carbons [26, 33, 34]. Through

calcining MOF precursors in controlled atmospheres,

Mai and coworkers designed hierarchical yolk-shell

Co3O4/C dodecahedrons which showed excellent

cycling stability [30, 35]. However, the above mate-

rials reported are more single-shell structures

obtained through complicated synthesis approaches.

Hollow multishell structures (HoMSs) are defined as

those built up with at least two shells and two cor-

responding internal voids. Unlike single-shell mate-

rials, they are suggested intensively as electrodes

[19, 36–42]. Higher volume energy density and better

structural stability have helped them to become

potential electrodes in energy storage applications

[43–45]. Recently, Altin S, Yaşar S, and coworkers

using ZIF-12 as the precursor synthesized unique

transition metal-doped carbon composite materials,

improving the electrochemical performance of the

lithium-ion batteries [26, 46]. However, to date,

accurately and effectively designing multishell hol-

low sphere structures is still a challenge.

Compared with ball milling [47], hydrothermal

[48], and solvothermal methods [49], the molecular

precursor pyrolysis strategy can accurately regulate

the crystal phase, composition, and morphology of

the target product by changing the experimental

parameters [50]. In this paper, with spherical ZIF-12

as a molecular precursor for pyrolysis, two carbon

materials CHS@C and CHS@CG were obtained. The

preparation method is simple, universal, and

repeatable. Because of the excellent electrical con-

ductivity of graphene and the interfacial synergistic

effect between Co3O4 and rGO, the prepared hollow

nanostructure microspheres CHS-400 show excellent

Li-storage capacity. The specific capacities reach 645

and 831 mAh�g-1, respectively, after 400 cycles at the

rate of 0.2 C, and in the constant charging and dis-

charging process, the Coulombic efficiency reaches

nearly 100%, exhibiting a good reversible cycle. Both

materials have excellent structural stability and

excellent conductivity. By comparison, CHS@CG has

better cyclic stability in LIBs due to the unique yolk-

shell architecture filled with and covered by gra-

phene sheets. The above effective design ideas for

synthetic methods will be conducive to the develop-

ment of electrodes for LIBs and the preparation of

other TMOs of electrode materials and other energy

storage devices.

Results and discussion

Scheme 1 illustrates the detailed formation process of

CHS@C and CHS@CG. Carbon-wrapped Co3O4 hol-

low sphere structures (CHS@C and CHS@CG) are

obtained after ZIF-12-1.0 g PVP calcination at 400 �C
in an air atmosphere. Due to the addition of PVP,

ZIFs have changed from a previously angular struc-

ture into a spherical framework compound with

metal Co2? as the center and ligand assembly (Fig. S1,

Fig. S2). Due to the excellent thermal conductivity of

graphene, the rapid heat transfer in the pyrolysis

process leads to the formation of a double-layer

Co3O4 yolk-shell hollow sphere structure (CHS@CG)

with the addition of graphene. Without the addition

of graphene, a multilayer Co3O4 hollow sphere

structure (CHS@C) will form due to the gradual heat

transfer process. Carbon in the structure of both

materials comes from the pyrolysis of the ligand

benzimidazole, and the CHS@CG material is also

filled with and covered by graphene sheets from the

pyrolysis of graphene. Both materials have excellent

structural stability and excellent conductivity. In

comparison, CHS@CG has better cyclic stability in

LIBs due to the role of graphene.

The microstructure of Co-MOFs is observed by

TEM images. ZIF-12-XX g-PVP possesses a different

morphology and structure with different amounts of

PVP. ZIF-12 does not clearly change at 0.5 g of PVP

(Fig. S3), the weight of PVP increases to 1 g, and the

shape is changed and becomes sphere-like (Fig. S2).

This phenomenon is not an accident; even if the

amount of PVP is increased to 1.5 g, the shape is still

sphere-like (Fig. S4), so we selected 1 g PVP condi-

tions to perform more individual studies.

The yolk-shell-structured hollow carbon spheres

(CHS@C and CHS@CG) are obtained after calcination

at 400 �C in an air atmosphere. They have a well-

retained sphere-like structure even after heating. ZIF-

12-PVP (1.0 g) is exposed to air at 400 �C to obtain
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Co3O4 yolk-shell hollow nanospheres with multilayer

structure CHS@C, and ZIF-12-PVP (1.0 g) with gra-

phene is heated to form double-layer yolk-shell hol-

low nanospheres CHS@CG. The edge of CHS@CG

(Fig. 1a–d) is less lucid than CHS@C (Fig. 1e–h) after

400 �C. The reason for the formation of the edge

structure is that the graphene parcels ZIF-12-1.0 g-

PVP and turns into carbon wrapped in the surface of

the hollow spheres after pyrolysis. Therefore, there

are layers of carbon around the edges (lattice spacing

d = 0.33 nm). After pyrolysis of ZIFs in air, Co3O4 is

mainly formed (lattice spacing d = 0.28 nm) [51],

which is consistent with the expectation. The

microstructures of ZIF-12 and ZIF-12-GO without

PVP are shown in Fig. S5. Cobalt oxide exists as

Co3O4 above 400 �C, and the polyhedron of Co3O4

nanoparticles grows on GO in ZIF-12-GO-400.

The phase purity and composition of the samples

were checked with X-ray diffraction (XRD). Fig-

ure S6a-c shows the XRD pattern of ZIF series

materials. The phase structures of ZIF-12, ZIF-12 with

0.5 g, 1.0 g, 1.5 g, 2.0 g PVP and ZIF-12-GO with

0.5 g, 1.0 g, 1.5 g, 2.0 g PVP have little discernible

difference. Therefore, the ZIFs could be defined as the

ZIF-12-XX series (JCPDS No.80–0382) [52]. By com-

paring Fig. S6b with S6a, it can be seen that there is a

broad peak at approximately 20� for ZIF-12-GO, ZIF-

12-0.5 g PVP-GO, ZIF-12-1.5 g PVP-GO, and ZIF-12-

2.0 g PVP-GO, which indicates the existence of gra-

phene. The diffraction peaks at 19.0�, 31.5�, 36.8�,
38.7�, 44.8�, 55.6�, 59.4�, and 65.3� corresponding to

Scheme 1 Synthesis route and

structure of CHS@C and

CHS@CG.

Figure 1 TEM images of a–d CHS@C and e–h CHS@CG.
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the (111), (220), (311), (222), (400), (422), (511), and

(440) lattice planes are characteristic diffraction peaks

of Co3O4 (Fig. 2a) (JCPDS No. 42–1467). This shows

that the CHS@C and CHS@CG composites are

obtained by annealing the ZIF-12 composites at

400 �C in air. The existing form of Co is Co3O4, which

is completely consistent with the peak of pure

Co(NO3)2�6H2O at 400 �C in air, so it could be indi-

cated that the existing metal oxides are Co3O4. ZIF-

12-400 and ZIF-12-GO-400 (without PVP) have the

same effect (Fig. S6d).

Figure 2b is the Raman spectra of CHS@C and

CHS@CG. The diffraction peaks approximately 191,

466, 509, 600, and 670 cm-1 are revealed in CHS@C

and CHS@CG. These are characteristic peaks of

Co3O4, in accordance with the five Raman active

modes (F2g, Eg, F2g, F2g, A1g) of the spinel Co3O4

phase [53]. It is further proven that the synthesized

material is pure Co3O4 without any impurities. From

the graph, we can see that the position of the A1g

peak in Co3O4 (670 cm-1) is slightly lower than that

of CHS@C and CHS@CG (680 cm-1) because of the

trace N-doped carbon coating on the nanocomposites

[19]. All of these results are consistent with the XRD

results.

To obtain an appropriate calcination temperature

from converting the precursor into Co3O4, TGA–DSC

was carried out on the precursors (ZIF-12-PVP and
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Figure 2 a XRD patterns of

CHS@C and CHS@CG;

b Raman spectra of CHS@C

and CHS@CG; TG curves of

c ZIF-12-PVP, ZIF-12-PVP-

GO and d CHS@C,

CHS@CG; N2 adsorption–

desorption isotherms of

e CHS@C and f CHS@CG at

77 K.

J Mater Sci (2023) 58:355–368 359



ZIF-12-PVP-GO), as shown in Fig. 2c, in an air

atmosphere. From the curves, we can see there is a

slight mass change from 40 �C because of the subli-

mation of the residual moisture in the composites. A

small mass loss appears after 200 �C, which may

derive from the decomposition of a few ligands. From

400 �C, there is a significant mass loss due to the

pyrolytic decomposition of ligands and the oxidation

of Co(NO3)2 to Co3O4 [54]. From 600 �C, there is a

plateau of the mass equilibrium where the main

component is Co3O4. Therefore, 400 �C is selected as

the temperature of pyrolysis in air [36]. Figure 2d

shows the TG curves of CHS@C and CHS@CG. From

the TG curves, it can be seen that 0.1% of the sample

mass lost occurred between 100 and 200 �C. The loss

of TG quality may be due to the moisture in the

sample sublimation remaining. From 330 and 340 �C
to 460 and 470 �C, the obvious mass loss is attributed

to the decomposition of carbon shells and graphene

in the composites. By calculation, the content of

Co3O4 in CHS@C is 89.3 wt%, and in CHS@CG, it is

93.6 wt% [55].

The specific surface area and pore structure of

CHS@C and CHS@CG were obtained from the N2

adsorption–desorption isotherms measured at 77 K

(Fig. 2e, f). From the adsorption branch of the iso-

therm curve, the specific surface area was calculated

using the BET method. The BET specific surface areas

are 32 and 24 m2�g-1 for CHS@C and CHS@CG,

respectively [56]. The SBET of CHS@CG is slightly

smaller than that of CHS@C, which can be explained

by the fact that the specific surface area of graphene

shells in CHS@CG is lower than that of amorphous

carbon in CHS@C after pyrolysis. This result is per-

fectly consistent with the electron microscopy. An

appropriate specific surface area will have a positive

effect on the performance in LIBs, because the mod-

erate specific surface area in LIBs is conducive to the

insertion and extraction of lithium ions [57].

To further determine the valences and the chemical

composition of CHS@C and CHS@CG hollow nano-

spheres, X-ray photoelectron spectroscopy (XPS)

measurements were taken (Fig. 3). As shown in

Fig. 3e, f, the XPS full survey scan spectra confirm the

presence of C, N, Co, and O atoms in the CHS@C and

CHS@CG samples. The high-resolution spectra of

C1s and O1s are shown in Fig. 3a–d. In the C1s

spectra, the peaks at 284.4 eV, 285.1 eV, and 288.7 eV

correspond to C - C, C - O, and C = O groups,

respectively. In the O1s spectra, from the peaks of

Co = O (529.7 eV), Co - O (530.0 eV), and O = C

(532.7 eV), it can be concluded that carbon exists in

the pyrolysis process of the ZIF series, and the

existing carbon is inserted into the middle of Co3O4

to form the carbon-doped Co3O4 nanohollow sphere

structure, which contributes to the conductivity of the

composite nanohollow sphere and improves its

electrochemical performance. From the N1s spectra

of the CHS@C and CHS@CG in Fig.S7a and S7c, the

characteristic peaks of N1s can be attributed to the

pyrrolic-N and trace graphitic-N [46]. Figure S7b and

S7d shows the Co2p spectra of CHS@C and

CHS@CG, in which the peaks at 797.1 eV and

782.3 eV correspond to the presence of Co2p1/2 and

Co2p3/2, respectively, proving that cobalt exists in the

form of the Co3O4 state, which is consistent with

reports in the literature [58, 59].

Figure 4a, b presents cyclic voltammetry (CV)

curves of CHS@C and CHS@CG in the voltage range

of 0.01–3.0 V at a scanning rate of 0.1 mV�s-1 for the

initial three cycles. As shown in the figure, the two

potentials of 0.85 V and 2.08 V correspond to the

cathodic peak and anodic peak of Li? in the Co3O4-C

material during insertion and extraction, respec-

tively, namely, the reduction peak and oxidation

peak. Figure 4a shows that the current intensity of

the CHS@C composite decreases significantly in the

first three cycles, and the first current is significantly

stronger than the second and third cycles, while the

current intensity of the CHS@CG (Fig. 4b) composite

is more stable than that of CHS@C, and the difference

between the first current intensity and the second and

third cycles is not significant, suggesting good

reversibility and stability [60]. This phenomenon

shows that the carbon-wrapped form of CHS@CG

has better stability than the carbon-free CHS@C, and

the outer layer carbon shell provides protection for its

volume change in the charging and discharging

process [61].

Figure 4c, d shows the galvanostatic charge–dis-

charge curves of CHS@C and CHS@CG in the voltage

range of 0.01–3.0 V versus Li/Li? at the rate of 0.2 C.

As seen from Fig. 4d, the CHS@CG discharge specific

capacity of the first cycle (1110 mAh�g-1) is higher

than the theoretical value and the second cycle (846

mAh�g-1). The initial capacity loss can be ascribed to

the decomposition of the electrolyte and the forma-

tion of a solid electrolyte interface (SEI) membrane

[62]. As shown in the figure, the voltage curve exhi-

bits a good charge–discharge platform in 1–4 cycles

360 J Mater Sci (2023) 58:355–368



and displays good cycling stability. In Fig. 4c, the

CHS@C discharge specific capacity of the first cycle

(1256 mAh�g-1) is higher than the theoretical value

and the second cycle (835 mAh�g-1), and the voltage

curve has a good charge–discharge platform. Due to

the hollow spherical structure, the two samples have

the desired reversibility, because the electrolyte can

penetrate into the hollow cavity, making the insertion

and extraction of lithium ions more rapid [63]. From

the figure we can see that CHS@CG has a much better

reversibility. Combined with the above analysis, the

CHS@C and CHS@CG lithium storage mechanisms

can be illustrated by the following equations:

8Li $ 8Liþ þ 8e� ð1Þ

Co3O4 þ 8Liþ þ 8e� $ 3Coþ 4Li2O ð2Þ

Co3O4 þ 8Li $ 3Coþ 4Li2O ð3Þ

Multiplier performance is one of the important

parameters to evaluate the performance of lithium-

ion batteries. Figure 5a,b shows the rate performance

of the two electrode materials at various rates with 10

charging and discharging tests. As demonstrated in

the graphs, the discharge specific capacity is attenu-

ated as the current density increases. The specific

capacity decays significantly when the current den-

sity rises to 1 C and 2 C. This can be attributed to two

reasons: one is the insufficient diffusion coefficient of

lithium ions, and the other is volume change in the

process of lithium-ion insertion and extraction under
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a high current density [64]. As the rate returns to the

initial 0.2 C, the specific capacity is recovered to the

original specific capacities. This indicates that the

hollow sphere structures can tolerate changes of such

high rates, show robust rate performance, and

demonstrate good reaction kinetics of Co3O4 hollow

sphere structures [65]. Compared with Fig. 5a and 5b,

CHS@CG has outstanding performance. The possible

reason is that the double-layer yolk-shell hollow

nanosphere CHS@CG enables the insertion and

extraction of lithium ions to be faster, and the good

thermal conductivity of graphene makes CHS@CG

have better crystallinity than CHS@C, which

improves the stability of CHS@CG.

As seen from the constant current charge–dis-

charge diagram at the rate of 0.2 C (Fig. 5c, d), the

reversible specific capacity is almost unchanged as

the number of cycles increases, and the battery still

has a high charge–discharge capacity even after 500

cycles, showing the excellent cycle stability of

lithium-ion batteries. After 400 cycles, the discharge

specific capacities of CHS@C and CHS@CG are 645

mAh�g-1 and 831 mAh�g-1, respectively, which are

74% and 95% of the theoretical value (872 mAh�g-1).

Relative to CHS@C composites, CHS@CG carbon

shows better stability, because most of the outer layer

of carbon from carbonated graphene provides a

volume change buffer space in the process of lithium-

ion transport, making its structure without being

destroyed, and the carbon in the outermost layer can

also constrain the volume change [66]. The Coulom-

bic efficiencies of the two electrodes are stable and

nearly 100%. The sample in this research shows

decent lithium storage performance compared with

the other Co-bases and Co3O4 anode materials

(Table 1).

Figure 5e–g shows the electrochemical impedance

spectra (EIS) of CHS@C and CHS@CG during various

charge and discharge processes. The curve consists of

a semicircle in the high-middle frequency range and

a slant line in the low-frequency range. The slant line

represents the diffusion degree of lithium ions. The

larger the slope of the slant line is, the faster the

diffusion of lithium ions and the better the electro-

chemical properties of the material. The semicircular

arc represents the resistance of charge transfer in the

middle- and high-frequency regions. The higher the

activity of the electrode material is, the smaller the

diameter of the semicircular arc. As shown in the

picture, without the electrode reaction, the migration

resistance of CHS@CG is only 43 X, and the transfer

resistances are 90 X and 145 X after 100 cycles and

500 cycles, respectively. Correspondingly, the

migration resistance of CHS@C is 56 X without the
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Figure 4 CV curves of

a CHS@C and b CHS@CG at

0.1 mV�s-1 for the initial three

cycles; charge/discharge

voltage profiles of c CHS@C

and d CHS@CG samples at

the rate of 0.2 C with four

cycles.
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electrode reaction, and the transfer resistances are 195

X and 230 X after 100 cycles and 500 cycles, respec-

tively [75], which are all larger than those of

CHS@CG. The result shows that the addition of rGO

nanosheets improves the electrical conductivity of the

composites and greatly speeds up ion/electron

transport in the process of lithiation/delithiation [76].

The Li? insertion/extraction processes of CHS@CG

are schematically illustrated in Scheme 2. During the

first discharge, an irreversible chemical reaction takes

place in electrode material, and Li2O, Co, and LixC

nanodispersed metallic particles are formed in the

spherical shell and between the spherical shell and

the carbon layer. In subsequent cycles, the electrode

material shows good redox reversibility, and the

nanodispersed metallic particles (Co) can effectively

make extra Li2O reversibly convert to Li?, which can

maintain a high capacity during the charge–discharge

cycles [77, 78]. Furthermore, the carbon layer outside

limits the volume change of the hollow nanospheres

and ensures good cycling stability.
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The as-prepared CHS-400 materials exhibit excel-

lent Li-storage capacity, structure stability, and rate

capability due to the good electrical conductivity and

the synergistic effect of the interface among Co3O4,

graphene, and pyrolytic carbon [50]. The synthesis

method has the advantages of simple operation steps,

strong repeatability, and versatility.

Conclusion

In conclusion, two carbon-wrapped Co3O4 hollow

sphere structures were obtained from ZIF-12-PVP via

molecular precursor pyrolysis in an air atmosphere.

The main phase of the CHS@C and CHS@CG heat-

treated at 400 �C was found Co3O4 and carbonized

ZIF-12. Due to the large specific surface area, abun-

dant active sites, shortened electron transport path,

and sufficient cavities in the shell, the composite

anode materials exhibit superior electrochemical

performances. The reversible specific capacities reach

up to 645 and 831 mAh�g-1 after 400 cycles at the rate

of 0.2 C. In the constant charging and discharging

process, the Coulombic efficiency reaches nearly

100%, exhibiting a good reversible cycle. The prepa-

ration method is simple, universal, and repeatable.

This superior synthesis strategy will provide a new

means of increasing the storage capacity of battery

electrode materials and promising applications in the

next-generation safer high-performance energy-stor-

age systems.
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