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ABSTRACT

A new type of waterborne acrylic resin was prepared by the solution poly-

merization with octafluoroamyl methacrylate (OF-PMA), 2-butoxy ethanol, and

acrylic monomers as raw materials and N, N-dimethyl ethanolamine as pH

regulator. Fourier transform infrared spectroscopy and X-ray photoelectron

spectroscopy showed that the OF-PMA monomers were successfully grafted

onto the resin. The effects of the addition mode and content of OF-PMA on the

properties of waterborne acrylic resin were studied. The properties of water-

borne acrylic polymer and its coating were tested by a thermogravimetric

analyzer, an optical contact angle measuring instrument, and a tensile testing

machine. The results showed that after the introduction of OF-PMA monomer

into acrylic resin, the tensile strength of the resin was increased by 14.31 MPa.

Moreover, the water resistance and heat resistance of resin coating were also

improved obviously and the as-modified resin coating exhibited better fullness,

adhesion of Gt0, and the hardness of 4H. The novel acrylic resin exhibits a

potential application prospect in the fields of waterborne wood coatings.
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GRAPHICAL ABSTRACT

Introduction

Conventional solvent-based coatings contain high

concentrations of volatile organic compounds (VOCs),

which can seriously contaminate the atmosphere and

cause significant human harm during the production

and construction [1–4]. Waterborne resin uses water

instead of traditional organic solvents as the main

dispersion medium [5, 6]. Its irritation and toxicity are

much lower than those of traditional solvent-based

resins. It is a green environmental protection product

with low VOC. Therefore, the development and uti-

lization of waterborne resin become a research direc-

tion with broad development prospects [7–9].

There exists a great variety of waterborne resins,

including acrylic resin, epoxy resin [1], polyurethane

[4, 10], fluorocarbon resin [11], and amino resin,

among which waterborne acrylic resin is the most-

used [12]. Waterborne acrylic resin is primarily

polymerized by acrylic acid or methacrylic acid

monomer under the action of an initiator, with

excellent gloss, and adhesion. However, the disad-

vantages of poor water resistance and low mechani-

cal strength limit its further applications [13, 14]. To

solve these problems, scholars adopt the strategy to

modify waterborne acrylic resin with different func-

tional monomers. For example, Bai et al. synthesized

hexafluorobutyl methacrylate (HFMA) monomers

and prepared a core–shell fluorinated acrylate

emulsion. The textile treated with this emulsion

demonstrated obvious water repellent and oil repel-

lency [15]. Lei et al. prepared fluorosilicone acrylic

resin with HFMA, vinyltrimethoxysilane and 2-[3-
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(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethyl

methacrylate asmodifiedmonomers, which improved

the thermal stability andweather resistanceof the resin

[16]. Çakmakçi synthesized tripropylene glycol

diacrylate fluorinated resin from 2-hydroxyethyl

methacrylate, fluoroalcohol and hexamethylene

diisocyanate trimer, which enhanced the surface

hardness and contact angle of the coating [17]. In the

field of resin coatings, fluorine-containing monomers

are very important because of the high electronega-

tivity of fluorine atoms [18], which not only changed

the surface properties of polymer films but also affec-

ted the internal structure of resins [19, 20].

1H,1H,5H-octafluoroamyl methacrylate (OF-PMA),

fluorine-containing monomer with double bond at

one end, can provide conditions for the co-polymer-

ization of OF-PMA and acrylic monomers, and its

specific structure is shown in Fig. 1. Meanwhile, OF-

PMA contains a large number of high energy C-F

bonds and a large number of low surface energy F

atoms. If it can be successfully introduced into the

synthesis of acrylic resin, the performance of acrylic

resin will be greatly improved.

In this study, in order to improve the water resis-

tance, heat resistance, and mechanical properties of

waterborne acrylic resin, OF-PMA-modified water-

borne acrylic resin was designed and synthesized.

What is more, the methods of Fourier transform

infrared spectroscopy (FT-IR), X-ray photoelectron

spectroscopy (XPS), and scanning electron micro-

scope (SEM) were used to analyze the structure of

synthetic resin. This resin can be used as the main

film-forming material of coating and exert its func-

tion in coating protection and other related fields.

Experimental

Materials

Methyl methacrylate (MMA, analytical grade), acrylic

acid (AA, analytical grade), styrene (ST, analytical

grade), hydroxyethyl methacrylate (HEMA, analyti-

cal grade), glycidyl methacrylate (GMA, analytical

grade), and N, N-dimethyl ethanolamine (DMEA,

analytical grade) were supplied by Chengdu Cologne

Chemical Co. 2-Butoxy ethanol (BCS, analytical

reagent), vinyl tertiary carbonate (veova-9, 99%),

ethylene glycol (EG, analytical reagent), and benzoyl

peroxide (BPO, chemical pure) were obtained from

Tianjin Bodi Chemical Co. 1H,1H,5H-octafluoroamyl

methacrylate (OF-PMA, analytical reagent) was pro-

vided by Fuxin Ruifeng Fluorine Chemical Co., Ltd.

All the reagents were used as received without any

further treatment.

Synthesis of waterborne acrylic resin
modified by OF-PMA

Waterborne acrylic resin was prepared by a semi-

continuous solution polymerization method. The

reaction was carried out in a four-port flask with a

mechanical stirring device, temperature gauge, and

reflux condenser. The formulations for the unmodi-

fied resins are shown in Table 1. When the modified

resin was synthesized, the type and amount of the

reagents shown in Table 1 remained unchanged, only

the amount of OF-PMA monomer changed. The

synthesis process is as follows. First, ethylene glycol

butyl ether was added to the four-port flask as the

base solvent, and 0.2 g BPO was added when the

experimental temperature rose to 91 �C. In order to

investigate the influence of the addition methods of

OF-PMA on the resin properties, the addition meth-

ods of monomers were divided into two types. The

first type (a) was to mix all reagents evenly and drop

them into a four-mouth flask within 2 h, as shown in

Fig. 2a (named as ‘‘one-step dropping’’). The second

type (b) was to mix 0.5 g GMA, 1.5 g V9, 2.25 g

HEMA, 3.0 g AA, 3.0 g St, 5.0 g EG, 5.0 g BCS and

12.0 g MMA, and then dropped them into a four-

mouth flask through a constant pressure dropping

funnel within 1.5 h. After holding for 0.5 h, the

remaining HEMA, GMA and BCS and OF-PMA

monomer were mixed and dropped into the four-

mouth flask within 30 min, as shown in Fig. 2b

(named as ‘‘two-step dropping’’). After adding the

monomers, the reaction was kept at 91 �C for 2 h, and

0.05 g BPO was added at the middle of two hours.

The four-mouth flask was cooled down to room

temperature after reaction, and then, the products

were filtered with a filter cloth. Finally, an

Figure 1 The molecular structure of OF-PMA.
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appropriate amount of DMEA was added to adjust

pH to 8, and the final products were obtained.

Preparation of coating film

The preparation of coating film was divided into four

steps. Firstly, 4.5 cm 9 9 cm tinplate substrate was

polished with sandpaper, wiped with alcohol, and

then put aside for use. Secondly, 5 g as-prepared

resin was adjusted to pH 8 with DMEA, and then, 5 g

deionized water was added. The mixture was stirred

evenly and put it aside for use. The third step, the

waterborne acrylic resin prepared in the second step

was uniformly coated on the tinplate prepared in the

first step with 60-lm steel wires. Finally, the resin-

coated iron plate was cured in the oven at 140 �C for

20 min and then removed for performance test.

Characterizations

About 2.0 g resin was taken and put it into a clean

glass-surface vessel. The oven temperature was set to

150 �C to remove the volatile matter until the mass

difference between the two weights after an interval

of 2 h was less than 0.01 g. The solid content G can be

calculated by formula (1):

G ¼ M2 �M0

M1 �M0
� 100% ð1Þ

where M0, M1, and M2 refer to the mass of the glass-

surface vessel, the total mass of the glass-surface

vessel and resin, and the total mass of the glass-sur-

face vessel and resin after drying, respectively. The

monomer conversion C is calculated by Eq. (2):

C ¼ M� G�m

w
ð2Þ

where M refers to the total feeding amount; m refers

to the weight of non-volatile substances; and w refers

to the weight of the monomer.

The basic physical properties of resin coating such

as water resistance, adhesion, pencil hardness, and

impact resistance were determined according to the

standard UOCT 9.403:1980, ISO 2409:2013, ISO

15184:2012 and ISO 6272–2:2011, respectively. The

details are stated in the Supplementary Data.

The determination methods of FT-IR, DSC, TGA,

XPS, contact angle, and tensile property can all be

found in Supplementary Data.

Table 1 Formulations for unmodified resins

Component Chemical Mass (g)

Monomer V9 1.5

GMA 1.5

St 3.0

AA 3.0

HEMA 3.75

MMA 12.0

Solvent BCS 35.0

Solubilizer EG 5.0

Initiator BPO 0.35

Figure 2 Schematic diagram of monomer adding method: a one-step dropping and b two-step dropping.
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Results and discussion

The effect of the addition method of OF-
PMA monomer on resin properties

The influences of different ways of adding monomers

exerted heterogenous on the properties of the resin

were studied. The influences of the fluorine monomer

addition method on polymerization conversion and

resin coating hardness are shown in Table 2.

The appearance of the resin synthesized by the two

dropping methods shows no remarkable difference,

both of which are colorless and transparent. It is

shown in Table 2 that the conversion rate of one-step

dropping method is more than 98%, which is higher

than that of two-step dropping method (about

94.5%), and the hardness of the resin film prepared

by one-step dropping method is much higher than

that of two-step method. The possible reason is that

the fluorine monomer and other monomers can be

mixed evenly in the one-step dropping method, so

that the monomers can react fully with each other, the

conversion rate is higher, and the resin performance

is better. In addition, all the film adhesions of the

resins obtained by two methods are 0 grade, which

are recorded as Gt0. Therefore, one-step dropping

method was chosen as the addition method of OF-

PMA monomer.

Characterization of chemical structure

The changes of functional groups in the resin before

and after modification were analyzed by FT-IR as

shown in Fig. 3. It can be seen that there are

pronounced absorption peaks of -OH and C-H at

3436 and 2957 cm-1, respectively. The significant

peaks at 1388 and 1457 cm-1 correspond to the

characteristic absorbance of CH2 and CH3 groups.

The sharp peaks observed at 1734 cm-1 can be

ascribed to the strong tensile vibration of C=O [21].

The peaks at 1149 and 1242 cm-1 are attributed to the

asymmetric and symmetric tensile vibrations of C–O–

C. However, compared with the unmodified resin,

the spectrum of the modified resin possesses a wider

peak between 1119 and 1242 cm-1 [22, 23], owing to

the overlapped stretching vibration of C-F and C–O–

C [23–25], indicating that OF-PMA monomer has

been introduced into the copolymer molecular chain

by solution polymerization.

In order to further analyze the chemical structure

of the polymer, the samples WA-F0 and WA-F3 were

characterized by XPS. The results are shown in Fig. 4.

Table 2 Effect of the fluorine monomer addition method on resin coating hardness and conversion rate

One-step dropping sample name OF-PMA content (wt %)a Coating hardness Conversion rate (%)

WA-F0 0 3H 97.68

WA-F1 2.5 4H 98.05

WA-F2 5.0 4H 98.10

WA-F3 7.5 4H 98.54

WA-F4 10 4H 98.72

Two-step dropping sample name OF-PMA content (wt %)a Coating hardness conversion rate (%)

WA-2-F0 0 2H 93.78

WA-2-F1 2.5 2H 94.52

WA-2-F2 5.0 2H 94.32

WA-2-F3 7.5 2H 94.68

WA-2-F4 10 2H 94.71

aOF-PMA mass fraction in all monomers

Figure 3 FT-IR spectra of waterborne acrylic resin.
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In Fig. 4a, the strong characteristic signals of C1s

orbit (286.23 eV) and O1s orbit (530.62 eV) can be

observed in both samples [26]. The three main peaks

of C1s (Fig. 4b) are at 288.88 eV, 286.38 eV, and

284.84 eV, respectively [27–29]. The peak at 288.88 eV

belongs to the O–C=O, and the other two peaks cor-

respond to the C=O and C–C bonds, respectively [15].

The track of O1s is shown in Fig. 4c. Compared with

sample WA-F0, sample WA-F3 is equipped with the

characteristic signal of an F1s orbit at 686.78 eV. In

addition, a high-resolution spectrum of F1s is shown

in Fig. 4d. The F1s characteristic peak of sample WA-

F3 film is obvious, while that of sample WA-F0 resin

film is close to a straight line without the F1s char-

acteristic peak. Therefore, it can be concluded that

fluorine has been enriched on the surface of WA-F3

resin film, and the monomer OF-PMA has been suc-

cessfully introduced into the copolymer chain.

On the basis of the above discussion, the reaction

mechanism was further explored. Figure 5 shows

some reactions that may occur during the resin

polymerization and curing. Under the action of ini-

tiator (BPO), various monomers react with each other

to form macromolecular chains. Resin curing is a

process of dehydration and intermolecular conden-

sation reaction to remove water molecules and form a

complete coating [30]. In this process, low surface

energy of fluorine atoms enables it easy to accumu-

late on the surface of resin coating, so as to achieve

the effect of hydrophobicity [15]. In addition, the

introduction of OF-PMA brings a lot of high-energy

C-F to the molecular chain, changes the polymer

structure, and achieves the effect of the mechanical

strength and thermal properties of the resin.

Analysis of water resistance

To evaluate the water resistance of the resin coating,

the contact angle and the water resistance time of the

film were measured, respectively. The test results are

Figure 4 XPS spectra of waterborne acrylic resin films, a XPS full survey spectrum spectra, b spectra of C 1 s, c spectra of O 1 s, and

d spectra of F 1 s.
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shown in Fig. 6. It is evidenced that the contact angle

and water resistance time of the resin coating increase

with increasing the amount of OF-PMA monomer.

The introduction of OF-PMA increased the contact

angle of the resin coating from 75.57� to 84.52� and

improved the water resistance time from 48 to 111 h.

The possible reason is that there exist 8 low-surface

energy fluorine atoms in each fluoroalkyl side chain

of OF-PMA monomer. In the process of film forming,

the fluoroalkyl chain segments will preferentially

aggregate to the air surface [16, 22, 31], thus reducing

the coating surface energy and enhancing water

resistance.

In order to further explore the water resistance, we

studied the surface energy (cS) of resin coating, which

can be calculated by Neumann’s equation [32, 33] as

shown by Eq. (3):

cos h ¼ 2

ffiffiffiffiffi

cS
cL

r

� e�b cL�cSð Þ2 � 1 ð3Þ

where h is the contact angle of resin coating mea-

sured experimentally; b is a constant summarized by

measuring the contact angle of different types of solids,

and its mean value is 0.0001247 (m2�mJ-1)2 [34]; cL is

the vapor surface energy ofwater at room temperature

(about 72.75 (mN�m-1)) [30, 32]. Calculated from For-

mula (3), the results of cS are shown in Fig. 7. It can be

discovered that the cS of the resin coating is negatively

correlated with the contact angle of the resin coating.

With the contact angle increased from 75.57� to 84.52�,
the cS of the coating decreased from 38.22 to

32.61 mN m-1, resulting in the increment of

Figure 5 Possible reactions of polymers during polymerization and curing.

Figure 6 Effect of OF-PMA content on contact angle and water

resistance time of resin coating. Figure 7 Impact of OF-PMA content on surface energy.
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hydrophobicity and water resistance of waterborne

acrylic resin [35].

However, when the content of OF-PMA monomer

is more than 7.5%, the water resistance time begins to

decrease. This may be because when too many OF-

PMA monomers are introduced, the C–F bonds on

the long fluorocarbon chain are also greatly

increased, resulting in the decrease of the compati-

bility between OF-PMA monomers and some

hydrophilic groups in the polymerization process

due to the polarity difference among them [15, 26].

Based on the above analysis, it can be concluded that

the water resistance of the modified resin is better

when the content of OF-PMA is 7.5%.

Thermal performance analysis

The curing behavior of the modified waterborne

acrylic resins with different OF-PMA contents was

detected by DSC, as shown in Fig. 8. It can be seen

that the DSC curve is very smooth with only one

exothermic peak, demonstrating a uniform coating

formed during the curing process. For unmodified

resin, the curing temperature of the resin is only

82.29 �C. After introducing OF-PMA monomer, the

endothermic peak of the curing reaction gradually

shifted to higher temperature with increasing the

content [26]. When the content of OF-PMA is 10%, the

curing temperature of the resin reaches 106.46 �C,
indicating that OF-PMA reacts with other monomers

and the chain structure changes. Compared with the

unmodified acrylic resin, the addition of OF-PMA

changed the structure of the polymer macromolecu-

lar chain. The long fluorinated chain enhanced the

entanglement between resin molecules, increased

glass transition temperature (Tg), and enhanced the

thermal stability of waterborne acrylic resin [36].

In addition, the thermal degradation behavior of

waterborne acrylic resin was studied by thermo-

gravimetric analyzer (TGA). The TGA curves of the

resin films with different contents of OF-PMA

monomer are shown in Fig. 9. All resin samples

experienced two thermal decomposition processes.

The first decomposition process is from 100 to 300 �C,
in which the mass loss is not only the removal of

water molecules, residual acrylic acid, acrylate

monomers, and DEMA volatilization, but also the

decomposition of some short-chain polymers [18, 37].

When the temperature rises to 300 �C, the macro-

molecular polymer begins to decompose, the residue

rates of the samples are decreased to 67.02%, 73.33%,

78.43%, 79.76%, and 79.14%, respectively. During the

secondary decomposition at 300–470 �C, the main

weight loss of the sample is due to the decomposition

of macromolecular chains in the polymer. The final

residue rate of the sample is increased from 0.75%

(WA-F0) to 2.71% (WA-F4). It can be found that with

the increase of OF-PMA monomer content, the

weight loss rate of the resin is gradually reduced,

which further demonstrates the improved thermal

stability of the resin through modification by fluorine

monomer. The reason is that the introduction of OF-

PMA monomer is equipped with large molecular

weight and a large number of high-energy bonds C–

F. After reacting with other monomers, the number

and length of long-chain polymer molecules increase;

therefore, destroying the internal chemical bond to

decompose the polymer requires more energy

[16, 22, 38].

Figure 8 DSC curves of different OF-PMA monomer contents. Figure 9 TGA curves of different OF-PMA monomer contents.
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Analysis of the mechanical property

The stress–strain curve, tensile strength, elongation at

break, and Young’s modulus of resin with different

OF-PMA monomer content were studied, and the

results are shown in Fig. 10 and Table 3. It is indi-

cated that the tensile strength, elongation at break,

and Young’s modulus of the resin are improved after

the introduction of OF-PMA monomer. The tensile

strength was increased by 92.7% (from 15.44 to

29.75 MPa), Young’s modulus was increased by

65.5% (from 667 to 1104 MPa), and the elongation at

break was increased by 5.57% (from 4.35 to 9.92%).

The reason may be that the introduction of OF-PMA

monomer with a relatively high Tg can make

copolymer possess better rigidity [22], and make the

sample more difficult to be broken [39]. When the

content of OF-PMA is increased to 10%, the tensile

strength of the sample begins to decrease. In addi-

tion, the addition of too many OF-PMA monomers

can reduce the compatibility between monomers,

resulting in a greatly reduced cohesion between

molecules and the repulsion behavior in the resin

[15, 40]. When the influence of repulsion behavior

exceeds the increase of molecular chain strength, the

external force is applied to the film and the stress

transfer in the polymer becomes worse, and finally

the tensile strength of the sample decreases. The

increase of percentage of breaking elongation is also

due to the repulsive behavior within the resin mole-

cules. In addition, the final strain of all samples does

not exceed 10%, and the stress–strain relationship is

linear. The samples break after reaching the elastic

limit, which belongs to the elastic deformation

[41, 42]. From the above analysis, when the content of

OF-PMAmonomer is 7.5%, the mechanical properties

of the resin are the best.

The improvement in the tensile strength of resin

samples was further confirmed by SEM. The images

are shown in Fig. 11. It is shown that the SEM images

of the rupture surfaces of the resin tensile sample of

the unmodified resin sample are relatively uniform

and flat (Fig. 11a), while that of WA-F3 is fibrous and

irregular (Fig. 11b), indicating that the rigidity of the

resin increases after modification. The possible rea-

son is that the introduced OF-PMA reacts with other

monomers, which makes the molecular chain struc-

ture more complex, and the fluorine-containing

blocks will migrate and enrich the surface during the

curing stage, thus increasing the interaction between

molecules in the resin [39].

Conclusions

A novel waterborne acrylic resin modified by OF-

PMA was successfully synthesized by the solution

polymerization method. After introducing OF-PMA

with a large number of high-energy C–F bonds into

acrylic resin, the polymer structure has been chan-

ged, the fluorine atoms with low surface energy in

the polymer tend to migrate to the coating surface,

which improves the water resistance, heat resistance

and mechanical properties of the resin. What is more,

when the content of OF-PMA monomer reached

7.5%, the tensile strength of the resin sample reached

29.75 MPa, and the water resistance time of the

coating reached up to 111 h, which was much higher

than that of the unmodified resin. However, the

introduction of excessive OF-PMA monomers into

the resin would increase the intermolecular polarity

difference and decrease the polymer intermolecular

cohesion, leading to repulsion behavior and reduced

tensile strength and water resistance. Therefore, only

when the concentration of OF-PMA was 7.5%, the

comprehensive properties of the modified resin were

the best. With high mechanical strength, good heat

resistance, and water resistance, the waterborne resin

can be used as the main film-forming material of

coatings, which will also exhibit broad application

prospects in coatings [43, 44], automotive coatings

[45], and other fields like composites [46–51].

Figure 10 Stress–strain curves of resins with different OF-PMA

contents.
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