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Abstract
In many linear regression problems, including ill-posed inverse problems in image restoration, the data exhibit some sparse
structures that can be used to regularize the inversion. To this end, a classical path is to use �12 block-based regularization.
While efficient at retrieving the inherent sparsity patterns of the data—the support—the estimated solutions are known to
suffer from a systematical bias. We propose a general framework for removing this artifact by refitting the solution toward the
data while preserving key features of its structure such as the support. This is done through the use of refitting block penalties
that only act on the support of the estimated solution. Based on an analysis of related works in the literature, we introduce a
new penalty that is well suited for refitting purposes. We also present a new algorithm to obtain the refitted solution along with
the original (biased) solution for any convex refitting block penalty. Experiments illustrate the good behavior of the proposed
block penalty for refitting solutions of total variation and total generalized variation models.

Keywords Block sparsity · Total variation · Bias correction · Refitting

1 Introduction

Weconsider linear inverse problems of the form y = Φx+w,
where y ∈ R

p is an observed degraded image, x ∈ R
n the

unknown clean image, Φ : R
n → R

p a linear operator and
w ∈ R

p a noise component, typically a zero-mean white
Gaussian random vector with standard deviation σ > 0. To
reduce the effect of noise and the potential ill-conditioning
of Φ, we consider a regularized least squares problem with
a sparse analysis regularization term based on an �12 block
penalty of the form

x̂ ∈ argmin
x∈Rn

1
2‖Φx − y‖22 + λ‖Γ x‖1,2 , (1)

where λ > 0 is a regularization parameter, Γ : R
n → R

m×b

is a linear analysis operator mapping an image overm blocks
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of size b, and for z ∈ R
m×b

‖z‖1,2 =
m∑

i=1

‖zi‖2 =
m∑

i=1

( b∑

j=1

z2i, j

)1/2
, (2)

with zi = (zi, j )bj=1 ∈ R
b. Note that, the terminology sparse

analysis is usedhere byopposition to sparse synthesismodels
as discussed in the seminal work of [27]. The first term in (1)
is a data fidelity term enforcing x to be close to y through Φ,
while the second term enforces the so-called group sparsity
on x (sometimes referred to as joint sparsity, block sparsity
or structured sparsity) capturing the organization of the data
as encoded by Γ , see for instance [1].

1.1 Related Examples

A typical example is the Lasso (Least absolute shrinkage and
selection operator) [48]. The Lasso is a statistical procedure
used for variable selection and relying on regularized linear
least square regression as expressed in eq. (1) in which Γ =
Id, m = n and b = 1. The Lasso is known to promote sparse
solutions, i.e., such that x̂k = 0 for most indices 1 ≤ k ≤ n.
Since blocks are of size b = 1, the regularization term boils
down to the classical �1 sparsity term that is unstructured as
no interactions between the elements of x̂ are considered. In
this paper, we will focus instead on cases of block penalties
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where b > 1. The group Lasso [32,56] is one of them, for
whichΓ is designed to reorganize the elements x̂k into groups
ẑi = (Γ x̂)i supposedly meaningful according to some prior
knowledge on the data. The group Lasso is known to promote
block sparse solutions, i.e., such that ẑi = 0b for most of the
groups 1 ≤ i ≤ m. Note that elements within a nonzero
group ẑi �= 0b are not required to be sparse.

Regarding image restoration applications, the authors of
[38] use an �12 regularization term where Γ extracts m = n
overlapping blocks of wavelet coefficients of size b or where
Γ use a dyadic decomposition of the wavelet coefficients
into blocks of variable size but non-overlapping [39]. Such
strategy was also used in audio processing [55] for denois-
ing. Another example that we will investigate here is one
of the total-variations (TVs) [43]. We can distinguish two
different forms of TV models. Anisotropic total-variation
(TVaniso) [28], considers Γ the operator which concate-
nates the vertical and horizontal components of the discrete
gradients into a vector of size m = 2n, hence b = 1.
Isotropic total-variation (TViso) considers instead Γ = ∇
being the operator which extracts m = n discrete image gra-
dient vectors of size b = 2. Unlike TVaniso, TViso jointly
enforces vertical and horizontal components of the gradient
to be simultaneously zero. Since TVaniso does not take into
account interactions between both directions, it over favors
vertical and horizontal structures while TViso behaves sim-
ilarly in all directions, hence their name [28]. Both models
promote sparsity of the discrete gradient field of the image,
and, as a result, their solutions are piece-wise constant. A
major difference is that TVaniso favors constant regions that
are rectangular-like shaped and separated by sharp edges.
On the other hand, TViso favors constant regions that are
round-like shaped, as it has been shown by studying the
properties of TV reconstructions in terms of extreme points
of the level sets of the regularization functional [4,5,12]. In
practice, when considering classical discretizations, constant
areas of TViso solutions are separated by fast but gradual
transitions. These smooth transitions only appear in partic-
ular directions that depend on the considered discretization
scheme on the regular image grid (see [11] for a detailed
analysis). These numerical artifacts can be solved with more
advanced schemes [11,14,19].

Nevertheless, as TV is designed to promote piece-wise
constant solutions, it is known to produce staircasing artifacts
that are all the more harmful as the images contain shaded
objects [15,24]. To reduce this effect, the authors of [34] sug-
gested using an �12 block sparsity term not only by grouping
vertical and horizontal components of the gradient, but by
grouping neighboring gradients in overlapping patches. An
alternative to reduce staircasing that we will also investigate
here is the second-order Total Generalized Variation (TGV)
model [6] that promotes piece-wise affine solutions. As we
will see, TGV is another example of models that falls into

this type of least squares problems regularized with a sparse
analysis term based on �12 block penalties. Sparsity in that
case encodes that sought images are composed of few shaded
regions with few variations of slopes and separated by edges.

1.2 Support of the Solution

Solutions of the sparse analysis regularization model in (1)
are known to be sparse [27,36], i.e., such that (Γ x)i = 0b for
most blocks 1 ≤ i ≤ m. It results that a key notion, central
to all of these estimators, is the one of support, i.e., the set of
nonzero blocks in Γ x̂ , defined as

Î = supp(Γ x̂) = {
1 ≤ i ≤ m : (Γ x̂)i �= 0b

}
. (3)

For the group Lasso, the support is typically used to iden-
tify groups of covariates (columns of Φ) being explanatory
variables for the dependent variable y (i.e., significantly cor-
related with y). For TViso, the support is the set of pixel
indices where transitions occur in the restored image. In gen-
eral, the support plays an important role as it captures the
intrinsic structural information underlying the data. While
being biased, in practice, the estimate x̂ obtained by sparse
analysis regularization (1) recover quite correctly the sup-
port supp(Γ x) of the underlying sparse signal x . Under some
additional assumptions, support recovery is even proven to
be exact as proved in [52] for b = 1 (anisotropic case) and
[53] for b ≥ 1.

1.3 Bias of the Solution

Though the support Î of x̂ can be very close to the one of the
sought image x , the estimated amplitudes x̂i suffers from a
systematical bias. When Φ = Id, the Lasso corresponds to
the soft-thresholding (ST) operator

x̂i = ST(yi , λ) = max(yi − λ sign yi , 0) (4)

for which all nonzero elements of the solutions are shrinked
toward 0 by a shift±λ resulting to under- and over-estimated
values. With TViso, this bias is reflected by a loss of con-
trast in the image since the amplitudes of some regions are
regressed toward the mean of the image [45,50,51]. In TGV,
not only a loss of contrast results from this bias, but we
observe that the slopes in areas of transitions are often mis-
estimated [30].

1.4 Boosting Approaches

Given the artifacts induced by the �12 sparse regularization,
many approaches have been developed to re-enhance the
quality of the solutions, e.g., to reduce the loss of contrast and
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staircasing of TViso. We refer to these approaches as boost-
ing. Most of them consist in solving (1) iteratively based on
the residueΦ x̂ − y, or a related quantity, obtained during the
previous iterations. Among them, the well-known Bregman
iterations [37] is often considered to recover part of the loss of
contrast for TViso. Other related procedures are twicing [49],
boosting with the �2 loss [8], unsharp residual iteration [16],
SAIF-boosting [35,47], ideal spectral filtering in the analysis
sense [29] and SOS-boosting [42]. While these approaches
reduce the bias in the estimated amplitudes, the support Î
of the original solution is not guaranteed to be preserved in
the boosted solution, even though this one may correspond
to the support of the sought image x .

1.5 Projection on the Support

Given the key role of the support of solutions of (1), we
believe that it is of main importance that a re-enhanced solu-
tion x̃ preserves it, i.e., such that supp(Γ x) ⊆ Î. For this
reason, we focus on refitting strategies that, unlike boosting,
reduce the bias while preserving the support of the original
solution. In the Lasso (Γ = Id, m = n and b = 1) [48], a
well-known refitting scheme consists in performing a poste-
riori a least-square re-estimation of the nonzero coefficients
of the solution. This post-refitting technique became popu-
lar under various names in the statistical literature: Hybrid
Lasso [26], Lasso-Gauss [41], OLS post-Lasso [3], Debi-
ased Lasso (see [3,31] for extensive details on the subject).
Such approaches consists in approximating y through Φ by
an image sharing the same support as x̂ :

x̃supp ∈ argmin
x; supp(Γ x)⊆Î

1
2‖Φx − y‖22 , (5)

where Î = supp(Γ x̂). While this strategy works well for
blocks of size b = 1, e.g., for the Lasso or TVaniso, it suffers
from an excessive increase in variance whenever b ≥ 2 (see
[22] for illustrations on TViso). This is due to the fact that
solutions do not only present sharp edges, but may involve
larger regions of gradual transitions where the debiasingmay
be too strong by re-introducing too much noise. To cope with
this issue, additional features of x̂ than its support must be
also preserved by a refitting procedure.

1.6 Advanced Refitting Strategies

For the Lasso, it has been observed that a pointwise preserva-
tion of the sign of x̂i onto the support improves the numerical
performances of the refitting [17]. For b = 2 and TViso like
models, the joint projection on the support with conservation
of the direction (or orientation) of (Γ x̂)i has been proposed
in [7]. Extension to second-order regularization such as TGV
[6] are investigated in [10] in the context of partially order

spaces and approximate operators Φ. In a parallel line of
research, it has been proposed in [54] to respect the inclu-
sion of the level lines of x̂ in the refitting by solving an
isotonic regressionproblem.All thesemodels are constrained
to respect exactly the orientation (Γ x̂)i of the biased solution
on elements of the support, i.e., when i ∈ Î. In [22,40], an
alternative approach, based on the preservation of covariant
information between x̂ and y, aims only at preserving the
orientation (Γ x̂)i to some extent. While also respecting the
support of x̂ , this gives more flexibility for the refitted solu-
tion to correct x̂ and adapt to the data content y. This model
is nevertheless insensitive to the direction, and it involves a
quadratic penalty that tends to promote over-smoothed refit-
ting.

1.7 Outline and Contributions

In Sect. 2, we present a general framework for refitting solu-
tions promoted by �12 sparse regularization (1) that extends
a preliminary version of this work [23]. Our variational refit-
ting method relies on the use of block penalty functions that
act on the support of the biased solution x̂ . We introduce
the Soft-penalized Direction model (SD), while discussing
suitable properties a refitting block penalty should satisfy.

In Sect. 3, we propose stable algorithms to compute our
refitting strategy for any convex refitting block penalty.

We show in Sect. 4 how our model relates and inherits the
advantages of other methods such as Bregman iterations [37]
or de-biasing approaches [7,22].

Experiments in Sect. 5 exhibit the practical benefits for the
SD refitting for imaging problems involving TViso, a variant
of TViso for color images and TGV-based regularization.

With respect to the short paper [23], the contributions are
as follows.We propose new block penalties and a deep analy-
sis of their properties.While providing technical information
on the implementation of particular block penalties, we also
detail how the process can be generalized to arbitrary con-
vex functions. The refitting scheme has been extended to
another optimization algorithm, and aTGV-based regulariza-
tion model is finally proposed (5.4) and experimented (Fig.
7).

2 Refitting with Block Penalties

The refitting procedure of a biased solution x̂ of (1) is
expressed in the following general framework

x̃φ ∈ argmin
x; supp(Γ x)⊆Î

‖Φx − y‖22
2

+
∑

i∈Î
φ((Γ x)i , (Γ x̂)i ) , (6)
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where φ : R
b ×R

b → R is a block penalty (b ≥ 1 is the size
of the blocks) promoting Γ x to share information with Γ x̂
in some sense to be specified. To compute global optimum of
the refittingmodel (6), we only consider in this paper refitting
block penalties such that z 
→ φ(z, ẑ) is convex.

To refer to some features of the vector Γ x̂ , let us first
define properly the notions of relative orientation, direction
and projection between two vectors.

Definition 1 Let z and ẑ be vectors in R
b, we define

cos(z, ẑ) =
〈

z
‖z‖2 ,

ẑ
‖ẑ‖2

〉
= 1

‖z‖2‖ẑ‖2

b∑

j=1

z j ẑ j , (7)

and Pẑ(z) =
〈
z, ẑ

‖ẑ‖2
〉

ẑ
‖ẑ‖2 = ‖z‖2

‖ẑ‖2 cos(z, ẑ)ẑ , (8)

where Pẑ(z) is the orthogonal projection of z onto Span(ẑ)
(i.e., the orientation axis of ẑ). We say that z and ẑ share
the same orientation (resp. direction), if |cos(z, ẑ)| = 1
(resp. cos(z, ẑ) = 1). We also consider that cos(z, ẑ) = 1
in case of null vectors z = 0b and/or ẑ = 0b.

Thanks to Definition 1, we can now introduce our refitting
block penalty designed to preserve the desired features of
ẑ = Γ x̂ in a simple way. We call our block penalty the Soft-
penalized Direction (SD) penalty which reads as

φSD(z, ẑ) = λ‖z‖2(1 − cos(z, ẑ)) . (9)

Wealso introducefiveother alternatives, theHard-constrained
Orientation (HO) penalty

φHO(z, ẑ) = ι{z∈Rb: |cos(z,ẑ)|=1}(z) , (10)

where ιC is the 0/+∞ indicator function of a set C, the Hard-
constrained Direction (HD) penalty

φHD(z, ẑ) = ι{z∈Rb: cos(z,ẑ)=1}(z) , (11)

the Quadratic penalized Orientation (QO) penalty

φQO(z, ẑ) = λ‖z‖22
2‖ẑ‖2 (1 − cos2(z, ẑ)) , (12)

the Quadratic penalized Direction (QD) penalty

φQD(z, ẑ) =
⎧
⎨

⎩

λ
2

‖z‖22
‖ẑ‖2 (1 − cos2(z, ẑ)) if cos(z, ẑ) ≥ 0

λ
2

‖z‖22
‖ẑ‖2 otherwise

(13)

and the Soft-constrained Orientation (SO) penalty

φSO(z, ẑ) = λ‖z‖2
√
1 − cos2(z, ẑ) . (14)

We will see in Sect. 4 that HD, HO and QO lead us to
retrieve existing refitting models known, respectively, in the
literature as ICB (Infimal Convolution betweenBregman dis-
tances) debiasing [7], Bregman debiasing [7], and CLEAR
(Covariant LEAst square Refitting) [22].

2.1 Desired Properties of Refitting Block Penalties

Wenow introduce properties a block penalty φ should satisfy
for refitting purposes, for any ẑ:

(P1) φ is convex, nonnegative andφ(z, ẑ) = 0, if cos(z, ẑ) =
1 or ‖z‖2 = 0,

(P2) φ(z′, ẑ) ≥ φ(z′′, ẑ) if ‖z′‖2 = ‖z′′‖2 and cos(z′′, ẑ) ≥
cos(z′, ẑ),

(P3) z 
→ φ(z, ẑ) is continuous,
(P4) φ(z, ẑ) ≤ C‖z‖2, for C > 0.

Property (P1) stipulates that no configuration can be more
favorable than z and ẑ having the same direction. Hence, the
direction of the refitted solution should be encouraged to fol-
low the one of the biased solution. Property (P2) imposes that
for a fixed amplitude, the penalty should be increasing w.r.t.
the angle formed with ẑ. Property (P3) enforces refitting that
can continuously adapt to the data and be robust to small per-
turbations. Property (P4) claims that a refitting block penalty
should not penalize more some configurations than the orig-
inal penalty ‖.‖1,2, at least up to some multiplicative factor
C > 0.

Proposition 1 Properties of block penalties lead to the fol-
lowing implications.

(a) (P1) ⇒ ‖Φ x̃φ − y‖22 ≤ ‖Φ x̂ − y‖22.
(b) (P1) ⇒ φ is non-decreasing with respect to ‖z‖2 for a

fixed angle (z, ẑ),
(c) (P2) ⇒ φ is symmetric with respect to the orientation

axis induced by ẑ,
(d) (P1) + (P2) ⇒ φ(z′, ẑ) ≥ φ(z, ẑ), if ‖z′‖2 ≥ ‖z‖2 and

cos(z, ẑ) = cos(z′, ẑ),
(e) (P1) + (P3) ⇒ φ(z, ẑ) → 0 when cos(z, ẑ) → 1.

Proof • (a) As x̃φ is solution of (6), the relation is obtained
by observing that φ(ẑ, ẑ) = 0 with (P1).

• (b) Looking at a ray [0, z) for any vector z, this is a conse-
quence of the convexity of φ and the fact that φ(z, ẑ) = 0
for ‖z‖2 = 0.

• (c) Since cos(z, ẑ) = cos(−z, ẑ), one can combine
(z′, z′′) = (z,−z) and (z′, z′′) = (−z, z) in (P2) to obtain
(c).

• (d) Direct consequence of points (b) and (c).
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Table 1 Properties satisfied by the considered block penalties

Properties HO HD QO QD SO SD

1
√ √ √ √ √ √

2
√ √ √

3
√ √ √ √

4
√ √

a
√ √ √ √ √ √

b
√ √ √ √ √ √

c
√ √ √

d
√ √ √

e
√ √ √ √

• (e) This is due to the continuity of the function φ(., ẑ)
that is 0 on the ray [0, ẑ) from (P1). ��

2.2 Properties of Considered Block Penalties

The properties of the previously introduced refitting block
penalties are synthesized in Table 1. The proposed SDmodel
is the only one satisfying all the desired properties. Figure 1
gives an illustration of the evolution of the different refitting
block penalties as a function of its arguments (first column).
It also exhibits the influence of the angle between z and ẑ
(second column) and the norm of z (third column) on the
penalization value. From this figure, SD is shown to be a con-
tinuous penalization that increases continuously with respect
to the absolute angle between z and ẑ. In addition of satis-
fying the desired properties, one can also observe from this
figure that unlike some other alternatives, SD has a unique
minimizer as a function of the angle and the amplitude of z.

Other block penalties are insensitive to directions (HO,
QO and SO), completely intolerant (HD and HO) or too
tolerant (QD) to small changes of orientations, hence not
satisfying. These drawbacks will be illustrated in our exper-
iments conducted in Sect. 5.

When b = 1, the orientation-based penalties (QO, HO
and SO) have absolutely no effect while the direction-based
penalties HD and QD preserve the sign of (Γ x̂)i . In this
paper, when b ≥ 1, we argue that the direction of the block
(Γ x̂)i carries important information that is worth preserving
when refitting, at least to some extent.

3 Refitting in Practice

Wenow introduce a general algorithm aiming to jointly solve
the original problem (1) and the refitting one (6) for any
refitting block penalty φ. This framework has been extended
from the stable projection onto the support developed in [21]
and later adapted to refitting with the Quadratic Orientation
penalty in [22].

Given x̂ solution of (1), a posterior refitting can be
obtained by solving (6) for any refitting block penalty φ.
To that end, we write the characteristic function of support
preservation as

∑
i∈Îc ι{0}(ξi ), where ι{0}(z) = 0 if z = 0

and +∞ otherwise. By introducing the convex function

ωφ(ξ, Γ x̂, Î) =
∑

i∈Îc

ι{0}(ξi ) +
∑

i∈Î
φ(ξi , (Γ x̂)i ) , (15)

the general refitting problem (6) can be expressed as

x̃φ ∈ argmin
x∈Rn

1
2‖Φx − y‖22 + ωφ(Γ x, Γ x̂, Î) . (16)

We now describe two iterative algorithms that can be used
for the joint computation of x̂ and x̃ .

3.1 Primal-Dual Formulation

Wefirst consider the primal dual formulation of the problems
(1) and (16) that reads

min
x∈Rn

max
ξ∈Rb

1
2‖Φx − y‖22 + 〈Γ x, ξ 〉 − ιBλ

2
(ξ) , (17)

min
x∈Rn

max
ξ∈Rb

1
2‖Φx − y‖22 + 〈Γ x, ξ 〉 − ω∗

φ(ξ, Γ x̂, Î) , (18)

where ιBλ
2
is the indicator function of the �2 ball of radius λ

(that is 0 if ‖zi‖2 ≤ λ for all i ∈ [m] and +∞ otherwise)
and

ω∗
φ(ξ, Γ x̂, Î) = sup

ζ∈Rb
〈ξ, ζ 〉 − ωφ(ζ, Γ x̂, Î) (19)

is the convex conjugate, with respect to the first argument of
ωφ(·, Γ x̂, Î).

Two iterative primal-dual algorithms are used to solve
these problems. They involve the biased variables (ẑk, x̂ k)
and the refitted ones (z̃k, x̃ k). Let us now present the whole
algorithm, defined for parameters κ > 0, τ > 0 and
θ ∈ [0, 1] as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν̂k+1 = ẑk + κΓ v̂k

ν̃k+1 = z̃k + κΓ ṽk

ξ̂ k+1 = Π(ν̂k+1, λ)

Îk+1 =
{
i ∈ [m] : ‖ν̂k+1

i ‖2 > λ + β
}

ξ̃ k+1 = proxκω∗
φ
(ν̃k+1, Ψ (ν̂k+1), Îk+1)

x̂ k+1 = Φ−
τ

(
x̂ k + τ(Φ t y − Γ t ξ̂ k+1)

)

x̃ k+1 = Φ−
τ

(
x̃ k + τ(Φ t y − Γ t ξ̃ k+1)

)

v̂k+1 = x̂ k+1 + θ(x̂ k+1 − x̂ k)
ṽk+1 = x̃ k+1 + θ(x̃ k+1 − x̃ k),

(20)

with the operator Φ−
τ = (Id + τΦ tΦ)−1. The function Ψ is

considered to approximate the value of Γ x̂ from the current
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Fig. 1 Illustration of block
penalties: (left) 2D level lines of
φ for z = (z1, z2) =
A

(
cos θ − sin θ

sin θ cos θ

)
ẑ, (middle)

evolution regarding the angle θ

between z and ẑ and (right)
evolution with respect to the
modulus A of z. HO and HD
penalties have discontinuities
while the ones on the four last
rows are continuous and vary
according to A. The penalties
acting on directions (HD, QD
and SD) are increasing w.r.t the
amplitude of the angle θ . In Fig.
1: ϕ and φ mismatch in legends
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numerical variables and will be specifed in the next para-
graph on Online direction and norm identification, while the
functions Π and proxκω∗

φ
are detailed below. As we will see

in Proposition 2, the quantity β > 0 is used to guarantee
that we estimate the support of x̂ correctly. In practice, we
choose β as the smallest available nonzero floating number.
The process for the biased variable involves the orthogonal
projection on the �2 ball of radius λ in R

b

Π(ξ̂, λ)i = λξ̂i

max(λ, ‖ξ̂i‖2)
.

whereas the refitting algorithm relies on the proximal oper-
ator of ω∗

φ . We recall that the proximal operator of a convex
function ω at point ξ0 reads

proxκω(ξ) = argminξ
1
2κ ‖ξ − ξ0‖22 + ω(ξ) . (21)

From the block structure of the function ωφ defined in (15),
the computation of its proximal operator may be realized
pointwise. Since ι{0}(ξ)∗ = 0, we have

proxκω∗
φ
(ξ0, Γ x̂, Î)i =

{
proxκφ∗(ξ0i , (Γ x̂)i ), if i ∈ Î ,

ξ0i , otherwise .

(22)

Table 2 gives the expressions of the dual functions φ∗ with
respect to their first variable and their related proximal oper-
ators proxκφ∗ for the refitting block penalties considered in
this paper. All details are given in Appendix A.

Following [13], for any positive scalars τ and κ satisfying
τκ‖Γ tΓ ‖2 < 1 and θ ∈ [0, 1], the estimates (ξ̂ k, x̂ k, v̂k)
of the biased solution converge to (ξ̂ , x̂, x̂), where (ξ̂ , x̂)
is a saddle point of (17). When the last arguments of the
function ω∗

φ are the converged Γ x̂ and its support Î, the
refitted variables converge to a saddle point of (18). However,
we did not succeed to show convergence for the refitting
process, since the quantities Γ x̂ and Î are only estimated
from the biased variables at the current iteration, as explained
in the next paragraphs.
Online support identification. Estimating supp(Γ x̂) from
an estimation x̂ k is not stable numerically: the support
supp(Γ x̂ k) can be far from supp(Γ x̂) even though x̂ k is
arbitrarily close to x̂ . As in [21], we rather consider the dual
variable ξ̂ k to estimate the support.We indeed expect (see for
instance [9]) at convergence ξ̂ k to saturate on the support of
Γ x̂ and to satisfy the optimality condition ξ̂ ki = λ

(Γ x̂)i
‖(Γ x̂)i‖2 .

In practice, the norm of the dual variable ξ̂ ki saturates to λ rel-

atively fast onto Î. As a consequence, it is far more stable to
detect the support of Γ x̂ with the dual variable ξ̂ k than with
the vector Γ x̂ k itself. The next proposition, adapted from

[21], shows that this approach can indeed converge toward
the support Î.
Proposition 2 Let α > 0 be the minimum nonzero value of
‖(Γ x̂)i‖2, and choose β such that ακ > β > 0. Then, denot-

ing ν̂k+1 = ξ̂ k+κΓ v̂k , Îk+1 =
{
i ∈ [m] : ‖ν̂k+1

i ‖2 > λ + β
}

in Algorithm (20) converges in finite time to the true support
Î = supp(Γ x̂) of the biased solution.1

Proof We just give a sketch of the proof. More details can
be found in [21]. On the support, one has (ξ̂ ki , x̂ ki , v̂

k
i ) →

(λΓ x̂ ki /‖(Γ x̂ k)i‖2, x̂ ki , x̂ ki ). Then for k sufficiently large,
‖ξ̂ ki + κ(Γ v̂k)i‖ ≤ λ + β if and only if i ∈ Ic. ��
Online direction and norm identification. In algorithm (20),
the function Ψ (ν̂k+1) aims at approximating Γ x̂ . As for
the estimation of the support, instead of directly considering
Γ x̂ k , we rather rely on ν̂k+1 = ξ̂ k + κΓ v̂k to obtain a stable
estimation ẑ of the vector Γ x̂ .

Table 2 shows that for all the considered block penalties,
the computation of the proximal operator of φ∗ involves the
normalized vector ẑi/‖ẑi‖2 on the support Î. This direction
is approximated at each iteration by normalizing ν̂k+1

i . The
amplitude ‖ẑi‖2 is just required for the models QO and QD.

The method in [22] relies on the QO block penalty (see
Sect. 4.3 for more details) and considers the algorithmic
differentiation of the biased process to obtain a refitting algo-
rithm. Given its good numerical performance, we leverage
this approach to define the function Ψ as shown in the next
proposition.

Proposition 3 The approach of [22] corresponds to refit
with the QO block penalty and the following convergent esti-
mation Ψ (ν̂k+1

i ) of (Γ x̂)i .

Ψ (ν̂k+1
i ) = ‖ν̂k+1

i ‖2−λ

κ‖ν̂k+1
i ‖2 νk+1

i . (23)

Proof The method in [22] realizes the refitting through an
algorithmic differentiation of the projection of the biased
process. This leads to Algorithm (20) except for the update
of the dual variable ξ̃i on the support i ∈ Îk+1 that reads in
[22]:

ξ̃ k+1
i = λ

‖ν̂k+1
i ‖2

(
ν̃k+1
i − P

ν̂k+1
i

(ν̃k+1
i )

)
,

instead of

ξ̃ k+1
i = prox

κφ∗
QO (·,Ψ (ν̂k+1

i ),Îk+1)
(ν̃k+1

i )

in Algorithm (20). Using the proximal operator given by
the QO block penalty in Table 2 gives : ‖ν̂k+1

i ‖2 =
1 As in [7], the extended support ‖ξ̂i‖2 = λ can be tackled by testing
‖ν̂k+1

i ‖ ≥ λ.
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λ + κ‖Ψ (νk+1
i )‖2 which leads to the function (23) for esti-

mating ẑki .
We deduce that Ψ (ν̂k+1

i ) = Ψ (ξ̂ k + κΓ v̂k) → (Γ x̂)i
from the convergence of the biased variables (ξ̂ ki , x̂ ki , v̂

k
i ) →

(λΓ x̂ ki /‖(Γ x̂ k)i‖2, x̂ ki , x̂ ki ). ��

Discussion. This joint-estimation considers at every iteration
k different refitting functions ω∗

φ(., Ψ (ν̂k+1), Îk+1) in (16).
Then, unless b = 1 (see [21]), we cannot show the con-
vergence of the refitting scheme. As in [22], we nevertheless
observe convergence and a stable behavior for this algorithm.

In addition to its better numerical stability, the running
time of joint-refitting is more interesting than the posterior
approach. InAlgorithm (20), the refitted variables at iteration
k require the biased variables at the same iteration, and the
whole process can be realized in parallelwithout significantly
affecting the running time of the original biased process. On
the other hand, posterior refitting is necessarily sequential
and the running time is doubled in general.

3.2 Douglas–Rachford Formulation

An alternative to obtain solutions x̂ of (1) and x̃ of (16) is
to consider the splitting TViso reformulation, as proposed in
[18], and given by

min
x∈Rn

ξ∈Rb

1
2‖Φx − y‖22 + ι{x,ξ ;Γ x=ξ}(x, ξ) + λ‖ξ‖1,2 , (24)

min
x∈Rn

ξ∈Rb

1
2‖Φx − y‖22 + ι{x,ξ ;Γ x=ξ}(x, ξ) + ωφ(ξ, Γ x̂, Î) .

(25)

This problem can be solvedwith theDouglas–Rachford algo-
rithm [25,33]. Introducing the parameters α ∈ (0, 2) and
τ > 0, the iterates read

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υ̂k+1 = Γ −(2x̂ k − μ̂k + Γ t (2ξ̂ k − ζ̂ k)),

υ̃k+1 = Γ −(2x̃ k − μ̃k + Γ t (2ξ̃ k − ζ̃ k)),

μ̂k+1 = μ̂k + α(υ̂k+1 − x̂ k),
μ̃k+1 = μ̃k + α(υ̃k+1 − x̃ k),
ζ̂ k+1 = ζ̂ k + α(Γ υ̂k+1 − ξ̂ k),

ζ̃ k+1 = ζ̃ k + α(Γ υ̃k+1 − ξ̃ k),

x̂ k+1 = Φ−
τ (μ̂k+1 + τΦ t y),

x̃ k+1 = Φ−
τ (μ̃k+1 + τΦ t y),

ξ̂ k+1 = ST(ζ̂ k+1, τλ),

Îk+1 =
{
i ∈ [m] : ‖ζ̂ k+1

i ‖2 > τλ + β
}

,

ξ̃ k+1 = prox
τωφ(·,Υ (ζ̂ k+1),Îk+1)

(ζ̃ k+1)

(26)

with Γ − = (Id+Γ tΓ )−1, the block Soft Thresholding (ST)
operator

ST(ζ̂ , λ)i =
{
0 if ‖ζ̂i‖2 ≤ λ,

ζ̂i − λ
ζ̂i

‖ζ̂i‖2 otherwise .

and the proximal operator ofωφ that can bewritten pointwise
as

proxτωφ
(ζ 0, Γ x̂, Î)i

=
{

ζ 0 − τproxφ∗/τ (ζ
0
i /τ, (Γ x̂)i ), if i ∈ Î ,

0, otherwise .
(27)

The estimates (x̂ k, ξ̂ k, ζ̂ k) of the biased solution converge to
(x̂, ξ̂ , ζ̂ ) = (x̂, Γ x̂, (1+τλ)(Γ x̂)), from the optimality con-
ditions of problem (24). On the other hand, there is again no
convergence guarantee for the refitted variables since the last
two arguments of the function ωφ are potentially modified at
each iteration.

The support ofΓ x̂ is estimated in line from auxiliary vari-

ables as Îk+1 =
{
i ∈ [m] : ‖ζ̂ k+1

i ‖2 > τλ + β
}
, where,

as shown in [20], β has to be taken such that 0 < β <

λmini∈Î ‖(Γ x̂)i‖2 to have convergence infinite timeof Îk+1

to the true support Î = supp(Γ x̂). Again the quantity β > 0
is chosen in practice as being the smallest available nonzero
floating number.

Considering the stable algorithmic differentiation strategy
of [22] suggested in the previous subsection, the vector Γ x̂
is approximated on the support Îk+1 at each iteration with

the function Υ (ζ̂ ) = ‖ζ̂‖2−λτ

‖ζ̂‖2 ζ̂ .

4 Related RefittingWorks

Wenow review some other related refittingmethods. First,
we will discuss of refittingmethods based on Bregman diver-
gences, next the refitting approschdeveloped in [22], and then
we will see how these techniques are related to the block
penalties introduced in Sect. 2.

4.1 Bregman-Based Refitting

4.1.1 Bregman Divergence of �12 Structured Regularizers

In the literature [7,37], Bregman divergences have proven to
be well suited to measure the discrepancy between the biased
solution x̂ and its refitting x̃ . We recall that for a convex,
proper and lower semicontinuous function ψ , the associated
(generalized) Bregman divergence between x and x̂ is, for
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Table 2 Convex conjugates and
proximal operators of the
studied block penalties φ

φ φ∗(z, ẑ) proxκφ∗ (z0, ẑ)

HO

{
0, if cos(z, ẑ) = 0
+∞, otherwise

z0 − Pẑ(z0)

HD

{
0, if cos(z, ẑ) ≤ 0
+∞, otherwise

{
z0 − Pẑ(z0), if 〈z0, ẑ〉 ≥ 0
z0, otherwise

QO

{ ‖ẑ‖2
2λ ‖z‖22, if cos(z, ẑ) = 0

+∞, otherwise
λ

λ+κ‖ẑ‖2
(
z0 − Pẑ(z0)

)

QD

{ ‖ẑ‖2
2λ ‖z‖22 if cos θ(z, ẑ) ≤ 0

+∞ otherwise
λ

λ+κ‖ẑ‖2

{
z0 − Pẑ(z0) if 〈z0, ẑ〉 ≥ 0
z0 otherwise

SO

{
0, if cos(z, ẑ) = 0 and ‖z‖2 ≤ λ

+∞, otherwise
λ

z0−Pẑ (z0)
max(λ,‖z0−Pẑ (z0)‖2)

SD

{
0, if ‖z + λ ẑ

‖ẑ‖2 ‖ ≤ λ†

+∞, otherwise
λ

(
z0+λ

ẑ
‖ẑ‖2

max(λ,‖z0+λ
ẑ

‖ẑ‖2 ‖2)
− ẑ

‖ẑ‖2

)

†Note that the condition implies that cos(z, ẑ) ≤ 0

any subgradient p̂ ∈ ∂ψ(x̂):

Dp̂
ψ(x, x̂) = ψ(x) − ψ(x̂) − 〈 p̂, x − x̂〉 ≥ 0 . (28)

Ifψ is an absolutely 1-homogeneous function, i.e.,ψ(αx) =
|α|ψ(x), ∀α ∈ R, then

p ∈ ∂ψ(x) ⇒ ψ(x) = 〈p, x〉 , (29)

and the Bregman divergence simplifies into

Dp̂
ψ(x, x̂) = ψ(x) − 〈 p̂, x〉 . (30)

As an example, let us consider ψ(x) = ‖x‖2. Since ψ is
1-homogeneous, it follows that

Dp̂
‖·‖2(x, x̂) = ‖x‖2 − 〈

p̂, x
〉

(31)

where p̂ ∈ ∂‖ · ‖2(x̂) ⇔
{
p̂ = x̂

‖x̂‖2 if x̂ �= 0 ,

‖ p̂‖2 ≤ 1 otherwise .
(32)

For regularizers of the form ψ(x) = ‖Γ x‖1,2, we intro-
duce the following notations

Ω(x̂) = ∂‖Γ · ‖1,2(x̂) , (33)

Δ(x̂) = {
η̂ : Γ t η̂ ∈ ∂‖Γ · ‖1,2(x̂)

}
. (34)

For all p̂ ∈ R
n , we have [9]:

p̂ ∈ Ω(x̂) ⇔ ∃η̂ ∈ Δ(x̂) s.t. p̂ = Γ t η̂ (35)

or in short Ω(x̂) = Γ tΔ(x̂). Interestingly, Δ(x) enjoys a
separability property in terms of all subgradients associated
with the �2 norms of the blocks

Δ(x̂) = {
η̂ ∈ R

m : η̂i ∈ ∂‖ · ‖2((Γ x̂)i ), ∀i ∈ [m]} . (36)

Additionally, the next proposition shows that there is a similar
separability property for the Bregman divergence.

Proposition 4 Let η̂ ∈ Δ(x̂) and p̂ = Γ t η̂. Then,

D p̂
‖Γ ·‖1,2(x, x̂) =

m∑

i=1

Dη̂i
‖·‖2((Γ x)i , (Γ x̂)i ) . (37)

Proof The proof is obtained with straigthforward computa-
tions:

Dp̂
‖Γ ·‖1,2(x, x̂) = ‖Γ x‖1,2 − 〈Γ t η̂, x〉 (38)

= ‖Γ x‖1,2 − 〈η̂, Γ x〉 (39)

=
m∑

i=1

‖(Γ x)i‖2 − 〈η̂i , (Γ x)i 〉︸ ︷︷ ︸
D

η̂i‖·‖2 ((Γ x)i ,(Γ x̂)i )

. (40)

��
In the following, we consider x̂ and its support Î to be

fixed, and we denote by Dη̂
i (Γ x) the following

Dη̂
i (Γ x) = Dη̂i

‖·‖2((Γ x)i , (Γ x̂)i ) . (41)

The next proposition shows that such a divergence measures
the fit of directions between (Γ x)i and (Γ x̂)i , but also par-
tially captures the support Î.
Proposition 5 Let η̂ ∈ Δ(x̂). We have for i ∈ Î

Dη̂
i (Γ x) = 0 ⇔ ∃αi ≥ 0 s.t. (Γ x)i = αi (Γ x̂)i . (42)

and we have for i ∈ Îc

Dη̂
i (Γ x) = 0 ⇔ (Γ x)i = 0b or η̂i = (Γ x)i

‖(Γ x)i‖2 . (43)
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Proof • For i ∈ Î, i.e. ‖(Γ x)i‖2 > 0,we get η̂i = (Γ x̂)i
‖(Γ x̂)i‖2

from (36). We conclude from the definition Dη̂
i (Γ x) =

‖(Γ x)i‖2 − 〈η̂i , (Γ x)i 〉 = 0.
• For i ∈ Îc and using (36), we distinguish two cases from

(31). If ‖η̂i‖2 < 1, then Dη̂
i (Γ x) = 0 iff (Γ x)i = 0b.

Otherwise, one necessarily gets η̂i = (Γ x)i‖(Γ x)i‖2 . ��
As noticed in the image fusion model in [2], minimizing

Dη̂
i (Γ x) enforces the alignment of the direction (Γ x)i with

η̂i , and it is an efficient way to avoid contrast inversion.
In the following sections, unless stated otherwise, we will

always consider η̂ ∈ Δ(x̂) and p̂ = Γ t η̂ ∈ Ω(x̂).

4.1.2 Iterative Bregman Regularization

The Bregman process [37] reduces the bias of solutions of
(1) by successively solving problems of the form

x̃l+1 ∈ argmin
x∈Rn

1
2‖Φx − y‖22 + λDp̃l

‖Γ ·‖1,2(x, x̃l) . (44)

with p̃l ∈ Ω(x̃l). We consider a fixed λ, but different
strategies can be considered with decreasing parameters λl
as in [44,46]. For l = 0, setting x̃0 = 0n , and taking
p̃0 = 0n ∈ Ω(x̃0) so that Dp̃0

‖Γ ·‖1,2(x, x̃0) = ‖Γ x‖1,2, the
first step exactly gives the biased solution of (1) with x̃1 = x̂ .
We denote by x̃ IB( p̂) = x̃2 the solution obtained after 2 steps
of the Iterative Bregman (IB) procedure (44):

x̃ IB( p̂) = x̃2 ∈ argmin
x∈Rn

1
2‖Φx − y‖22 + λDp̂

‖Γ ·‖1,2(x, x̂) .

(45)

Asunderlined in relation (42), byminimizingDp̂
‖Γ ·‖1,2(x, x̂) =

∑m
i=1 D

η̂
i (Γ x), one aims at preserving the direction of Γ x̂

on the support Î, without ensuring supp(Γ x̃ IB( p̂)) ⊆ Î.
For the iterative framework, the support of the previous

solution may indeed not be preserved (‖(Γ x̃l)i‖2 = 0 �

‖(Γ x̃l+1)i‖2 = 0) and can hence grow. The support of Γ x0
for x̃0 = 0n is for instance totally empty whereas the one
of x̂ = x̃1 may not (and should not) be empty. For l → ∞,
the process actually converges to some x such that Φx = y.
Because the IB procedure does not preserve the support of
the solution, it cannot be considered as a refitting procedure
and is more related to boosting approaches as discussed in
Sect. 1.

4.1.3 Bregman-Based Refitting

In order to respect the support of the biased solution x̂ and
to keep track of the direction Γ x̂ during the refitting, the
authors of [7] proposed the following model:

x̃B( p̂) ∈ argmin
x; p̂∈Ω(x)

1
2‖Φx − y‖22 . (46)

This model enforces the Bregman divergence to be 0, since,
from Eq. (29), we have:

p̂ ∈ Ω(x) ⇒ Dp̂
‖Γ ·‖1,2(x, x̂) = 0 . (47)

We see from (42) that for i ∈ Î, the direction of (Γ x̂)i is
preserved in the refitted solution. From (43), we also observe
that the absence of support is also preserved for any i ∈ Îc

where ‖η̂i‖2 < 1. Note that extra elements in the support
Γ x̃B( p̂) maybe added at coordinates i ∈ Îcwhere‖η̂i‖2 = 1.

4.1.4 Infimal Convolutions of Bregman (ICB)
Distance-Based Refitting

To get rid of the direction dependency, the ICB (Infimal Con-
volutions of Bregman distances) model is also proposed in
[7]:

x̃ ICB( p̂) ∈ argmin
x;± p̂∈Ω(x)

1
2‖Φx − y‖22 . (48)

The orientation model may nevertheless involve contrast
inversions between biased and refitted solutions. In practice,
relaxations are used in [7] by solving, for a large value γ > 0,

x̃B( p̂)
γ ∈ argmin

x∈Rn

1
2‖Φx − y‖22 + γ Dp̂

‖Γ ·‖1,2(x, x̂) . (49)

The main advantage of this refitting strategy is that no sup-
port identification is required since everything is implicitly
encoded in the subgradient p̂. This makes the process sta-
ble even if the estimation of x̂ is not highly accurate. The
support of Γ x̂ is nevertheless only approximately preserved,

since the constraint Dp̂
‖Γ ·‖1,2(x, x̂) = 0 can never be ensured

numerically with a finite value of γ .

4.1.5 The Best of Both BregmanWorlds

From relations (37) and (41), the refitting models given in
(45) and (46) can be reexpressed as a function of η̂

x̃ IB(η̂) ∈ argmin
x∈Rn

1
2‖Φx − y‖22 + λ

m∑

i=1

Dη̂
i (Γ x) , (50)

x̃B(η̂) ∈ argmin
x∈Rn

1
2‖Φx − y‖22 s.t. Dη̂

i (Γ x) = 0, ∀i ∈ [m] .

(51)

Alternatively, we now introduce a mixed model that we coin
Best of Both Bregman (BBB), as
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x̃BBB(O) ∈ argmin
x∈Rn

1
2‖Φx − y‖22 + λ

∑

i∈Î
Dη̂
i (Γ x) , (52)

s.t. Dη̂
i (Γ x) = 0, ∀i ∈ Îc . (53)

With such reformulations, connections between refitting
models (50), (51) and (52) can be clarified. The solution x̃ IB

[37] is too relaxed, as it only penalizes the directions (Γ x)i
using (Γ x̂)i , without aiming at preserving the support of x̂ .
The solution x̃B [7] is too constrained: the direction within
the support is required to be preserved exactly. The proposed
refitting x̃BBB lies in-between: it preserves the support, while
authorizing some directional flexibility, as illustrated by the
sharper square edges in Fig. 1g.

An important difference with BBB is that we consider
local inclusions of subgradients of the function λ‖ · ‖1,2 at
point (Γ x)i instead of the global inclusion of subgradients
of the function λ‖Γ · ‖1,2 at point x as in (46) and (48). Such
a change of paradigm allows to adapt the refitting locally by
preserving the support while including the flexibility of the
original Bregman approach [37].

4.2 Covariant LEAst Square Refitting (CLEAR)

We now describe an alternative way for performing vari-
ational refitting. When specialized to �1,2 sparse analysis
regularization, CLEAR, a general refitting framework [22],
consists in computing

x̃CLEAR ∈ argmin
x; supp(Γ x)⊆Î

1
2‖Φx − y‖22

+
∑

i∈Î

λ
2‖(Γ x̂)i‖2

∥∥(Γ x)i − P(Γ x̂)i ((Γ x)i )
∥∥2 , (54)

where we recall that P(Γ x̂)i (.) is the orthogonal projection
onto Span(Γ x̂)i . This model promotes refitted solutions pre-
serving to some extent the orientation Γ x̂ of the biased
solution. It also shrinks the amplitude of Γ x all the more
that the amplitude of Γ x̂ are small. This penalty does not
promote any kind of direction preservation, and as for the
ICB model, contrast inversions may be observed between
biased and refitted solutions. The quadratic term also over-
penalizes large changes of orientation.

4.3 Equivalence

In the next proposition we show that, for a given vector η̄,
the concurrent Bregman-based refitting techniques coincides
with two of the refitting block penalties introduced in Sect.
2, namely HD, HO, and that SD is nothing else than the
proposed Best of Both Bregman-based penalty.

Proposition 6 Let η̄ ∈ R
m be defined as

η̄ = arg min
η∈Δ(x̂)

‖η‖2 . (55)

Then, for any y, we have the following equalities

1. x̃B(η̄) = x̃HD ,
2. x̃ ICB(η̄) = x̃HO ,
3. x̃BBB(η̄) = x̃SD .

where the equalities have to be understood as an equality of
the corresponding sets of minimizers.

Proof (Proposition 6) First notice that from (31), η̄ can be
written explicitly as

η̄i =
{

(Γ x̂)i
‖(Γ x̂)i‖2 if i ∈ Î ,

0b otherwise,
for all i ∈ [m] . (56)

• [1.] This is a direct consequence of relation (47) and
Proposition 5. Using (42), we have for i ∈ Î that
Dη̄
i ((Γ x)i ) = 0 ⇔ cos((Γ x)i , (Γ x̂)i ) = 1 ⇔

cos((Γ x)i , η̄i ) = 1. This is also valid for potential van-
ishing components (Γ x)i with the considered convention
cos(0b, ẑ) = 0. We thus recover the penalty function HD
in(11). Next, for all i ∈ Îc, we have η̄i = 0 by assump-
tion, hence according to eq. (43):

Dη̂
i (Γ x) = 0 ⇔ (Γ x)i = 0b ⇔ supp(Γ x) ⊆ Î. (57)

It follows that x̃B(η̄) = x̃HD. This case Îc is the same for
all next points.

• [2.] With the ICB model, we have ± p̂ ∈ Ω(x). For
i ∈ Î, it gives with (42) that D±η̄

i (Γ x) = 0 ⇔
‖(Γ x)i )‖2 = ±〈(Γ x)i ), η̂i 〉. This is equivalent to
|cos((Γ x)i , (Γ x̂)i )| = 1 that corresponds to the penalty
function HO in (10).

• [3.] For all i ∈ Î, we have

D
ˆ̄η
i ((Γ x)i ) = ‖(Γ x)i‖2 −

〈
(Γ x̂)i

‖(Γ x̂)i‖2 , (Γ x)i

〉
(58)

= ‖(Γ x)i‖2(1 − cos((Γ x)i , (Γ x̂)i )) ,

(59)

that gives the penalty function SD in (9). We then get that
x̃BBB(η̄) = x̃SD.

��
Additionally, we can show that CLEAR corresponds to the
QO refitting block penalty also introduced in Sect. 2.
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(a) Original (b) Noisy (14.19) (c) TViso (15.68)

(d) HO (20.30) (e) HD (20.36) (f) QO (22.60)

(g) QD (22.47) (h) SO (21.43) (i) SD (23.16)

Fig. 2 Comparison of alternative refitting approacheswith the proposed
SD model on a synthetic image

Proposition 7 For any y, we have x̃CLEAR = x̃QO where the
equality has to be understood as an equality of the sets of
minimizers.

Proof The case Îc is treated in Proposition 6. For i ∈
Î with the CLEAR model, we just have to observe that∥∥(Γ x)i − P(Γ x̂)i ((Γ x)i )

∥∥2 = ‖(Γ x)i‖22(1 − cos2((Γ x)i ,
(Γ x̂)i )), which corresponds to the penalty function QO in
(12).

��

5 Experiments and Results

5.1 Toy Experiments with TViso

We first consider TViso regularization of gray-scale images
on denoising problems of the form y = x +w where w is an
additive white Gaussian noise with standard deviation σ . We
start with a simple toy example of a 128× 128 image2 com-
posed of elementary geometric shapes, andwe choseσ = 50.
The corresponding image and its noisy version are given in

2 In this paper, we always consider images whose values are in the
range [0, 255].

(a) Original (b) Noisy (22.14) (c) TViso (26.00)

(d) HO (26.35) (e) HD (26.34) (f) QO (28.21)

(g) QD (28.21) (h) SO (28.22) (i) SD (28.40)

Fig. 3 Comparison of alternative refitting approacheswith the proposed
SD model on the Cameraman image

Fig. 2a, b, respectively. To highlight the different behaviors
between the six refitting block penalties, we chose to set the
regularization parameter of TViso to a large value λ = 750
leading to a strong bias in the solution. Figure 2c depicts
this solution in which not only some structures are lost (the
darkest disk), but a large loss of contrast can be observed
(the white large square became gray). Unlike boosting, the
purpose of refitting is not to recover the lost structures, but
only to recover the correct amplitudes of the reconstructed
objects without changing their geometrical aspect. In a sec-
ond scenario, we consider the standard cameraman image
of size 256 × 256, and we set σ = 20 and λ = 36. The
corresponding images are given in Fig. 3a–c.

We applied the iterative primal-dual algorithm with our
joint-refitting (Algorithm (20)) for 4, 000 iterations, with
τ = 1/‖∇‖2, κ = 1/‖∇‖2 and θ = 1, and where ‖∇‖2 =
2
√
2. The results of refitting with HO, HD, QO, QD, SO and

SD are given for the two scenarios on Figs. 2d–i and 3d–i,
respectively. Numerically, the difference when changing the
block penalty comes from the computation of the proximal
operator, presented in Table 2, that is only used in the fifth
(resp. last) step of Algorithm 20 (resp. Algorithm 26). As a
consequence, the overall computational cost is stable for all
considered block penalties.
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Fig. 4 Influence of the β parameter (support detection) on the sequential and joint approaches. The joint refitting algorithm is more robust to the
choice of the value β

As a quantitative measure of refitting between an esti-
mate x̂ and the underlying image x , we consider the peak
signal-to-noise ratio (PSNR) defined in this case as PSNR =
−10 log10

1
n ‖x − x̂‖22. The higher the PSNR, the better the

refitting is supposed to be. In Fig. 2, we first observe that
block penalties that are only based on orientation (HO, QO
andSO) lead to refitted solutionwith contrast inversions com-
pared to the original solution of TViso (see the banana dark
shapes at the interface between the two squares). In that sce-
nario, HD, QD and SD provides satisfying visual quality, the
latest achieving highest PSNR. In the context of Fig. 3, the
image beingmore complex, the TViso solution presentsmore
level lines than in the previous scenario. The block penal-
ties HO and HD must preserve exactly these level lines. The
refitted problem becomes too constrained, and this lack of
flexibility prevents HO and HD to deviate much from TViso.
Their refitted solution remains significantly biased. Compar-
ing now the quadratic penalties (QO and QD) against the soft
ones (SO and SD) reveals that quadratic penalties does not
allow to re-enhance as much the contrast of some objects
(see, e.g., the second tower on the right of the image). Again
SD achieved the highest PSNR in that scenario.

5.2 Comparison Between Sequential and Joint
Refitting

The joint refitting algorithm is more stable with respect to
the threshold β considered for detecting the support:

Ik = {‖Γ x̂ k‖i > β} . (60)

We illustrate this property in Fig. 4, where the Douglas–
Rachford solver with the SD block penalty has been tested
both sequentially and jointly, with the same iteration budget
and the same parameterβ in (20) and (60). In this experiment,
we consider a 256 × 256 image with σ = 30 and λ = 50.
For the parameters of the algorithm 26, we set α = 0.5 and
τ = 0.01.

When considering a large threshold β = 10−4 to detect
the support of the solution, both approaches leads to visually
fine results. The support of the TViso solution is neverthe-
less underestimated. On the other hand, with a low threshold
β = 10−8, the detection of the support is not stable with
the sequential approach. It leads to noisy refitted solutions,
whereas the joint approach still gives clean refittings. This
stable behavior is also underlined by looking at the PSNR
values with respect to the number of iterations: the sequen-

123



Journal of Mathematical Imaging and Vision (2021) 63:216–236 229

tial approach (dotted curve) presents fluctuatingPSNRvalues
with a low (and thus accurate) threshold.

5.3 Experiments with color TViso

We now consider TViso regularization of degraded color
images with three channels Red, Green, Blue (RGB). We
definedblocks obtainedbyapplyingΓ = (∇1

R,∇2
R,∇1

G ,∇2
G ,

∇1
B,∇2

B), where m = n, b = 6, and ∇d
C denotes the forward

discrete gradient in the direction d ∈ {1, 2} for the color
channel C ∈ {R,G, B}.

We first focused on a denoising problem y = x+w where
x is a color image and w is an additive white Gaussian noise
with standard deviationσ = 20.Wenext focused on a deblur-
ring problem y = Φx + w where x is a color image, Φ is a
convolution simulating a directional blur, andw is an additive
white Gaussian noise with standard deviation σ = 2. In both
cases, we chose λ = 4.3σ . We apply the iterative primal-
dual algorithm with our joint-refitting (Algorithm (20)) for
1, 000 iterations, with θ = 1, τ = 1/‖Γ ‖2 and κ = 1/‖Γ ‖2,
where, as for the gray-scale case, ‖Γ ‖2 = 2

√
2. Note that in

order to use the primal-dual algorithm, we have to implement
Γ t , defined for z = (zR, zG , zB) ∈ R

n×6 where zR , zG , zB
are 2d vector fields, as given by

Γ t z = (− div zR − div zG − div zB
)

. (61)

The results are provided on Figs. 5 and 6. Comparisons
of refitting with our proposed SD block penalty, HO, HD,
QO, QD and SO are provided. Using our proposed SD block
penalty offers the best refitting performances in terms of
both visual and quantitative measures. The loss of contrast
of TViso is well corrected, amplitudes are enhanced while
smoothness and sharpness of TViso is preserved.Meanwhile,
the approach does not create artifacts, invert contrasts or rein-
troduce information that were not recovered by TViso.

5.4 Experiments with Second-Order TGV

We finally consider the second-order Total Generalized Vari-
ation (TGV) regularization [6] of gray-scale images that can
be expressed, for an image x ∈ R

n and regularization param-
eters λ > 0 and ζ ≥ 0, as

x̂ ∈ argmin
x∈Rn

1

2
‖Φx − y‖22

+ λ min
z∈Rn×2

‖∇x − ζ z‖1,2 + ‖E(z)‖1,F (62)

where∇ = (∇1,∇2) : R
n → R

n×2,∇d denotes the forward
discrete gradient in the direction d ∈ {1, 2}, and E : R

n×2 →
R
n×2×2 is a symmetric tensor field operator defined for a 2d

vector field z = (z1, z2) as

E(z) =
( ∇̄1z1 1

2 (∇̄1z2 + ∇̄2z1)
1
2 (∇̄1z2 + ∇̄2z1) ∇̄2z2

)
(63)

where ∇̄d denotes the backward discrete gradient in the direc-
tion d ∈ {1, 2}, and ‖ · ‖1,F is the pointwise sum of the
Frobenius norm of all matrices of a field. One can observe
that for ζ = 0, this model is equivalent to TViso. Interest-
ingly, the solution of the second-order TGV can be obtained
by solving a regularized least square problem with an �12
sparse analysis term as

X̂ ∈ argmin
X∈Rn×3

1

2
‖Ξ X − y‖22 + λ‖Γ X‖1,2 (64)

where for an image x ∈ R
n and a vector field z ∈ R

n×2, we
consider X = (

x, z
) ∈ R

n×3 and Ξ : (x, z) → Φx , and we
define Γ : R

n×3 
→ R
2n×3 as

Γ (x, z) =
(

∇1x − ζ z1 ∇2x − ζ z2 0
∇̄1z1 ∇̄2z2 1√

2
(∇̄1z2 + ∇̄2z1)

)
.

(65)

After solving (64), the solution of (62) is obtained as the first
component of X̂ = (x̂, ẑ). We use Chambolle-Pock algo-
rithm [13] for which we also need to implement the adjoint
Γ t : R

2n×3 → R
n×3 of Γ given for fields z ∈ R

n×2 and
e ∈ R

n×3 by

Γ t
(
z1, z2, ·
e2, e2, e3

)
= −

⎛

⎜⎝
(∇̄1z1 + ∇̄2z2)t

(ζ z1 + ∇1e1 + 1√
2
∇2e3)t

(ζ z2 + ∇1e2 + 1√
2
∇2e3)t

⎞

⎟⎠

t

.

(66)

We focused on a denoising problem y = x + w where x
is a simulated elevation profile, ranging in [0, 255], and w

is an additive white Gaussian noise with standard deviation
σ = 2.We chose λ = 15 and ζ = 0.45.We applied the itera-
tive primal-dual algorithmwith our joint-refitting (Algorithm
(20)) for 4, 000 iterations, with τ = 1/‖Γ ‖2, κ = 1/‖Γ ‖2
and θ = 1, and where we estimated ‖Γ ‖2 ≈ 3.05 by power
iteration (note that the quantity ‖Γ ‖2 depends on the value
of ζ ).

Refitting comparisons between our proposed SD block
penalty, and the five other alternatives are provided on Fig. 7.
Using the SD model, it offers the best refitting performances
in terms of both visual and quantitative measures. The bias
of TGV is well corrected, elevations (see the chimneys) and
slopes (see the sidewalks) are enhanced while smoothness
and sharpness of TGV is preserved.Meanwhile, the approach
does not create artifacts, invert contrasts or reintroduce infor-
mation that was not recovered by TGV.

123



230 Journal of Mathematical Imaging and Vision (2021) 63:216–236

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 a A color image. b A corrupted version by Gaussian noise with standard deviation σ = 20. b Solution of TViso. Debiased solution with d
HO, e HD, f QO, g QD, h SO and (i) SD. The peak signal-to-noise ratio (PSNR) is indicated in brackets below each image (Color figure online)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 a A color image. b A corrupted version by a directional blur and Gaussian noise with standard deviation σ = 2. c Solution of TViso.
Debiased solution with (d) HD, e QO and f SD. The PSNR is indicated in brackets below each image (Color figure online)

6 Conclusion

We have presented a block penalty formulation for the refit-
ting of solutions obtained with �12 sparse regularization.
Through this framework, desirable properties of refitted
solutions can easily be promoted. Different block penalty
functions have been proposed, and their properties are dis-
cussed.We have namely introduced the SDblock penalty that

interpolates between Bregman iterations [37] and direction
preservation [7].

Based on standard optimization schemes, we have also
defined stable numerical strategies to jointly estimate a biased
solution and its refitting. In order to take advantage of our
efficient joint-refitting algorithm, we underline that it is
important to consider simple block penalty functions, which
proximal operator can be computed explicitly. This is the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 a An elevation profile (range 0 to 255). b A corrupted version by Gaussian noise with standard deviation σ = 0.5. c Solution of TGV.
Debiased solution with d) HO, e HD, f QO, g QD, h SO and i SD. The PSNR is indicated in brackets below each profile

case for all the presented block penalties, more complex ones
having been discarded from this paper for this reason.

Initially designed for TViso regularization, the approach
has finally been extended to a generalized TGV model.
Experiments show how the block penalties are able to pre-
serve different structures of the biased solutions, while
recovering the correct signal amplitude.

The refitting strategy is also robust to the numerical arti-
facts due to classical TViso discretization, and it allows to
recover sharp discontinuities in any direction (see the circle
in Fig. 2), without considering advanced schemes [11,14,19].

For the future, a challenging problem would be to define
similar simple numerical schemes able to consider global
properties on the refitting, such as the preservation of the
tree of shapes [54] of the biased solution.

Acknowledgements Thisworkwas supported by theEuropeanUnion’s
Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No 777826.

A Proximity Operators of Block Penalties

A.1 Convex Conjugates�∗

We here compute the convex conjugate φ∗ of the different
block penalties φ(z, ẑ) that only depends on z ∈ R

b and
where ẑ ∈ R

b is a given fixed non-null vector. We consider
the following representation of the vectors z with respect to

the ẑ axis: z = ξ ẑ
‖ẑ‖2 +ζ ẑ⊥

‖ẑ‖2 . This expression is valid for the
case b = 2. If b = 1 then z is only parameterized by ξ . When
b > 2, ẑ⊥ must be understood as a subspace S of dimension
b − 1 and ζ as a vector of b − 1 components corresponding
to each dimension of S.

With this change of variables, we have ‖z‖22 = ξ2 +‖ζ‖22
(since ζ is of dimension b − 1), cos(z, ẑ) = ξ/

√
ξ2 + ‖ζ‖22,

Pẑ(z) = ξ ẑ/‖ẑ‖2 and z − Pẑ(z) = ζ ẑ⊥/‖ẑ‖2. We also
observe for instance that |cos(z, ẑ)| = 1 ⇔ ζ = 0b−1. All
the block penalties φ(z, ẑ) can thus be expressed as φ(ξ, ζ ).
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The convex conjugate reads

φ∗(ξ0, ζ0) = sup
ξ,ζ

ξ0ξ + 〈ζ0, ζ 〉 − φ(ξ, ζ ) . (67)

• [HO] It results that the convex conjugate φ∗
HO(ξ0, ζ0) is

sup
ξ,ζ

ξ0ξ + 〈ζ0, ζ 〉 − ι{0b−1}(ζ ) = ι{0}(ξ0) . (68)

• [HD] The convex conjugate φ∗
HD(ξ0, ζ0) is

sup
ξ,ζ

ξ0ξ + 〈ζ0, ζ 〉 − ιR∗+×{0b−1}(ξ, ζ ) = ιR−(ξ0) . (69)

• [QO] The convex conjugate φ∗
QO(ξ0, ζ0) is

sup
ξ,ζ

ξ0ξ + 〈ζ0, ζ 〉 − λ

2

ξ2 + ‖ζ‖22
‖ẑ‖2

(
1 − ξ2

ξ2 + ‖ζ‖22

)

(70)

= sup
ξ,ζ

ξ0ξ + 〈ζ0, ζ 〉 − λ

2

‖ζ‖22
‖ẑ‖2 (71)

=
{ ‖ẑ‖2‖ζ0‖22

2λ if ξ0 = 0 ,

+∞ otherwise ,
(72)

since the optimality condition on ζ gives us ζ � = ζ0‖ẑ‖2
λ

.
• [QD] The convex conjugate φ∗

QD(ξ0, ζ0) is

sup
ξ,ζ

ξ0ξ + 〈ζ0, ζ 〉 − λ

2

‖ζ‖22
‖ẑ‖2 −

{
λ
2

ξ2

‖ẑ‖2 if ξ ≤ 0

0 otherwise.
(73)

=
{ ‖ẑ‖2(ξ20+‖ζ0‖22)

2λ if ξ0 ≤ 0 ,

+∞ otherwise ,
(74)

where we used that if ξ0 > 0, taking ζ = 0 and letting
ξ → ∞ leads to φ∗

QD(ξ0, ζ0) = +∞, otherwise, we
used the optimality conditions on ζ and ξ giving us ζ � =
ζ0‖ẑ‖2

λ
and ξ� = ξ0‖ẑ‖2

λ
.

• [SO] The convex conjugate φ∗
SO(ξ0, ζ0) is

sup
ξ,ζ

ξ0ξ + 〈ζ0, ζ 〉 − λ‖ζ‖2 = ι{0}×Bλ
2
(ξ0, ζ0) , (75)

since the optimality condition on ζ gives us ‖ζ0‖2 ≤ λ if
ζ � = 0, and ζ0 = λ

ζ�

‖ζ �‖2 otherwise.

• [SD] The convex conjugate φ∗
SD(ξ0, ζ0) is

sup
ξ,ζ

ξ0ξ + 〈ζ0, ζ 〉 − λ

2

(√
ξ2 + ‖ζ‖22 − ξ

)
(76)

= sup
ξ,ζ

(ξ0 + λ/2)ξ + 〈ζ0, ζ 〉 − λ

2

√
ξ2 + ‖ζ‖22 (77)

=
{
0 if

√
‖ζ0‖22 + (ξ0 + λ/2)2 ≤ λ/2 ,

+∞ otherwise ,
(78)

since if
√

‖ζ0‖22 + (ξ0 + λ/2)2 > λ/2, then letting ξ →
sign (ξ0 + λ/2) × ∞ and ζ → sign ζ0 × ∞ leads to
φ∗
SD(ξ0, ζ0) = +∞.

A.2 Computing prox��∗

We here give the computation of the proximal operator
proxκφ∗(ξ0, ζ0) of the different φ∗ that is given at point
(ξ0, ζ0) by

argmin
ξ,ζ

1

2κ

∣∣∣
∣∣∣
(

ξ

ζ

)
−

(
ξ0
ζ0

) ∣∣∣
∣∣∣
2

2
+ φ∗(ξ, ζ ). (79)

• [HO] The proximal operator proxκφ∗
HO

(ξ0, ζ0) is given
by

argmin
ξ,ζ

1

2κ

∣∣∣
∣∣∣
(

ξ

ζ

)
−

(
ξ0
ζ0

) ∣∣∣
∣∣∣
2

2
+ ι{0}(ξ) = (0, ζ0). (80)

• [HD] The proximal operator proxκφ∗
HD

(ξ0, ζ0) is given
by

argmin
ξ,ζ

1

2κ

∣∣∣
∣∣∣
(

ξ

ζ

)
−

(
ξ0
ζ0

) ∣∣∣
∣∣∣
2

2
+ ιR−(ξ) = (min(0, ξ0), ζ0).

(81)

• [QO] The proximal operator proxκφ∗
QO

(ξ0, ζ0) is given
by

argmin
ξ,ζ

1

2κ

∣∣∣
∣∣∣
(

ξ

ζ

)
−

(
ξ0
ζ0

) ∣∣∣
∣∣∣
2

2
+

{ ‖ẑ‖2‖ζ‖22
2λ if ξ = 0 ,

+∞ otherwise .

(82)

= λ

λ + κ‖ẑ‖2 (0, ζ0) , (83)

since the optimality condition gives λ(ζ � − ζ0) +
κ‖ẑ‖2ζ � = 0.
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• [QD] The proximal operator proxκφ∗
QD

(ξ0, ζ0) is given
by

argmin
ξ,ζ

1

2κ

∣∣∣
∣∣∣
(

ξ

ζ

)
−

(
ξ0
ζ0

) ∣∣∣
∣∣∣
2

2
+

{ ‖ẑ‖2(ξ2+‖ζ‖22)
2λ if ξ ≤ 0 ,

+∞ otherwise .

= λ

λ + κ‖ẑ‖2 (min(0, ξ0), ζ0) . (84)

• [SO] The proximal operator proxκφ∗
QD

(ξ0, ζ0) is given by

argmin
ξ,ζ

1

2κ

∣∣∣
∣∣∣
(

ξ

ζ

)
−

(
ξ0
ζ0

) ∣∣∣
∣∣∣
2

2
+ ι{0}×Bλ

2
(ξ0, ζ0)

= λ

max(λ, ‖ζ0‖2) (0, ζ0) . (85)

• [SD] The proximal operator proxκφ∗
QD

(ξ0, ζ0) is given by

argmin
ξ,ζ

1

2κ

∣∣∣
∣∣∣
(

ξ

ζ

)
−

(
ξ0
ζ0

) ∣∣∣
∣∣∣
2

2

+
{
0 if

√
‖ζ‖22 + (ξ + λ/2)2 ≤ λ/2 ,

+∞ otherwise .
(86)

= λ

2

(ξ0 + λ/2, ζ0)

max(λ/2,
√

‖ζ0‖22 + (ξ0 + λ/2)2)
− (λ/2, 0) ,

(87)

which just corresponds to the projection of the �2 ball of
R
b of radius λ/2 and center (−λ/2, 0).
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