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ABSTRACT

As typical pseudocapacitive materials, manganese oxides have attracted great

interest due to their high theoretical specific capacitance, abundant oxidation

states and crystal structures. However, it is still struggling from inferior elec-

trical conductivity, which comes from their natural properties and limited

structure used. In this paper, we fabricate hierarchical mixed-valence man-

ganese oxide/graphene on flexible carbon cloths via a hydrothermal method

combined with annealing treatment strategy for improving capacitive perfor-

mance. The microstructure and electrochemical performance of manganese

oxide/reduced graphene oxide (MnOx/G) electrodes obtained at different

annealing temperature (400–700 �C) are investigated. Evidenced by XRD, XPS

and TEM, MnOx/G composites consisted of a-MnO2, hexagonal Mn2O3 and

cubic MnO are achieved as the annealing temperature increased. The results

reveal that the phase of MnOx, valence state of Mn as well as the pseudoca-

pacitance can be regulated by varying the annealing temperature, and the

mixed-valence state in the MnOx/G-400 composite boost pseudocapacitive

property significantly. The MnOx/G-400 electrode yields the highest areal

capacitance of 2.29 F cm-2 (437 F g-1) and remarkable stability compared to

other MnOx-based electrodes, which is attributed to the favored electron

transfer between Mn species (Mn4? $ Mn3?), decreased charge transfer resis-

tance and more active sites between different phase interfaces.
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GRAPHICAL ABSTRACT

This work reports the synthesis of hierarchical mixed-valence manganese

oxide/reduced graphene oxide composites on flexible carbon cloths via a

hydrothermal method combined with annealing treatment strategy for

improving capacitive performance.

Introduction

Supercapacitors, as typical electrochemical energy

storage devices, have been applied ranging from

portable electronics to hybrid electrical vehicles

owing to their high power densities and long lifetime

[1–3]. However, traditional double-layer capacitors

based on carbon-based materials can only store low

energy, which limited their practical applications in

high energy systems. Recently, researchers are

focusing on the pseudocapacitive materials with

higher specific capacitance and energy density,

because the charge stored through not only ion

adsorption but also near surface redox reactions.

Pseudocapacitive materials mainly include transition

metal oxides and conductive polymer. Among vari-

ous candidates, manganese oxides show significant

advantages such as the abundant resources, envi-

ronmentally friendly nature and high theoretical

capacitance (1370 F g-1) [4–8]. More importantly,

MnO2 is usually applied in neutral aqueous elec-

trolytes with a wide potential window, resulting in

higher energy density than that of other cathode

materials such as NiO, Co3O4, PANI.

Nevertheless, the electron conductivity of MnO2 is

poor due to its wide forbidden band. Thus, to obtain

satisfying capacitive performance, it is a versatile

method of confining or embedding MnO2 into the

carbonaceous materials to form hierarchical com-

posites, which can improve the electrical conductivity

and accommodate the large volume changes. Gra-

phene can be a potential choice for improving the

electrical conductivity and electrochemical activity of

electrode material. It is known that graphene pre-

pared via chemical methods has many advantages

including high specific surface area, good electrical

conductivity, surface functional groups and

stable mechanical structure. Therefore, electrochemi-

cal properties of metal oxides can be improved by

introducing graphene sheets to construct hierarchical

composites. This can effectively improve the charge

transport and ion diffusion in the electrodes, and

help to relieve volume expansion during electro-

chemical cycling. Yet, there is still a severe problem

for the MnO2 electrodes, the active material loading is

usually small (less than 1 mg cm-2) or rather thin

film structure is generally utilized [9–13]. Although

the specific capacitance from low mass loading seems

high, in fact, the total capacitance and energy stored

in the materials is still small, seriously limiting

practical applications [14–25]. Generally, providing

available energy for commercial devices requires a

typical active material mass loading of
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5-10 mg cm-2 [26–29]. However, increasing the

mass loading would lead to slower ion diffusion,

worse electrical conductivity and less stable mechan-

ical structure of the oxide active materials, declining

the electrochemical activity. An efficient strategy to

improve the capacitive property of large mass load-

ing materials is to fabricate a hierarchical structure

and combination with highly conductive materials

[30–36]. For example, Hu et al. [34] synthetized a

symmetrical MnO2-carbon nanotube structure with a

large mass loading of 8.3 mg cm-2, leading to a high

areal capacitance of 2.8 F cm-2 at a scan rate of

0.05 mV s-1. The RGO-MnO2-PPy electrode prepared

by Wang et al. exhibited high electrochemical per-

formance at large mass loadings, in addition, the

specific capacitance of assembled asymmetric super-

capacitor increased with an increase in the mass

loading [35]. Zhou’s group demonstrated an Al

doped a-MnO2 electrode with a specific capacitance

of 213 F g-1 possessing a high mass loading of

4 mg cm-2, and it showed satisfying cyclic perfor-

mance of 91% capacitance rentention maintained

after 15,000 cycles [36].

Herein, we demonstrate an investigation on the

composite consisted of mixed-valence manganese

oxide and rGO with different morphologies and

structures. Using a facile hydrothermal technique, we

can prepare a series of MnOx/G electrodes on carbon

cloths by controlling the annealing temperature, with

a relatively high mass loading of 5–8 mg cm-2.

Impressively, as the annealing temperature varies,

the crystalline phase of product transforms from a-
MnO2 into Mn2O3 and (or) MnO. So far, there have

been some reported works about two-phase or mul-

tiphase metal oxide composites that have the poten-

tial to show better performances for electrochemical

energy storage [37–44]. In this work, a-MnO2/ Mn2O3

composite annealed at 400 �C exhibits increased

capacitance, improved rate capability and outstand-

ing cyclic stability, benefiting from enhanced elec-

trochemical activity. The result indicates the full

utilization of active materials, fast reaction kinetics

and mechanical stability of composite materials

during charge/discharge process. Besides, the rGO

not only contributes to the total capacitance but also

improves the electrical conductivity of the whole

electrode.

Experimental details

Materials

All used chemicals in our work were purchased from

Sinopharm Chemical Reagent Co., Ltd. and without

further purification. Carbon cloth was purchased

from Fuel Cell Earth (United States), and graphene

oxide powders manufactured via traditional Hum-

mer’s method were from Institute of coal chemistry,

Chinese academy of science.

Synthesis of mixed-valence MnOx/G
composites

Before the preparation, a piece of carbon cloth sub-

strate (2 9 3 cm2) was rinsed with water and ethanol

for 30 min, respectively. Firstly, under constant

magnetic stirring, 5 mmol of KMnO4 was added to

20 ml of distilled water to form homogeneous solu-

tion and moved to a Teflon-lined stainless steel

autoclave liner. The treated carbon cloth substrate

was put into the liner, immersed into the reaction

solution and maintained at 150 �C for 6 h. After the

reaction was over, the carbon cloth wrapped with

MnO2 sample was taken out and washed by amount

of deionized water, in order to remove the residual

nanoparticle debris or extra ions, then dried at 60 �C
under vacuum overnight. Secondly, the obtained

MnO2 sample was immersed into a 20 ml of sus-

pension included 50 mg of GO powders and MnO2/

G composites were achieved through a secondary

hydrothermal reaction at 90 �C for 2 h. Finally, to

investigate the influence of annealing temperature on

MnOx/G, the MnO2/G sample was annealed at 400

�C, 500 �C, 600 �C and 700 �C for 1 h in pure N2. The

as-prepared samples were denoted as MnOx/G-400,

MnOx/G-500, MnOx/G-600 and MnOx/G-700 sam-

ple, respectively. All the samples were weighed and

the active material loading of MnO2, MnO2/G,

MnOx/G-400, MnOx/G-500, MnOx/G-600 and

MnOx/G-700 was 6.19, 5.30, 5.24, 5.21, 5.18 and

5.07 mg cm-2, respectively. The mass loading of

MnxO/G in this work can be controlled by varying

the concentration of KMnO4 and the hydrothermal

reaction time.
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Characterization and electrochemical
measurements

Morphologies of the composites were studied by a

field emission scanning electron microscope (Ultra

Plus, Carl Zeiss, Germany). The crystal structures of

the samples were analyzed by X-ray diffraction

(X’Pert Pro, PANalytical B.V.). A laser Raman spec-

trometer (Labram-010, 632 nm) was used to collect

Raman spectra. Thermogravimetric (TG) measure-

ments were performed on a Netzsch STA 449 F3

Jupiter analyzer. X-ray photoelectron spectroscopy

(XPS) was collected using an XPS spectrometer

(ESCALAB 250Xi, USA). The mass loading of active

materials was measured using a Sartorius BT 25 S

semi-microbalance with a sensitivity of 0.01 mg.

Capacitive properties of manganese oxide-based

electrodes were investigated in three-electrode cells

included a SCE as the reference and graphite foil as

the counter electrodes, 1 M Na2SO4 solution as

electrolyte.

Results and discussion

Figure 1a exhibits the procedure to synthesize the

MnOx/G-based hybrid electrodes, which included a

two-step hydrothermal route and annealing treat-

ment. Firstly, the MnO2 nanoclusters are prepared

via a typical redox reaction of KMnO4 and carbon

cloth substrate. Secondly, the obtained MnO2 elec-

trode is coated with reduced graphene oxide

nanosheets via a second hydrothermal reaction.

Thirdly, annealing at various temperatures can

transform MnO2/G to the MnOx/G composite con-

sisted of different valence states of Mn. In the

hydrothermal process, carbon cloths not only act as

flexible substrates, but also take part in the reaction as

reducing agents, which make the active material of

MnO2/G has strong interactions with current collec-

tors. After calcination, the MnO2 is reduced into

manganese oxides at lower valence states and rGO

may work as the reductant. With the calcination

temperature increasing, the mass loading of active

Figure 1 a Illustration of the

procedure to prepare the

MnOx/G composites. b XRD

patterns of MnO2/G and

MnOx/G electrodes after

annealing at the temperature of

400 �C, 500 �C, 600 �C, and
700 �C.
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materials declined gradually. Finally, the net-like

structure consisted of MnOx nanoplates turned into

small nanoparticles of MnO. We conducted XRD

measurements for the MnO2/G and MnOx/G pre-

pared after annealing. Figure 1b shows the XRD

patterns of the composites. To avoid the strong

diffraction signals distraction from the carbon cloth

substrate, the active materials were scratched from

the carbon cloth for XRD analysis. In the MnO2/G, all

the collected diffraction peaks can be indexed to a-
MnO2 (JCPDS no. 24–0735) except a broad peak at

26.8� is relate to the (002) plane of rGO. According to

the XRD patterns of the other samples, the diffraction

signals are corresponding to hexagonal Mn2O3

(JCPDS no. 33–0900) and cubic MnO (JCPDS no.

07–0230) except the peaks of the rGO [9, 16].

The morphologies of MnO2 and MnO2/G com-

posites were investigated by SEM. Figure 2a displays

the microstructure evolvement of pristine MnO2.

Clearly, As can be seen, each fiber of carbon cloth

substrates are covered with MnO2 nanoclusters

tightly and uniformly, forming a hierarchical nanos-

tructure like ‘‘core–shell’’ type with an enlarged

specific surface area, beneficial for electrolyte ion

insertion and fast electron transfer. According to the

high magnification SEM image in Fig. 2c and d, the

morphology of MnO2 electrodes remain essentially

unchanged after combination with rGO nanosheets.

Figure 3 shows the SEM images of MnOx/G-based

electrodes obtained from different annealing tem-

peratures, disclosing the morphological evolution of

MnOx/G. At 400 �C, many dense and small MnOx/G

nanosheets were distributed at the surface of the

carbon cloth substrate uniformly. From 400 to 600 �C,
these nanosheets started to become larger and

formed a net-like morphology with pore structure

(Fig. 3a–f). The MnOx/G-400, MnOx/G-500 and

MnOx/G-600 showed the loose and porous nanos-

tructure constructed by the large nanosheets, which

formed many pores beneficial for ion diffusion and

electron transfer. Upon further increased temperature

to 700 �C, the nanosheets disappeared and the sur-

face was covered by agglomerated nanoparticles

(Fig. 3g, h).

The pseudocapacitive properties were studied for

the MnOx-based electrodes (MnO2, MnO2/G, MnOx/

G-400, MnOx/G-500, MnOx/G-600 and MnOx/G-

700) in a three-electrode system containing 1 M Na2-
SO4 electrolyte. Our prepared composite samples are

used as the working electrodes, saturated calomel

electrode and graphite foil act as the reference and

counter electrode, respectively. The cyclic voltam-

metry (CV) curves of the MnOx/G electrodes at

5 mV s-1are displayed in Fig. 4a. It can be observed

Figure 2 SEM images of the

MnO2 a, b and MnO2/G c, d.
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that the current density and integral area of CV curve

increase significantly after the MnO2 is coated with

rGO, which is attributed to the better electron transfer

ability, more active sites and double-layer capaci-

tance provided by the rGO. When the annealing

temperature reached to 400 �C, the current density

increased dramatically. However, further raising

annealing temperature leads to the decreased capac-

itance, the capacitance of the MnOx/G-500 * MnOx/

G-700 sample were lower than MnOx/G-400. The

galvanostatic charge–discharge (GCD) results exhibit

the same trend. In Fig. 4b, the GCD profiles of vari-

ous electrodes at the current density of 5 mA cm-2

are provided. Areal capacitances of different samples

according to the constant current charge–discharge

profiles are calculated from Eq. 1 [37, 38]:

CA ¼ It

DU
ð1Þ

where CA stands for specific capacitance (F cm-2), I is

the discharge current density (A cm-2), t is the dis-

charge time (s), DU represents the potential window

(V). As shown in Fig. 4c, the MnOx/G-400 sample

exhibited the highest capacitance under the same

tested conditions. At the current density of

5 mA cm-2, MnOx/G-400 displayed a higher areal

capacitance of 1.52 F cm-2 (a gravimetric capacitance

of 290 F g-1 with a large mass loading of

5.24 mg cm-2) than the other samples (MnO2, 0.51 F

cm-2; MnO2/G, 0.64 F cm-2; MnOx/G-500, 1.01 F

cm-2; MnOx-600, 0.90 F cm-2; and MnOx/G-700, 0.46

F cm-2). Though the MnOx/G-400 showed the

highest capacitance, its rate capability was not satis-

fied, while the MnOx/G-500 electrode yielded better

rate capability with 64% capacitance retained at the

high current density of 20 mA cm-2 (0.84 F cm-2). By

comparison, when the current density increased from

1 to 20 mA cm-2, the capacitances of other samples

fade much faster with the increase of current, with

only 16% (0.2 F cm-2 for MnO2), 18% (0.24 F cm-2 for

MnO2/G), 40% (0.9 F cm-2 for MnOx/G-400), 58%

(0.67 F cm-2 for MnOx/G-600), and 38% (0.27 F cm-2

for MnOx/G-700) areal capacitance remaining

(Fig. 4c). These results indicate that morphology and

crystal structure play important roles on the charge

storage capability of the MnOx/G materials. The

optimized material MnOx/G-400 with higher capac-

itance and better rate capability own an open net-like

structure that is constructed of MnOx/G nanosheets.

Based on XRD results, the main component of

MnOx/G-400 (MnO2/Mn2O3/G) is mixed man-

ganese oxides consisted of Mn4? and Mn3?, which

contributed to the prominent pseudocapacitance.

Mn3? replaced part of Mn4? in the MnOx/G, so the

net negative charge is balanced by inserting foreign

cations such as Na?. Generally, the electrical con-

ductivity of single compound is lower than that of

mixed compounds due to the existence of oxygen

vacancy in the composites [45–47]. The above elec-

trochemical results further confirm that the phase

transition can improve the electrical conductivity of

pure MnOx electrodes. To further study the electro-

chemical performance, the series of MnOx/G elec-

trodes were investigated by electrochemical

Figure 3 SEM images of MnOx-400 a, b, MnOx-500 c, d, MnOx-600 e, f and MnOx-700 g, h.
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impedance spectroscopy (EIS). As shown in Fig. 4d,

for the MnOx/G-based electrodes, with the annealing

temperature up to 400 �C and 500 �C, the Warburg

impendence of both electrodes are lower than that of

MnO2/G before annealing drastically. In the low

frequency region, the slope of MnOx/G-400 is higher

than that of other samples, suggesting that MnOx/G-

400 has more rapid ion diffusion rate. As for the high

frequency region, the equivalent series resistance (Rs)

of the MnOx/G-400 electrode was only 0.92 X,

indicating small intrinsic impendence (the inset of

Fig. 5d). Compared to other samples, MnOx/G-400

also exhibited smaller charge transfer resistance (Rct),

leading to a faster charge transfer process at the

electrode/electrolyte interface and larger charge

storage.

The cyclic stability of the MnOx/G-based elec-

trodes is shown in Fig. 4e. Among all the samples, the

areal capacitance of the MnOx/G-400 electrode was

highest and it also showed excellent capacitance

Figure 4 Electrochemistry

performance of the six MnOx-

based electrodes: a CV curves

measured at a scan rate of

5 mV s-1. b Charge–

discharge profiles measured at

5 mA cm-2. c Areal

capacitance measured at

different current densities in

the potential range of

0 - 1.0 V. d The Nyquist

plots for six MnOx-based

electrodes (inset: the enlarged

view of high frequency

region). e Cycling stability of

the six MnOx-based

electrodes.
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retention of 97.4% after 5000 charge/discharge cycles

at 5 mA cm-2. On the contrary, the MnO2, MnO2/G,

MnOx/G-500, MnOx/G-600 and MnOx/G-700 elec-

trode showed a decay of capacitance, with 76.3%,

85.8%, 93.2%, 92.7% and 75.4% remaining. During the

first 600 cycles, the capacitance of MnOx/G-500

increased from 1.0 to 1.1 F cm-2 because of the

gradual diffusion of electrolyte ions into the entire

electrode. A high capacitance retention of 93.2% for

MnOx/G-500 can be observed and MnOx-600 elec-

trode also showed a similar retention of 92.7%

capacitance. But, due to the small initial capacitance

of the two samples, obtained capacitance after cycling

was still small. In the MnOx/G-500 and MnOx/G-600

electrodes, the porous morphologies constructed by

the large nanosheets can ensure the good flexibility

and help to buffer the internal strain created during

cycling. The poor cycling stability of MnO2 and

MnO2/G was mainly attributed to the dissolution of

Mn (II) during the charge/discharge process caused

by the disproportionation reaction of generated Mn

(III) from the Jahn–Teller effect [29, 34, 48–50]. In

addition, the long-term cyclic stability of MnOx/G-

400 electrode was also tested, shown in Fig. S1. The

91.4% capacitance of the composite electrode was

retained after 10,000 cycles at a current density of

5 mA cm-2, illustrating excellent cyclic stability of

the as-prepared MnOx/G-400 electrode. The

Figure 5 a Raman spectrum

of MnOx/G-400. b TG curve

of MnOx/G-400. c XPS

spectrum of MnOx/G-400.

d Mn 2p, e Mn 3 s and f O 1 s

XPS spectra of the MnOx/G-

400 electrode.

570 J Mater Sci (2022) 57:563–575



comparison of the recently reported Mn-based elec-

trodes with different components for supercapacitors

is displayed in Table S1.

To further explore the structural characteristics and

explain best pseudocapacitive performance of

MnOx/G-400, the vibrational properties of the

MnOx/G-400 composite were investigated by Raman

spectra (Fig. 5a). The G band at 1602 cm-1 and the D

band at 1364 cm-1 can be seen, evidently come from

the rGO sheets. Whereas another sharp band at

640 cm-1 is contributed to the symmetric M–O

stretching vibration of MnO6 groups [39, 40]. More-

over, the value of ID/IG, that is, the intensity ratio of

the D to the G band for rGO can be calculated as

1.1805, indicating level of graphene disorder/defects

in the composite. The thermogravimetric analysis

(TGA) and differential scanning calorimetry (DSC)

results of MnOx/G-400 are shown in Fig. 5b. The

mass percentage of MnOx is nearly 43%. The X-ray

photoelectron spectroscopy (XPS) was also investi-

gated to reveal the chemical compositions and Mn

valence states. Figure 5c shows the complete XPS

spectrum of the MnOx/G-400 including the signal of

the Mn, O and C element. The XPS peaks of Mn 2p

orbit in Fig. 5d were fitted to confirm the presence of

Mn3? and Mn4?. The peaks at 642.4 eV and 643.7 eV

corresponded to the Mn3? and Mn4? peaks of 2p3/2

orbit, respectively [41, 51–53]. The atomic ratio of

Mn3?/Mn4? was calculated to 1.6:1 according to the

area of fitting peaks, indicating the quality percentage

of MnO2 and Mn2O3 are 40.8% and 59.2%, respec-

tively. The energy separations (DE) of Mn 3 s peaks

were measured to be 4.6 eV for the MnOx/G-400

sample, confirming the reduced Mn oxidation state

with increased annealing temperature (Fig. 5e).

Based on the linear relationship between DE value

and valence state of Mn, the average oxidation state

of Mn in the MnOx/G-400 sample was calculated to

be 3.4, which was in accordance with the Mn 2p3/2

XPS spectra and XRD spectrum. Figure 5f shows the

fitting peaks of O 1 s orbit of MnOx/G-400. The peaks

located at 530.1 eV and 531.8 eV are attributed to

Mn–O-Mn and Mn–O-H, which mainly come from

the MnOx in the composite [42]. In contrast, the XPS

spectrum of the MnO2/G was also tested and dis-

played in Fig. S2 in the Supporting Information.

Fig. S2(a) shows the complete XPS spectrum of the

MnO2/G with the signal of the Mn, O and C element.

The XPS peaks of Mn 2p orbit located at 642.3 eV and

654.1 eV corresponded to Mn4? (Fig.S2(b)). The DE

(4.2 eV) of Mn 3 s peaks for the MnO2/G was smaller

than that of MnOx/G-400, confirming Mn4? played a

predominate role in the composite (Fig. S2(c)) [54, 55].

The fitting peaks of O 1 s orbit of MnO2/G is shown

in Fig. S2(d) and the peak area percentage of Mn–O-H

in MnO2/G was higher than that in MnOx/G-400

sample, illustrating some hydroxyl groups were

removed after annealing [56]. In Fig. 6a, b, it can be

observed that there appear some nanosheets in the

TEM image of MnOx/G-400, in accordance with the

morphology in the SEM image. The high-resolution

TEM image in Fig. 6c illustrates that MnOx/G-400

consisted of both disorder region and different crys-

talline phases with several phase boundaries, further

verifying the presence of the mixed phase junction. In

Fig. 6d, the lattice fringes with the distance of

0.32 nm and 0.24 nm can be attributed to the (110)

plane and (101) plane of a-MnO2, which is in good

agreement with the XRD pattern.

Figure 7 shows a radar chart summarizing and

comparing five important characteristics of capacitive

electrode materials, including areal capacitance,

gravimetric capacitance, rate capability, capacitance

retention and mass loading of the MnOx/G-400

electrode and other reported Mn-based pseudoca-

pacitive materials. At a current density of

1 mA cm-2, the MnOx/G-400 delivered a high areal

capacitance of 2.29 F cm-2 and high gravimetric

capacitance of 437 F g-1. In addition, the electrode

retained 97.4% capacitance after 5000 charge/dis-

charge cycles, suggesting an excellent cyclic stability.

The composite electrodes owned a mass loading of

5 * 8 mg cm-2 on carbon cloths without sacrificing

electrochemical activities. Compared to other repor-

ted Mn-based composite electrodes, this mixed-va-

lence metal oxide/rGO material exhibits the greater

advantages and potential in improving capacitive

performance.

Conclusion

In summary, a series of MnOx/G composite elec-

trodes was synthesized on flexible carbon cloths via a

two-step hydrothermal route and annealing for

improving capacitive properties. As the annealing

temperature progressively increased, the product

transforms from pure a-MnO2/G into manganese

oxide composites with lower valence state of Mn. The

MnOx/G-400 composite including Mn2O3 and a-

J Mater Sci (2022) 57:563–575 571



MnO2 delivers the best electrochemical performance,

due to the synergistic effect of the mixed phase. The

MnOx/G-400 electrode exhibits a high areal capaci-

tance of 2.29 F cm-2 and a long lifespan owe to its

mixed Mn(III)/(IV) phases and open 3D nanosheet

structure. Besides, the reduced graphene oxide can

not only contribute to total capacitance, but also

promote the transfer of electron and ion between

active materials and electrolyte, thereby facilitating

fast Na? reaction kinetics. This work discloses a

novel and scalable strategy to obtain high-perfor-

mance capacitive materials based on metal oxide/-

graphene composite via valence state regulation.
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