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ABSTRACT

Bainite transformation start temperature (Bs) is an important index to measure

the properties of bainitic steel. Based on the experimental results of bainite

transformation behavior, the atomic scale characteristics are introduced, and the

influence and prediction of different component content on Bs are analyzed by

machine learning algorithm. The results show that Bs decreased significantly

with the increase in C content (0-0.6wt.%) and Si content (0-0.2 wt.%), while

the tendence remains almost unchanged when the Si content is greater than 0.2

wt.%. Furthermore, according to the analysis of atomic scale features, Bs has the

strongest dependence on the number of valence electrons and the radius change

rate relative to iron. The combination with the above two atomic scale features

show the best model performance. The relationship between these two features

and Bs is positively proportional, and Bs rises with the increase in their values.

Extracting the valuable information about the relationship between Bs and

element characteristics from the collected experimental data is of great signifi-

cance to provide theoretical foundation of possible direction for the advances of

designing the excellent properties in steels.
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GRAPHICAL ABSTRACT

Introduction

Bainite steels are in high demand in many application

areas owing to their unique properties, such as high

tensile strength, impact toughness and weldability,

with ultimate tensile strength up to 2.2 GPa and

toughness values up to 130 MPam1/2 [1, 2]. Bainite

steels derive their strength mainly from fine bainite

plates, which acquire sufficient ductility due to the

presence of the ductile phase austenite. Therefore,

bainitic steels are often used to manufacture pipelines

for gas and oil transportation [3, 4]. The transforma-

tion behavior of bainite has been studied by many

scholars, among which the common methods for

measuring the phase transformation temperature are

thermal expansion [5], thermal analysis [6] and met-

allographic methods [7]. In addition, subcooled

austenite continuous cooling transition curve (CCT)

about phase transition and phase transition points

(bainite transformation start temperature, martensite

transformation start temperature) can be obtained by

using MUCG 83[8] and J-MatPro software [9].

The transformation kinetics and morphological

characteristics of bainite are closely related to the

elemental mass fraction, cooling rate and atomic scale

characteristics [10]. Previous studies of Fe-9Ni-C

alloys found that the Bs value decreases with

increasing carbon content which delays the onset of

transformation [11]. As the transformation tempera-

ture changes, the microstructure of the early trans-

formation changes and the morphological

characteristics of bainite is transformed [12]. The

addition of silicon delays the transformation kinetics

of bainite. It was found that as the silicon content

increased in the range of 1.0 to 2.0 wt%, resulting in

more film-like residual austenite and less carbide in

bainitic steels, the strength and total elongation of

bainitic steels increased [13, 14]. The continuous

cooling rate also affects the transformation properties

of low-carbon bainite steels. Previous studies have

shown that the formation of leaf-shaped bainite

during the continuous cooling phase accelerates the

subsequent bainite transformation [15]. As the cool-

ing rate increases (1–30 �C/S), the bainite transfor-

mation start temperature increases and then

decreases [16]. In addition, the valence electrons and

radii of each atom are different due to the chemical

elements involved in the material from different

periods [17]. Previous studies found that the varia-

tion of the transition temperature of NiTi-based

alloys is correlated with the number of valence
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electrons per atom (ev/a). An increment in the number

of valence electrons is accompanied by a tendency for

the transition temperature to decline when ev/a\ 6.8

or ev/a[ 7.2. It is also found that the transition tem-

perature lagging has a relatively wide range of val-

ues, which is considered to be related to the atomic

radius. During the transformation, an increase in

atomic size may lead to more energy dissipation, thus

increasing the lag [18].

Previously, Bs was estimated by combining ther-

mal simulation experiments with microstructure,

which was inaccurate and limited [12]. So far, most of

the bainite phase transformation-related researches

have been focusing on experiments clarifying the

influence of the phase field on microstructural

aspects. The lack of a large amount of experimental

data on Bs and related studies on machine learning

considerably hinders the further study on revealing

influential mechanisms of the bainite phase trans-

formation. So simulation of the data needed is of

significance for both the machine learning related

studies in materials science and the valuable appli-

cation of general methods of physics. Powerful data

analysis and processing tools in machine learning can

significantly reduce errors caused by inaccuracies in

experimental operations, exclude noisy data, and

provide important information [19]. The method can

automatically adjust the weight of each factor

according to the target value of the model and per-

form combined learning.

Machine learning has been used in the field of steel

materials [20–25]. For example,VanBohemenet al. [20]

extracted model parameters from the best fit of pub-

lished time–temperature transformed data and used

the model to describe the start curve of bainite for-

mation and predict bainite transformation kinetics.

Moreover, themartensite transition temperature of the

steel was predicted based on the thermodynamic

model, including factors such as chemical composi-

tion, austenite grain size, and driving force [21]. Wang

et al. [22] used an artificial neural network model to

predict CCT diagrams for a class of steels. In addition,

Zhang et al. [23] used a Gaussian process regression

model based on the alloying elements of a steel to

predict martensite transition temperature. They ana-

lyzed the intrinsic link between alloying elements and

phase transformation point of martensite. Bs is closely

related to specific alloying elements and process

parameters [24, 25]. Therefore, it is crucial to investi-

gate the intrinsic correlation between important

alloying elements and Bs by collecting relevant ele-

mental content data for bainite-containing steels.

In this study, Bs is predicted by machine learning

algorithm, Pearson and Spearman correlation coeffi-

cient, the random forest feature importance method

using alloying elements (C, Si, etc.) and cooling rate

(CR) as input features. The relationship between the

alloying elements Si, C and Bs was analyzed. The

dataset was divided based on the concentration of

element C, and the model’s performance was evalu-

ated for low and medium carbon, respectively.

Meanwhile, considering the model’s generalization

capability, new atomic scale features based on

alloying elements and cooling rates were added to

enable the model to predict Bs better. Finally, the

model is validated by randomly selecting some data.

Methodology

In the present work, the random forest algorithm (RF)

[26] is used as the dominant machine learning

method which is based on the idea of integration

learning in Fig. 1. First, the training sets (labeled by

‘Decision Tree-1, 2, …, N’) are generated by boot-

strapping, and a decision tree is constructed for each

training set (green and blue points). Then, when the

node has to find suitable features for further splitting,

it randomly selects some features and finds the

optimal solution (green dots) in Fig. 1. Since the

algorithm uses the bag method, it actually obtains the

information of the samples and the corresponding

features which avoids overfitting [27, 28]. Finally, the

results of all trees (labeled by ‘Result-1, 2, …, N’) are

Figure 1 Structure diagram of Random Forest algorithm.
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evaluated together, and the final prediction is

obtained by voting or averaging (labeled by ‘Majority

Voting/Averaging’) [29].

In machine learning modeling, it is necessary to use

several methods to compare and select the optimal

model as the actual prediction model [30]. Therefore,

the final dataset (see Table. S4 in Supplementary Note

1) has been divided into training and testing sets in the

ratio of 4:1, four different algorithms (RF, DT (Decision

Tree), GBDT (Gradient Boosting Decision Tree) and

Bagging)were adopted tobuild themodel. The steps of

this study include data collection, data processing,

feature analysis, model building and selection, which

can be simplified by a visual flowchart as shown in

Fig. 2. The black arrow represents the chemical com-

position and cooling rate as the input characteristics.

The prediction scores of Y1, Y2, Y3 and Y4 models are

obtained. The prediction scores correspond to the

values of three evaluation indexes for model evalua-

tion, and finally, the optimal model is selected for Bs

prediction. The red arrow represents the integration of

atomic scale features on the basis of the original fea-

tures and repeats the above steps to obtain a new Bs.

Dataset

In this study, 738 samples were collected from exper-

imental results of previous literature [31–39]. The

dataset contains 20 features (chemical composition of

C, Si, Mn, P, S, Al, etc., and cooling rate) and the target

value Bs. The values of unrecorded alloying elements

in the samples were set to be zero. All duplicate sam-

ples and discrete data from the box plots method [40]

have been removed. Moreover, the scatter plot is

formed by means of visualization data and used to

identify the larger deviation features.

Data processing

Data processing mainly refers to the processing of

null values, repeated values, discrete values, etc. (see

Tables. S1-3 in Supplementary Note 1).

The Pearson correlation coefficient [41] is used for

correlation analysis of the data and is expressed as r

to reflect the degree of linear correlation between two

variables (X and Y). The value of r is between -1 and

1. The larger absolute value corresponds to the

stronger correlation between the variables. The cal-

culation formula is as follows in Eq. (1):

r ¼
Pn

i¼1ðXi � XÞðYi � YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðXi � XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 ðYi � YÞ2

q ð1Þ

where n is the number of samples, Xi and Yi are the

observations at point i corresponding to the variables

X and Y, and X, Y are the mean values of the X and

Y variables, respectively.

The Spearman correlation coefficient, generally

denoted by qs, is used to assess the monotonic rela-

tionship and correlation between two continuous

variables [42]. When there are no repeated values in

the data and the two variables are completely

monotonically correlated, the coefficient is 1 or -1.

The formula is calculated according to Eq. (2).

qs ¼
Pn

i¼1ðRi � RÞðSi � SÞ
Pn

i¼1 Ri � R
� �2Pn

i¼1 Si � S
� �2h i1

2

ð2Þ

where n is the total number of samples,Ri and Si is

the ranks of the values for sample i, and R and S is the

average ranks of independent and dependent vari-

ables, respectively.

Random forest feature importance [43]

There is an important feature in random forests

which exhibits the ability to calculate the importance

of individual feature variables. There are many fea-

tures in the prediction model, and it is desirable to
Figure 2 Diagram of machine learning-based alloy design system

for the steels with desired phase transformation point.
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find the feature variables that are highly correlated

with the target value and to guarantee the prediction

accuracy by selecting as few features as possible.

Therefore, it is necessary to calculate the importance

of each feature and rank them.

The extended new atomic features

To improve the generalizability of the model, atomic

features are added to the original features, such as

atomic radius and valence electrons. In this study,

nine new atomic features are constructed, such as

electronegativity relative to iron (ENFe) and carbon

(ENC) atoms, radius change rate relative to iron (aFe)
and carbon (aC) atoms, the first ionization energy of

the relative iron (IPFe), carbon (IPC), and the number

of valence electrons (Ven all). The electronegativity is

further divided into the following parts: Pauling

electronegativity relative to iron (PENFe) and carbon

(PENC) atoms, and Allen electronegativity relative to

iron (AENFe) and carbon (AENC) atoms (Calculation

formula in Supplementary Note 4) [44].

Model performance evaluation metrics

The performance of the constructed models is evalu-

ated using [30] root-mean-square error (RMSE), mean

absolute error (MAE), and R2 (coefficient of determi-

nation) (Eqs. (1)–(3) in Supplementary Note 2).

Empirical formula

The results of the present study are compared with

previous formulae. There are four empirical formulas

for the calculation of Bs. The following shows for-

mula (3) [45] (Eqs. (4)—(6) in Supplementary Note 3).

BS¼720�585:63Cþ126:6C2�66:34Niþ6:06Ni2

�0:232Ni3�31:66Crþ2:17Cr2�91:68Mn

þ7:82Mn2� :3378Mn3�42:37Moþ9:16Co

�0:1255C02þ0:00284Co3�36:02Cu�46:15Ru

ð3Þ

Results and discussions

The result of the processed data

Based on the above dataset, the outliers of Bs were

calculated and removed by adopting the box plots.

Figure 3a shows the calculation results of Bs outliers

that the upper and lower limits of Bs are 765 �C and

295 �C, respectively. Three outliers exist beyond the

limits. Figure 3b shows the overall distribution of Bs

data. Based on the previous experimental and liter-

ature data, it can be judged that there are few data of

Bs greater than 700 �C. There are only two values in

this paper, so this part of the data is classified as

abnormal values. Then, the five outliers of Bs (Red

pentagrams in Fig. 3b) were removed. Figure 3 (c, d)

shows the data distribution of chemical components

C, P and Bs, respectively, and the outliers of C and P

(Red pentagrams) are also removed. Similarly, the

other feature outliers are optimized (see Fig. S1 in

Supplementary Note 1). The range of individual

feature values for the final dataset is shown in

Table 1.

The dependence of Bs on the elements Si
and C

Correlation analysis of different chemical compo-

nents with Bs was performed (Fig. 4). The results

showed that the highest correlation between the

features was found for the chemical components S

and P, and the value of the correlation coefficient r

was 0.67. Meanwhile, the elemental features that play

an important role on Bs are C, Si, etc. (green line). It

indicates that Bs will gradually decrease with the

increase in C and Si content. In addition, the features

of Cu, Nb, etc., have an positive-going action on the

increase in Bs (brown line), which means that Bs will

gradually increase with the increase in Cu content.

The result indicates that the more C or the less Cu

content can reduce Bs, but the dependence of Bs on C

was stronger compared to Cu. The correlation results

proved that there was no significant linear interaction

between the individual elemental characteristics.

To explore the effects of special elements on Bs, the

average values of C and Si element contents were

taken as representative. When the C concentration is

taken in the range of 0–0.6 wt.%, the Bs is

491-586 �C. As shown clearly in Fig. 5a, where the

carbon concentration is chosen as the x-axis. The

decrease in Bs temperature is inversely proportional

to the increase in carbon concentration within the

range of 0–0.6 wt.% range. This is because the

increase in carbon concentration in austenite would

give rise to the decrease in the carbon concentration

gradient within the austenite particles prior to

J Mater Sci (2023) 58:443–456 447



transformation. Correspondingly, the carbon con-

centration gradient is the effective driving force for

bainite growth. Reducing the driving force will cer-

tainly increase the time required for the diffusion of

carbon atoms from the interface and thus inevitably

reduce the bainite growth kinetics [46]. Moreover,

more carbon concentration leads to a decrease in the

Gibbs energy difference between bainite and

austenite, finally triggering the bainite nucleation

[47]. When the value of the Si element is taken in the

range of 0–1.6 wt.%, the Bs is 463–596 �C. Figure 5b

illustrates the relationship between Bs and Si element

content. The results demonstrate that Bs decreases

significantly with the increase in Si content when the

Si content is 0–0.2 wt.%. When the Si content is

greater than 0.2 wt.%, Bs decreases gradually and

slowly with the increase in Si content. Figure 5b also

indicates that if the Si concentration of the steel is

more than 0.2 wt.%, the Si has a weak influence on

the bainite reaction. The reason is that Si, as a non-

carbide forming element, can inhibit carbide precip-

itation and can be used as a solid solution element in

the steel to stabilize the austenite, thus making the C

curve shift to the right and reducing the bainite

transformation start temperature [48]. The addition of

Si can delay the bainite transformation by affecting

the nucleation and growth rate of bainitic ferrite [49].

The results of the model based
on the dataset

In this study, different algorithms were used for

modeling, and the prediction results are listed in

Table 2. The results show that the model has the

highest prediction accuracy of 90.5% when modeled

RF algorithm, followed by the GBDT algorithm pre-

diction rate of 90.1%. Thus, the above two algorithms

are more suitable for predicting the phase transition

Figure 3 a Outliers of Bs calculated by box diagram. Data distribution, which are b Bs, c chemical element C and d element P. Red

pentagram represents the discrete data.
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point. But through the results in Table 2, it is also

clearly found that the prediction accuracy of the four

algorithms has little difference (the difference in

prediction rate is about 3%). This further indicates

that the feasibility of the four algorithms is strong. In

addition, the parameters of the RF algorithm are

optimized in this paper. The results show that the

optimal values of the model parameters are n_esti-

mators = 171, max_depth = 17, min_samples_leaf =

1, min_samples_split = 2. Therefore, this set of

parameter conditions is chosen to build the final Bs

prediction model.

The results of the model based on low-
carbon and medium-carbon dataset

Based on the importance of element C to Bs, the

entire dataset was divided into low carbon (Wc

B 0.25%) and medium carbon (0.25% B Wc B 0.6%).

Figure 6 examines the degree of deviation of the

predicted values from the actual values for the low-

and medium-carbon data and draws the corre-

sponding scatter plots. Figure 6 also shows the pre-

diction results (R2, RMSE, and MAE) for the low- and

medium-carbon data based on random forest. Fig-

ure 6a and c shows that the errors RMSE = 14.7311

and MAE = 9.0564 for the low-carbon training set are

larger than those of 9.1569 and 2.6751 for the med-

ium-carbon training set. Figure 6(b) and d shows that

R2 = 0.8907 for the low-carbon test set is smaller than

the value of 0.9653 for the medium-carbon test set,

which indicates that the model in this paper performs

better for the Bs prediction results for the medium-

carbon data.

Addition of new features

The correlation analysis of the new features is per-

formed as shown in Fig. 7. Analysis indicates that aFe,
aC, and Ven all have a facilitative effect on the ele-

vation of Bs, while PENFe and PENC have the oppo-

site effect. In addition, IPFe and IPC had the same

correlation coefficient of -0.1 with Bs, indicating that

the dependence of Bs on them was similar. Figure 7

further shows that there is a strong correlation

between the new features associated with the atomic

parameters. The correlation coefficients between

PENFe, PENC, AENFe, AENC, IPFe, IPC, aFe and aC were

all above 0.9. Therefore, some of the highly correlated

features can be considered for removal without

affecting the model performance.

Figure 8 shows the results of ranking the impor-

tance of new features on Bs. Note that the importance

values of the features are normalized. The results

show that Ven all ranks first in terms of feature

importance. The feature Ven all is related to the

number of valence electrons of the element, taking

into account the effect of electronic stability on the

bainite transformation. In addition, PENFe, PENC, aFe,

Table 1 Range of compositions (wt.%), cooling rate (�C/s) in the

dataset

Features Minimum Maximum Average

C 0.01 0.62 0.18

Si 0.00 1.80 0.31

Mn 0.40 2.20 1.40

P 0.00 0.05 0.01

S 0.00 0.05 0.01

Cr 0.00 2.00 0.27

Ni 0.00 2.06 0.16

Cu 0.00 0.36 0.03

Al 0.00 0.05 0.01

Mo 0.00 0.90 0.09

Nb 0.00 0.15 0.02

Ti 0.00 0.16 0.02

B 0.00 0.003 0.001

N 0.00 0.020 0.005

V 0.00 0.18 0.03

CR 0.01 100 13.61

Figure 4 Correlation thermodynamic diagram. The squares

represent correlations between features, with red and purple

squares representing forward and reverse, respectively. Lines

represent correlations between features and Bs. Green and brown

lines represent enhancement or weakening, respectively.
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aC are also ranked high and may include the influ-

ence of alloying elements on the stability of iron and

carbon. Therefore, adding such atomic features can

improve the performance of the trained model.

Figure 9 shows the results when each feature is

added individually. The addition of new features,

such as PENC, IPC, and Ven all reduced the MAE

values (green dots). In addition, Ven all also

improved the RMSE (red dots) values without sig-

nificantly worsening the other evaluation metrics

(blue dots). Therefore, Ven all, PENC and AENFe may

be used as additional beneficial features in addition

to chemical composition and cooling rate. Figure 10

shows the results after sequentially adding the

remaining eight features and Ven_all combinations.

The results show that the model with Ven all? aFe
has the smallest MAE and RMSE errors and perform

well on the R2 index.

In the present study, the model with the original

features is denoted as Model A, and the model with

the new features added is denoted as Model B. The

comparison of the results of Model A and Model B is

reported in Table 3. The results indicate only one

special case where the Bagging algorithm model A

(R2 = 0.893) gives slightly better results than model B

(R2 = 0.891). The predictive ability of Model B of the

remaining three algorithms exceeded that of Model

A. The four models’ prediction results are excellent

(R2 is more than 0.85), which indicates that the bainite

transformation start temperature can be accurately

predicted by the effective regression model based on

the existing data. Furthermore, it can be seen that the

random forest model has the highest R2 (0.913) and

the smallest RMSE (24.67) and MAE (17.34), denoting

that the model has the best performance. Therefore,

in selecting the Bs prediction model, this paper first

preprocessed the data, analyzed the characteristics,

standardized the data, and adopted the random for-

est method to predict the special phase transforma-

tion point.

Modeling validation

To test the model’s accuracy, data validation of the

prediction results of the random forest model was

conducted in the present work. By randomly select-

ing 50 data, a scatter plot is drawn with the experi-

mental value as the horizontal coordinate and the

predicted values as the vertical coordinate (Fig. 11).

The results show the predicted values with the orig-

inal features (Model A) (in Fig. 11a). The model with

the new features (Model B) (in Fig. 11(b)) is in good

agreement with the experimental values. Compared

to Model A, the predicted values of Model B matched

the experimental values better. Figure 11 (c, d)

reveals that the calculated Bs values deviate signifi-

cantly from the experimental values. The vast

majority of the Bs values calculated using J-MatPro in

Figure 5 Relationship between a C, b Si and Bs. The square represents the calculated value. The error bar represents the calculated error

value of this point. The pentagrams correspond to the experimental data of C [50] and Si [51], respectively.

Table 2 Model results according to R2, RMSE and MAE

Algorithms R2 RMSE MAE

RF 0.905 25.12 17.94

GBDT 0.901 25.18 18.26

Bagging 0.893 27.12 19.07

DT 0.878 30.06 20.59
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Fig. 11c are higher than the experimental values and

have larger error values. Figure 11d shows the Bs

calculated by the empirical Eq. (1). It can be clearly

seen that the data are scattered. There is no clear

linear fitting trend with the experimental values.

Note that Eq. (1) is the best fit among the four

empirical equations, and the remaining three results

are shown in Fig. S2 of Supplementary Note 3.

Conclusion

In this study, the bainite transformation start tem-

perature (Bs) experimental data were collected and

preprocessed. The feature has been analyzed using

the Pearson correlation coefficient. The influence law

of chemical composition Si and C on Bs was further

quantified and investigated by means of the random

Figure 6 Fitting between the

predicted value and

experimental value. a low-

carbon training set, b low-

carbon testing set, c medium-

carbon training set, d medium-

carbon testing set.

Figure 7 Correlation analysis between the new features and Bs.

Figure 8 Result of feature importance ranking based on RF.
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forest model. The obtained accuracy could be as high

as 91%, with the error within ± 25 �C. Finally, the
prediction model of Bs based on the random forest

was obtained. In addition, new atomic features were

added for prediction, and the results are closer to the

experimental values. They can be extended to the

case of an unknown new element, which also pro-

vides new ideas to study other factors affecting Bs.

The following conclusions can be drawn:

(1) Bs decreases consistently from 586 �C to 491 �C,
with increasing C from 0.1 wt.% to 0.6 wt.%.

The model prediction results based on the

Figure 9 Results of adding new features.

Figure 10 Results of adding the remaining features based on Ven all.

Table 3 Comparison of the results of Model A and Model B

Algorithms Model hR2 RMSE MAE

RF Model A 0.905 25.12 17.94

Model B 0.913 24.67 17.34

GBDT Model A 0.901 25.18 18.26

Model B 0.905 25.03 18.14

Bagging Model A 0.893 27.12 19.07

Model B 0.891 27.48 19.30

DT Model A 0.878 30.06 20.59

Model B 0.88 28.59 20.36
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carbon concentration division show that the

prediction of medium-carbon steel

(R2 = 0.9653) is better than that of low-carbon

steel (R2 = 0.8907). It means that the model

performs better in predicting Bs for medium-

carbon steel.

(2) Bs temperatures are found to vary significantly

with increasing Si. By increasing the silicon

elements to 0.2 wt.%, Bs considerably decreases

from 596 �C to 513 �C. A turning point is at 0.2

wt.%. While the tendence remains almost

unchanged when the Si content is greater than

0.2 wt.%.

(3) Among the added atomic features, the number

of valence electrons ranked first in importance.

In addition, the radius change rate relative to

iron and the number of valence electrons both

have a similar relationship with Bs in a positive

trend. The addition of atomic features improves

the performance of the model and enhances the

generalization ability of the model.
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