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Abstract
Local M-smoothers are interesting and important signal and image processing techniques with many connections to other
methods. In our paper, we derive a family of partial differential equations (PDEs) that result in one, two, and three dimensions
as limiting processes from M-smoothers which are based on local order-p means within a ball the radius of which tends to
zero. The order p may take any nonzero value > −1, allowing also negative values. In contrast to results from the literature,
we show in the space-continuous case that mode filtering does not arise for p → 0, but for p → −1. Extending our filter
class to p-values smaller than −1 allows to include, e.g. the classical image sharpening flow of Gabor. The PDEs we derive
in 1D, 2D, and 3D show large structural similarities. Since our PDE class is highly anisotropic and may contain backward
parabolic operators, designing adequate numerical methods is difficult. We present an L∞-stable explicit finite difference
scheme that satisfies a discrete maximum–minimum principle, offers excellent rotation invariance, and employs a splitting
into four fractional steps to allow larger time step sizes. Although it approximates parabolic PDEs, it consequently benefits
from stabilisation concepts from the numerics of hyperbolic PDEs. Our 2D experiments show that the PDEs for p < 1 are of
specific interest: Their backward parabolic term creates favourable sharpening properties, while they appear to maintain the
strong shape simplification properties of mean curvature motion.

Keywords M-smoother · Partial differential equation · Mode filter · Mean curvature motion · Shock filter · Backward
parabolic operator · Anisotropy · Finite difference method · Operator splitting · Shape analysis

1 Introduction

Partial differential equations (PDEs) constitute a natural
framework tomodel processes in numerous real-world appli-
cations, ranging from physics over life sciences to economy.
Thus, it is not surprising that they have also contributed
substantially to the mathematical foundations of signal and
image analysis. For instance, they appear as Euler–Lagrange
equations when solving continuous optimisation problems
that result from variation models [5,13] or regularisations
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of ill-posed problems [7]. It has also been shown that they
are the natural setting for scale-spaces [1], they are success-
fully used for image enhancement [55], inpainting [49], and
image compression [24]. PDE-based models benefit from
many decades of research on their theoretical foundations
and efficient numerical algorithms. Since they are continuous
concepts, it is also very easy to incorporate useful invariances
such as rotation invariance.

One of the most fascinating aspects of PDE-based image
analysis is its capability to unify a number of existing meth-
ods in image analysis. This has led to deeper structural
insights as well as to novel algorithms. For instance, PDE
formulations and connections to PDE-based image analysis
are known for Gaussian smoothing [31], dilation and erosion
[1,3,10,52], morphological amoebas [59], wavelet shrinkage
[56], mean andmedian filtering [29], andmode filtering [27].

Since mean, median and mode filtering are three repre-
sentatives ofM-smoothers based on local order-pmeans, the
question arises if there is a more general PDE formulation
that covers the full class of local order-pmean filtering in sig-
nal, image and volumetric data processing. This is the topic of
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our paper. Before we go more deeply into our contributions,
let us first clarify in more detail the concept of M-estimators
and M-smoothers based on order-p means which we will
consider in this work.

M-estimators It has been observed long ago by Legen-
dre [38] and Gauß [25] that the mean of a finite multiset
X = {a1, a2, . . . , an} of real numbers can be described as
the minimiser of the sum of squared distances to the given
numbers:

mean(X ) = argmin
μ∈R

n∑

i=1

(μ − ai )
2 . (1)

Likewise it has been proven by Fechner [17] that the median
of X minimises the sum of absolute distances:

median(X ) = argmin
μ∈R

n∑

i=1

|μ − ai | . (2)

This can be generalised to the notion of order-p means given
by

meanp(X ) := argmin
μ∈R

n∑

i=1

|μ − ai |p (3)

for any p > 0, with mean2 ≡ mean, mean1 ≡ median. After
more restricted formulations by several predecessors, order-
p means for general real-valued p > 0 were discussed by
Barral Souto [6]. In robust statistics, order-p means belong
to the class of M-estimators [30].

Including the limiting case of the monomials as

|z|0 =
{
0 , z = 0 ,

1 , z �= 0
(4)

Barral Souto [6] also extends the definition (3) to the case
p = 0 for which the mode of X , i.e. its most frequent value,
is obtained. As is also noted in [6], the limit p → ∞ yields
what is also called the mid-range value, i.e. the arithmetic
mean of the extremal values of X .

Historical remarks In fact, the concept of order-p means
has evolved in stepswith increasing generality over centuries,
which wewill brieflymention in the following. The paper [4]
was helpful in identifying some of these steps, and provides
some further information.

Consolidating a value from observations by minimisation
of the sumof absolute differenceswas proposedbyLaplace in
1774 [37]; however, it seems tohavebeenonlywithFechner’s
1878 proof [17] that the connection to the median of discrete
data was clearly established.

Least-squares optimisation was introduced, and put into
relation with the arithmetic mean, by Legendre (1805) [38]

and Gauss (1809) [25]. However, already Gauss discussed in
[25, pp. 221] alternatives to least squares: ononehand, the use
of even integer exponents p > 2, mentioning even the limit
case p → ∞; on the other hand, he also made remarks about
Laplace’ idea of minimising the sum of absolute differences.
Later on, Ellis (1844) [16] pointed out that quite general
penalisersψ(|μ−ai |) could be used, thus actually proposing
a fairly general class of M-estimators even beyond order-p
means.

Fechner (1878) [17] introduced the family of order-p
means of discrete data with integer p ≥ 0, including the case
p = 0 yielding the mode of a discrete data set. In 1921, Jack-
son [32] restated the minimising property of the median and
introduced order-p means with non-integer p > 1, focusing
on the use of the limit p → 1+ as a means to disambiguate
the median. Picking up Jackson’s notion, Jordan (1927) [33]
stated the mode as limit case for p → 0+. Order-p means
with non-integer p > 0 in their own right made their appear-
ance in 1938 with Barral Souto’s paper [6].

M-estimators, continuous case It is straightforward to
rewrite the definition of order-p means for continuous distri-
butions (densities) onR just by replacing sumswith integrals:
Let γ : R → R

+
0 be a density (integrable in a suitable sense),

then one defines

meanp(γ ) := argmin
μ∈R

∫ ∞

−∞
γ (z)|μ − z|p dz . (5)

The general notion of continuous order-p means was inves-
tigated in several papers by Fréchet. For p ≥ 1 it is
mentioned in 1946 in [19] where, however, detailed discus-
sion is restricted to p = 1 and p = 2. A thorough treatment
of p ≥ 1 is provided in 1948 in [20], whereas [21,22], also
from 1948, consider the general case p > 0 including a thor-
ough discussion of the cases p → 0 and p → ∞. In fact,
Fréchet analyses that themode is obtained in the limit p → 0
for discrete distributions (or such with a discrete component)
but not for purely continuous distributions.

The cases of the median and mean had been considered
before: In the case p = 1, the continuous formulation goes
back to Laplace (1774) [37] who, unlike in the discrete case,
also identified the minimiser as the median. Fréchet analysed
p = 2 in [18] from 1943.

M-smoothers In image processing,M-estimators are com-
monly used to build local filters, see [51] for the median filter
(in signal processing) and [50] for order-pmeanswith p > 0.
In a local filter, one takes at each location the greyvalues from
a neighbourhood (selection step) and computes some com-
mon value of these (aggregation step) that is assigned to the
location in the filtered signal, see e.g. [14,27]. These filters
can be iterated to generate a series of progressively processed
images.
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It has been noticed since long that some of these filters
behave similar to certain image filters based on PDEs. Mean
filters are a spatial discretisation of linear diffusion. Guichard
and Morel [29] have proven that iterated median filtering
approximates mean curvature motion [8]. To this end, they
consider a space-continuous version of median filtering, in
which the selection step is based on a disc-shaped neigh-
bourhood. Sending the radius of the neighbourhood to zero,
they show that the effect of the median filtering step becomes
asymptotically equal to a time step of an explicit time dis-
cretisation of the mean curvature motion PDE.

Griffin [27] proves similar results for three different filters,
and puts them in the context of order-p means. In addition
to the median (p = 1) and the arithmetic mean (p = 2)
he considers for the first time the mode filter (associating it
with p = 0). In contrast to [29], the selection step in [27]
is based on a Gaussian window, i.e. the input value density
of the respective means is made up by the values from the
entire image plane but reweighted with a Gaussian function.
The limit case is constituted by the standard deviation of
the Gaussian window approaching zero. In this framework,
the mean curvature motion PDE is re-derived as the limit
case of median filtering. For arithmetic mean filtering, the
linear diffusion PDE is obtained. For mode filtering, a PDE
is derived that combines mean curvature motion (diffusion
along level sets) with backward diffusion in gradient flowline
direction, see Proposition 2.

Our contributions The goal of our paper is to complete
this picture by deriving the PDE limit for arbitrary order-p
means and introducing a suitable numerical algorithm. Up to
a time rescaling, the PDE limits of all three cases of [27] will
be contained in our results in the following. The reason for
the time rescaling is that we use for the selection step disc-
shaped neighbourhoods such as in [29]. With this choice we
aim at modelling the space-continuous filter in an analogy as
close as possible to the usual setup of discrete local signal
and image filters.

Our paper is based on the conference publication [60].
However, these results are presented in more detail and sub-
stantially extended, covering now also the 1D and 3D setting.
We also propose a novel splitting-based numerical algorithm
with improved efficiency and better rotation invariance.

Starting with the case of planar grey-value images, we
derive a family of PDEs associated with M-smoothers based
on order-p means with variable p and vanishing disc radius.
In contrast to results from the literature, we also permit neg-
ative p-values with p > −1. Compared to [60], the proof of
this approximation result is presented in amoredetailed form.
Moreover, we discuss the behaviour near critical points (sad-
dle points and extrema) and critical curves. We also analyse
the effect of staircasing. Using the calculus of distributions,
we can show that the PDEs derived for smooth images remain
valid for step functions.

Reconsidering the relation of order-pmeans and their cor-
responding PDEs to existing image filters, we show that in
the space-continuous setting themode filter does not arise for
p → 0, as is commonly assumed [27] (despite the analysis
in [21,22]), but for p → −1. Since the common assump-
tion countered by our analysis is derived by analogy from
discrete theory, we discuss in this paper also where and why
this analogy fails.

In the present work, we extend our results also to 1D
signals and 3D grey-value images. Table 1 at the end of
Sect. 4 summarises the PDE approximation results obtained
in one, two, and three dimensions. The PDEs approximated
for p > −1 are in full analogy to the 2D case. This is also
the case for the mode filter as limiting case for p → −1
in three dimensions. For 1D signals, the limit p → −1 is
non-uniform, and the mode filter approximates a shock-filter
PDE which was already stated in earlier work [61]. Continu-
ing our PDE family to values p < −1 allows to cover also the
sharpening Gabor flow [23,39], for which no M-smoothing
counterpart is known.

In spite of the fact that our PDE family is anisotropic and
may even involve backward parabolic operators, we design
an L∞-stable numerical scheme that enjoys excellent rota-
tion invariance and employs operator splitting to improve its
efficiency.Our experiments show that the PDEs for p < 1 are
particularly attractive since they simultaneously allow image
sharpening and shape simplification.

Structure of the paper In Sect. 2, we present our theory
that allows us to derive PDE evolutions from M-smoothers,
and discuss in detail important aspects of the PDE limit such
as its behaviour near critical points and staircasing. Section 3
presents the analogous results for 1D signals, whereas Sect. 4
covers 3D images. In Sect. 5, we discuss the relation between
discrete and continuous M-smoothing and explain why the
discrete result about approximation of the mode filter for
p → 0 cannot be transferred to the continuous situation. Our
numerical algorithm is discussed in Sects. 6 and 7 is devoted
to an experimental evaluation. The paper is concluded with
a summary in Sect. 8. Two appendices provide additional
material: The detailed proofs of the results in Sects. 2–4 are
collected in Appendix A, whereas Appendix B presents an
illustrative example to support the discussion in Sect. 5.

2 M-Smoothers, Mode and Partial
Differential Equations for 2D Images

In this section, we derive PDEs for M-smoothers and the
mode filter in the case of 2D greyvalue images, and discuss
some of their properties.
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2.1 Generalised Order-pMeans

In the following, M-smoothers are based on order-p means
with p > −1, p �= 0. As this range for p goes beyond the
usual p > 0, let us first extend the definition of order-p
means of continuous-scale distributions accordingly.

Definition 1 Let z be a real random variable with the
bounded, piecewise continuous density γ : R → R. For
p ∈ (−1,+∞) \ {0}, define the order-p mean of γ as

meanp(γ ) = argmin
μ∈R

∫

R

γ (z) sgn(p)|μ − z|p dz . (6)

As |z|p is monotonically increasing on R
+
0 (the set of all

nonnegative real numbers) for p > 0, but monotonically
decreasing on R

+ (the set of all positive real numbers) for
p < 0, the sgn(p) factor in (6) ensures that in both cases an
increasing penalty function is used.

For p > 0 the requirement of continuity of γ in Def. 1
can be relaxed; by modelling a discrete density as a weighted
sum of delta peaks, the discrete order-p means as in [6] can
be included in this definition.

The continuity is, however, essential for p < 0: In this
case, the penalty function has a pole at z = 0 such that
an improper integral is obtained; for p > −1 this integral
exists provided that γ is continuous, i.e. no delta peaks are
allowed. In particular, we cannot define an order-pmeanwith
−1 < p < 0 for discrete distributions as considered in [6].

2.2 Infinitesimal Limits of M-Smoothers

We turn now to derive partial differential equations approxi-
mated by M-smoothers applied to 2D images. The proofs of
the following propositions are given in Appendix A. When
speaking of smooth functions we always mean C∞ functions
although a weaker hypothesis could be sufficient for some
results. The first proposition contains our first main result.

Proposition 1 (2D PDE limit for p > −1) Let a smooth
image u : R

2 → R be given, and let x0 = (x0, y0) be
a regular point, |∇u(x0)| > 0. One step of order-p mean
filtering of u with a disc-shaped window D�(x0) and p >

−1, p �= 0 approximates for � → 0 a time step of size
τ = �2/(2p + 4) of an explicit time discretisation of the
PDE

ut = uξξ + (p − 1) uηη (7)

where η and ξ are geometric coordinates referring at each
image location to the direction of the positive gradient, and
the level-line direction, respectively:

meanp{u(x, y) | (x, y) ∈ D�(x0, y0)} − u(x0, y0)

= �2

2(p + 2)

(
uξξ (x0, y0) + (p − 1)uηη(x0, y0)

)

+ O(�(min{p,0}+5)/2) . (8)

At a local minimum (maximum) of u, i.e. x0 with |∇u(x0)| =
0 where the Hessian D2u(x0) is positive (negative) semidef-
inite, the same filtering step fulfils for � → 0 the inequality
meanp{u(x, y) | (x, y) ∈ D�(x0, y0)}−u(x0, y0) ≥ 0 (≤ 0),
thus approximates an evolution ut ≥ 0 (ut ≤ 0).

The approximation order in (8) isO(�1/2) for positive p but
reduces to O(�(p+1)/2) for negative p.

For p = 2 and p = 1 the proposition yields the same
PDEs as [27] except for a time rescaling which is due to the
choice of a Gaussian window in [27].

Under analogous assumptions as in Proposition 1, one
can also derive the PDE limit for the mode filter, where
the mode is not obtained by a minimisation in the sense of
(5) but directly as the maximum of the density of values in
{u(x, y) | (x, y) ∈ D�(x0, y0)}.

Proposition 2 (2D PDE limit for mode filtering) Let u and
x0 be as in Proposition 1. One step of mode filtering of u
with a disc-shaped windowD�(x0) approximates for � → 0
a time step of size τ = �2/2 of an explicit time discretisation
of the PDE ut = uξξ − 2uηη with η, ξ as in Proposition 1.
At a local minimum (maximum), mode filtering approximates
ut ≥ 0 (ut ≤ 0).

ThePDE formode filtering coincideswith the one given in
[27], again up to time rescaling.We see, however, that (8) for
p → 0 does not yield the PDE from Proposition 2 but ut =
uξξ − uηη. Instead, the mode filtering PDE is obtained for
p → −1. Inserting p = −2 into (8) yields ut = uξξ − 3uηη

which was stated as an image sharpening PDE that has been
proposed by Gabor already in 1965 [23,39].

Remarkably, the PDEs for mean (p = 2), median (p = 1)
and mode (p = −1) also match the often-stated empirical
rule noted first by Pearson [46, p. 376] according to which
themedian in a large class of skew densities is located at two-
thirds the way between mode and mean (which, however, is
not a general law).

2.3 Discussion of PDE Evolutions Near Critical Points

Propositions 1 and 2 state PDEs approximated by the respec-
tiveM-smoothers at regular points, and inequalities that hold
at local minima and maxima. Let us briefly discuss how
these results determine uniquely the evolutions of the entire
image u (including critical points) approximated by the M-
smoothers.
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2.3.1 Regions of Critical Points

Let us consider first the case of a connected critical region,
i.e. a closed set in R

2 consisting entirely of critical points,
with nonempty interior. In such a region, the inequalities for
minima and maxima together imply ut = 0, which is also
consistent with the obvious limit of any M-smoother in all
interior points of the region.

2.3.2 Isolated Critical Points

Let us now consider the case of an isolated critical point, i.e.
a point x0 with ∇u(x0) = 0 but ∇u(x) �= 0 for all other
points x within an open neighbourhood of x0.

A direct calculation of the limit for vanishing window size
of an M-smoother at x0 would suggest an approximation
that differs substantially from that in regular points. We will
argue in the following that this naive limit is irrelevant for the
time-continuous image evolution approximated by iterated
M-smoothing.

On one hand, limit calculations at regular points (see the
proofs in Appendix A) require a neighbourhood that contains
no critical points at all. Thus, on approaching a critical point
of u, the admissible neighbourhood radius � around regular
points tends to zero. Therefore, the PDE limit within any
open region of the plane that does not contain critical points
is not uniform if the boundary of that region contains a critical
point. The result of the naive application of the same limit
procedure at a critical point can thus not be expected to fit
smoothly into the evolution of the regular points around.

On the other hand, for an initial-boundary value prob-
lem describing an image evolution, it is in general sufficient
for the PDE to be prescribed everywhere except at isolated
points. Assuming viscosity solutions as a solution concept,
the solution of the initial-boundary value problem will fill in
the evolution at the exceptional points.

Revisiting the evolution fromProposition 1,we notice first
that the PDE (7) in regular points of u can be rewritten with
the Laplacian Δu = uxx + uyy = uξξ + uηη as

ut = (2 − p)uξξ + (p − 1)Δu , (9)

a linear combination of homogeneous diffusion and curvature
motion. Given the smoothness of u, the diffusion term uxx +
uyy can obviously be continued smoothly to isolated critical
points.

The curvature motion term is more difficult. At an
isotropic critical point, i.e. x0 = (x0, y0) with ux (x0) =
uy(x0) = 0, uxx (x0) = uyy(x0), uxy(x0) = 0, also this term
has a unique limit for (x, y) → (x0, y0), namely uxx (x0).
In contrast, when approaching an anisotropic critical point
(x0, y0) (where the Hessian D2u is not a multiple of the unit
matrix) from different directions, one obviously obtains dif-

ferent limits such that no unique value can be filled in at this
critical point.

To understand the effect of the evolution near a critical
point, assume that x0 = 0 is a local minimum of u. For sim-
plicity, we neglect higher order terms of the Taylor expansion
and assume at a given time u(x, y) = βx2 + δy2 with β ≥
δ > 0 in a neighbourhood N of x0. For x = (x, y)	 ∈ N
one has then

∇u(x) = 2(βx, δy)	 , D2u(x) =
(
2β 0
0 2δ

)
, (10)

η = (βx, δy)	√
β2x2 + δ2y2

, ξ = (−δx, β y)	√
β2x2 + δ2y2

, (11)

uηη = 2β3x2 + 2δ3y2

β2x2 + δ2y2
, (12)

uξξ = 2β2δx2 + 2βδ2y2

β2x2 + δ2y2
. (13)

Both uξξ and uηη, and thus also ut = uξξ + (p − 1)uηη, are
constant along radial lines through 0.

For an isotropic minimum (β = δ > 0), the evolution
speed is uniform in the neighbourhood N , ensuring that the
isotropy of the minimum is preserved during evolution. In
particular, for p ≥ 0, this evolution speed is positive such
that the inequality ut (x0) ≥ 0 is automatically preserved.

For an anisotropic minimum (β > δ > 0), the evo-
lution speeds ut along different radial lines differ, with
ut (z, 0) < ut (0, z), such that the anisotropy is reduced by
the evolution. For p ≥ 1− δ/β all evolution speeds are non-
negative, so ut (x0) ≥ 0 is still automatically satisfied, and
the anisotropic minimum is converted into an isotropic min-
imum by the evolution. The position of the minimum can
move due to the evolution.

For 1 − β/δ < p < 1 − δ/β, one has ut (z, 0) < 0 <

ut (0, z). In this case, the inequality ut (x0) ≥ 0 acts to con-
strain the evolution near the x axis, implying the immediate
formation of a critical line (see Sect. 2.3.3) or plateau (see
Sect. 2.3.1) around x0.

If, finally, p < 1−β/δ, the speed ut is negative throughout
N , which implies that a critical plateau is formed immedi-
ately.

Analogous considerations apply to local maxima. Finally,
a saddle point (with indefinite Hessian) remains a saddle
point, and as such is well constrained by the surrounding
regular points from above and below. Therefore, the evolu-
tion at isolated critical points for p ≥ 1 is fully determined by
filling in the evolution from the surrounding regular points,
whereas for −1 < p < 1 it is fully determined by filling in
combined with the inequality constraints ut ≥ 0 at minima
and ut ≤ 0 at maxima.
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2.3.3 Critical Curves

The considerations from Sect. 2.3.2 can be extended to reg-
ular curves consisting of critical points. If such a curve is
formed by local minima, any point on this curve is a max-
imally anisotropic local minimum, β > δ = 0, yielding
evolution speeds (up to higher order terms) ut ≈ 2(p − 1)β
for nearby regular points.

If p > 1, one has ut > 0, thus the differential inequality at
critical points is automatically satisfied. The critical curve is
preserved as a critical curve ormay be broken up into isolated
critical points.

If p < 1, the regular points in N evolve with ut > 0,
which leads to an immediate expansion of the critical curve
into a plateau.

2.4 Staircasing and Analysis of the PDE for Step
Functions

For p < 1, the PDE (7) involves a backward parabolic
term in gradient flowline direction. In evolutions of this kind
staircasing effects are common, i.e. the evolving function
turns into a step function which is only piecewise smooth
with jumps between the smooth segments. Indeed, staircas-
ing can also observed in numerical experiments with (7).
Unfortunately, the staircasing undermines the smoothness
assumption underlying the approximation result of Proposi-
tion 1. Therefore, we dedicate this section to discuss how
our approximation results extend to the situation of step
functions. First, we will use the calculus of distributions
to generalise the image filtering PDE (7). Afterwards we
will discuss order-p mean M-smoothers for step functions.
Although we do not possess, at the time being, a full asymp-
totic analysis of this case, we will consider a simplified case
and demonstrate by a combination of analytic and numeric
evidence that the behaviour of M-smoothers is still compa-
rable to that of the PDE.

2.4.1 Distributional Analysis

In the following, we will consider piecewise smooth step
functions, i.e. functions overRn which are smooth except on
a set of smooth hypersurfaces that decompose the space Rn

into connected segments Ω1, . . . ,Ωk .
A natural way to analyse the effect of the PDE evolu-

tion (7) on a step function u is to apply the PDE to a series
of smoothed functions that converge to u, and consider the
limit of the so obtained evolutions. For example, u could be
convolved with Gaussians Gσ of decreasing standard devi-
ation σ , yielding the desired result for σ → 0. As Gσ for
σ → 0 weakly converges to a Dirac delta distribution, the
calculus of distributions [54,63] allows to calculate the evo-
lution of interest in a more compact form without explicitly

carrying out the limiting procedure. Technically, a distribu-
tion, or generalised function, f ∈ D′(Rn) is a functional that
acts on smooth basic functions ϕ by the scalar product of
functions ( f , ϕ) := ∫

Rn f (x)ϕ(x) dx.
Assuming that the jump set of f consists of just one

smooth hypersurface S dividing R
n into domains Ω1 and

Ω2, we notice that f is differentiable in distributional sense,
and we recall the following essential formula from [63, II,
§6]:

∂ f

∂xi
=

{
∂ f

∂xi

}
+ [ f ]S cos(nS, xi )δS (14)

for i = 1, . . . , n. Here, {∂ f /∂xi } denotes the regular part
of the derivative, i.e. essentially an ordinary function. The
vector nS is the unit outer normal vector of S at a given
point, and [ f ]S the jump height of u at this point in direction
nS . The single-layer distribution δS is a generalisation of the
one-dimensional Dirac delta distribution, behaving like the
delta distribution on crossing the hypersurface S in normal
direction.

Furthermore, second derivatives of f can be written as
[63, II, §6]

∂2 f

∂xi∂x j
=

{
∂2 f

∂xi∂x j

}
+ ∂

∂x j

([ f ]S cos(nS, xi )δS
)

+
[{

∂ f

∂xi

}]

S
cos(nS, x j )δS (15)

for i, j = 1, . . . , n where in the second summand a double-
layer distribution occurs as the derivative of a single-layer
distribution; ∂δS/∂nS is a generalisation of the derivative of
the one-dimensional delta distribution, behaving like δ′ on
crossing S in normal direction.

To analyse our example, we consider the evolution (7)
with a step function u0 as initial condition. The evolution u
will be described by a function u over R2 × [0, T ] which is
smooth except on a jump set consisting of regular surfaces.
Outside the jump set, our previous analysis applies. The case
of interest is therefore a point (x, y, t) on a jump surface S.
Simplifying further, we assume that the normal vector nS at
(x, y, t) is in the x-t plane and in positive x direction, i.e.

nS = 1√
1 + v2

(
1, 0,−v)	 (16)

where v is the speed at which the jump moves in x direction
as the time t progresses. Then (7) becomes ut = uyy +
(p − 1)uxx . From (14) with cos(nS, t) = −v/

√
1 + v2 we

calculate

ut (x, y, t) = {ut (x, y, t)}[u]S(x, y, t) −v√
1 + v2

δS . (17)
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Similarly, we obtain from (15) with cos(nS, y) = 0 and
∂y cos(nS, y) = − sin(nS, y) cos(∂ynS, y) = −κS/

√
1 + v2

uyy(x, y, t) = {uyy(x, y, t)}
− ∂

∂ y

([u]S(x, y, t) cos(nS, y)δS
)

= {uyy(x, y, t)}
+ [u]S(x, y, t)κS(x, y, t)√

1 + v2
δS (18)

where κS(x, y, t) denotes the curvature of S in the x-y plane
at (x, y, t). Finally,

uxx (x, y, t) = {uxx (x, y, t)}
+ 1√

1 + v2
[u]S ∂

∂x
δS

+ 1√
1 + v2

[{ux }]SδS . (19)

Inserting (17), (18) and (19) into (7), we have by equating
the δS contributions

v = −κS − (p − 1)
[{ux }]S
[u]S , (20)

which describes the speed at which the interface between the
two smooth segments ofumoves in x direction. The contribu-
tion −κS is in full agreement with the behaviour of the mean
curvature motion part of (7) for smooth functions, whereas
−(p−1)[{ux }]S/[u]S modifies this speed by accelerating or
slowing down the inward motion of the interface depending
on p and whether the gradient of u is greater or smaller on
the outside or inside of the evolving interface. If p < 1, the
effect is to push the evolution towards increasing contrast at
the interface, thus encouraging staircasing. For p > 1, the
evolution is biased towards reducing contrast at the interface,
thus counteracting staircasing.

We notice finally that on the right hand side of (19) also a
double-layer term ∂xδS appears.Whenequatingwith thefirst-
order time derivative ut in (7), this term has no implication
for the evolution of u as time integration across S integrates
it to zero. However, it indicates that no well-defined regular
function value can be assigned to u on the interface S itself.

2.4.2 M-Smoothing a Step Function

For a full theoretical analysis of an M-smoothing step with
order-p means for step functions, the limit � → 0 of
meanp(u) − u at a fixed location of a given step function
is of little help, because it just reproduces the result for
smooth functions everywhere outside the jump set, and iso-
lated values on the jump set itself aremeaningless. Tovalidate
(20) in the asymptotic case, it would be necessary instead to

determine the displacement of the interface itself by one M-
smoothing step for positive �, and consider the asymptotic
behaviour of this displacement. This appears substantially
more complicated than the proof of Proposition 1, and no
analysis of this kind is available at the moment.

In the following, we study instead a simple case of a step
function for fixed � by combining analytical with numerical
arguments. Let the step function u : R2 → R be given as

u(x, y) = α(x + δy2) + h1(x + δy2 + θ > 0) (21)

where 1(x + δy2 + θ > 0) is the Heaviside function of
x + δy2 + θ . The jump set of u is the parabola x + δy2 =
−θ , and we have ux = α, uxx = uxy = 0, uyy = 1

2αδ

everywhere outside the jump set.
Letμ be the order-pmean of u within the disc D� centred

at (0, 0), for some p ∈ (−1, 0). We have

μ = argmin
μ

sgn(p)
∫∫

D�

|μ − u(x, y)|p dx dy (22)

which can be simplified to

μ = argmin
μ

sgn(p)

(∫ −θ

−�

y∗(x) |μ − αx |p dx

+
∫ �

−θ

y∗(x) |μ − αx − h|p dx
)

(23)

where (for sufficiently small δ)

y∗(x) =
√

�2 − 1

4δ2

(
1 −

√
1 − 4δx + 4δ2�2

)2

(24)

assigns to each x ∈ [−�, �] the y coordinate of the two points(
x,±y∗(x)

)
where the level line of u going through (x, 0)

hits the boundary of D�.
Equation (20) together with the step size τ = �2/(2p+4)

from Proposition 1 suggests that μ should be in the range of
the lower part of u (i.e. μ ≈ 0) for θ < −δ/(p + 2) and in
the upper part of u (i.e. μ ≈ h) for θ > −δ/(p + 2).

To check this numerically, we fixed � = 1 and eval-
uated (23) for a set of randomly chosen values of p ∈
[−0.99,−0.1], α ∈ [0.03, 0.15], δ ∈ [−0.2, 0.2] and for
different jump heights h = 0.01, h = 0.1, h = 1.

As is evident from the results visualised in Fig. 1, the
values of θ/δ at which μ jumps from the lower to the higher
segment of u are close to the predicted ones for small h and
deviate somewhatmore for larger h, but the overall behaviour
of the interface displacement speed is consistent with the
analysis of the PDE.
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Fig. 1 Jump values of θ/δ for the example function (21) in the range
p ∈ [−0.99,−0.1] for three jump heights h and randomly chosen α, δ.
Curve shows the theoretical value θ/δ = −1/(p + 2) for comparison

3 M-Smoother PDEs for 1D Signals

A similar analysis as in the 2D case can be carried out for
1D signals. The proofs of the next two results are found in
Appendix A.

Proposition 3 (1D PDE limit for p > −1) Let a smooth sig-
nal u : R → R be given, and let x0 be a regular point,
ux �= 0. One step of order-p mean filtering of u with a box
window I�(x0) := [x0 − �, x0 + �] and p > −1, p �= 0
approximates for � → 0 a time step of size τ = �2/(2p+2)
of an explicit time discretisation of the PDE

ut = (p − 1) uxx (25)

in the sense that

meanp{u(x) | x ∈ I�(x0)} − u(x0)

= �2

2(p + 1)
(p − 1)uxx (x0) + o(�2) . (26)

At a local minimum (maximum) of u, i.e. x0 with ux = 0
where uxx is nonnegative (nonpositive), the same filtering
step fulfils for � → 0 the inequality meanp{u(x) | x ∈
I�(x0)} − u(x0) ≥ 0 (≤ 0), thus approximates an evolution
ut ≥ 0 (ut ≤ 0).

Proposition 4 (1D PDE limit for mode filtering) Let u be as
in Proposition 3, and x0 any point in its domain. One step of
mode filtering of u with a box window I�(x0) approximates
for � → 0 a time step of size τ = � of an explicit time
discretisation of the shock filter PDE [45] given by

ut = −sgn (uxx ) |ux | . (27)

This relation between local mode filtering of 1D signals
and shock filtering extends a result for discrete signals from
[61].

Unlike in the 2D case, the PDE approximated by themode
filter does not fit in as the limit p → −1 of the PDE for order-
p means, and the approximation in the mode filter case is
with time step size O(�) instead of O(�2). To understand
this, notice that in (26) the coefficient in front of uxx goes to
infinity for p → −1+, which means that the approximation
holds for ever smaller � as p approaches −1, such that there
is no uniform limit of the approximation (26) for any fixed
positive radius �.

4 M-Smoother PDEs for 3D Images

In this section, we extend our previous results also to the
case of three-dimensional, i.e. volume images. The results
are similar to those in two dimensions. However, now the
smoothing in level set direction takes place in a surface with
two geometric coordinates ξ and χ referring to mutually
orthogonal tangential directions of the level set. We give
again two propositions referring to p ∈ (−1,∞) \ {0} and
the mode case; both proofs are found in Appendix A.

Proposition 5 (3D PDE limit for p > −1) Let a smooth vol-
ume image u : R3 → R be given, and let x0 = (x0, y0, z0)
be a regular point, |∇u(x0)| > 0. One step of order-p
mean filtering of u with a ball-shaped window B�(x0) and
p > −1, p �= 0 approximates for � → 0 a time step of size
τ = �2/(2p+6) of an explicit time discretisation of the PDE

ut = uξξ + uχχ + (p − 1) uηη (28)

where η, ξ and χ are geometric coordinates referring at
each image location to the direction of the positive gradient,
and two mutually orthogonal directions tangent to the level
surface, respectively:

meanp{u(x, y, z) | (x, y, z) ∈ B�(x0, y0, z0)}
− u(x0, y0, z0)

= �2

2(p + 3)

(
uξξ (x0, y0, z0) + uχχ (x0, y0, z0)

+ (p − 1)uηη(x0, y0, z0)
)

+ O(�(min{p,0}+5)/2) . (29)

At a local minimum (maximum) of u, i.e. x0 with |∇u(x0)| =
0 where the Hessian D2u(x0) is positive (negative) semidef-
inite, the same filtering step fulfils for � → 0 the inequality
meanp{u(x, y, z) | (x, y, z) ∈ B�(x0, y0, z0)}−u(x0, y0, z0)
≥ 0 (≤ 0), thus approximates an evolution ut ≥ 0 (ut ≤ 0).
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Table 1 PDE approximation results for order-p mean filters and mode filtering in one to three dimensions

Dimension PDE for p > −1, p �= 0 Time step size τ PDE for mode filter Time step size τ

1D ut = (p − 1)uxx
�2

2p+2 ut = −sgn(uxx )|ux | �

2D ut = uξξ + (p − 1)uηη
�2

2p+4 ut = uξξ − 2uηη
�2

2

3D ut = uξξ + uχχ + (p − 1)uηη
�2

2p+6 ut = uξξ + uχχ − 2uηη
�2

4

Like in the 2D case (but in contrast to the 1D case) the mode
filter in 3D again fits in as p → −1 into the general case.

Proposition 6 (3DPDE limit formode filtering)Let u and x0
be as in Proposition 5. One step of mode filtering of u with a
ball-shaped window B�(x0) approximates for � → 0 a time
step of size τ = �2/4 of an explicit time discretisation of the
PDE ut = uξξ +uχχ −2uηη with η, ξ , χ as in Proposition 5.
At a local minimum (maximum), mode filtering approximates
ut ≥ 0 (ut ≤ 0).

We summarise the PDE approximation results from
Propositions 1–6 in Table 1. It shows a very systematic
behaviour w.r.t. the influence of the dimension, such that
it is straightforward to come up with a conjecture for arbi-
trary dimensions larger than 3: Depending on the order p, we
expect a PDE that has forward (p > 1) or backward (p < 1)
parabolic behaviour in the gradient direction η, combined
with forward parabolic smoothing orthogonal to it:

ut = Δu − uηη + (p − 1)uηη

= Δu + (p − 2)uηη . (30)

5 Discrete Versus Continuous M-Smoothing

The previous results rise the question about the relation
between the discrete and continuous situation. For discrete
distributions the mode is approximated according to [6] by
order-p means for p → 0. Negative orders p in the sense of
Sect. 2 cannot be applied at all for discrete distributions. In
contrast, in the case of densities over a continuous range the
mode is obtained for p → −1. The limit p → 0 for con-
tinuous distributions instead results in a mean (that could be
called order-0 mean to close the gap of definition) that does
in relevant cases not coincidewith themode. As this situation
is difficult to grasp intuitively, we present in Appendix B a
worked-out example of a simple density function (a cut-off
quadratic function) for which the order-p mean and mode
can be calculated in closed form, so one can clearly see the
discrepancy between order-0 mean and mode as well as the
convergence to the mode for p → −1.

Looking at the continuous case first, it is clear that the
penaliser function sgn (p)|z|p converges for p → +0 (from

the positive side) to the function (4), with the convergence
being non-uniform around z = 0. From the negative side,
one has non-uniform convergence to the function

lim
p→−0

sgn (p)|z|p = 0 defined for z �= 0 . (31)

As constants are negligible in penalisers for “means” of con-
tinuous distributions anyway, (4) and (31) have not only the
same effect but they act simply as constants, as the remov-
able discontinuity at 0 is without influence under integration.
Thus, they do not give rise to an “order-0 mean” whatsoever.

To model the mode of a continuous distribution, a
penaliser is needed that under integration gives positive
weight to a single location; thus the penalisermust be a distri-
bution with a (negative, for the mode to arise as minimiser)
delta peak at 0. Indeed this is the limit of sgn (p)|z|p for
p → −1+.

To transfer a continuous penaliser Ψ to the discrete case,
the correct way would be to use not sampling,

ψk := Ψ (kh) , (32)

(where h > 0 is the step width between sampling loca-
tions) but a finite-volume discretisation which is essentially
the composition of a box-kernel convolution (other low-pass
kernels would be possible) with sampling,

ψk := 1

h

(k+ 1
2 )h∫

(k− 1
2 )h

Ψ (x) dx = (Ψ ∗ Bh)(kh) , (33)

Bh(z) := 1

h
χ[−h/2,h/2](z) . (34)

The width h of the box kernel Bh takes the role of the bin
width of a histogram intowhich data are aggregated. For orig-
inally discrete distributions (finite multisets of data points)
one might omit making this step explicit as h may be chosen
arbitrarily small such that (33) approximates (32) with arbi-
trary accuracy (as long as Ψ is integrable in each sampling
interval). As soon as h is smaller than the minimal distance
between two locations of the discrete distribution, further
reduction of h does not increase the number of histogram
bins with positive weights.
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In contrast,whendiscretising anoriginally continuous dis-
tribution, the histogram bin width becomes relevant, and it is
essential to use (33).

Let us regard now the penaliser Ψp(z) = |z|p for p > 0.
In order for a finite-volume discretisation of Ψp to converge
for p → +0 to the naive sampling of (4), i.e.

ψk =
{
0 , k = 0 ,

1 else
(35)

the bin width h needs to be sent to zero along with p. For
any fixed bin width h, the finite-volume discretisation of Ψp

converges to the constant unity function, ψk = 1 for all k,
instead.

On the other hand, the finite-volume discretisation of
Ψp(z) = −|z|p for −1 < p < 0 converges for p → −1+
exactly to ψ0 = −1 and ψk = 0 for k �= 0, i.e. (35) up to
an irrelevant constant offset. In this sense, the case p = 0
as defined in [6] for discrete distributions does indeed cor-
respond to the discretisation of the limit p → −1 of the
continuous setting.

As a final remark, we point out that in an image filtering
context the discretisation of distributions as discussed in this
section is in fact applied to the intensity domain, thus takes
the role of quantisation. The mere spatial discretisation of
an image leaves the intensity domain continuous, and one
should try to approximate the concepts for continuous dis-
tributions numerically as accurate as possible. However, the
spatial discretisation creates a discrete sample from the con-
tinuous distribution, and (at least for p < 1) filtering this
discrete sample as a finite set will not be a proper approx-
imation of the continuous filter. For example, the mode of
the discrete distribution will be meaningless as in generic
cases finite samples from continuous distributions consist of
distinct values, each with trivial frequency 1. It is therefore
necessary to design a numerical process that in the one or
other way estimates the continuous distribution from the set
of discrete sample values.

6 Numerical Scheme for the 2D PDE Limit

Next, we discuss a numerical algorithm for approximating
our two-dimensional PDE limit (7) in an adequate way. The
2D setting is practically most important, and it contains all
essential difficulties that also arise in higher dimensions. Our
2D PDE gives rise to two major numerical problems:

– It involves the anisotropic expressions uξξ and uηη. To
reproduce their qualitative properties adequately, one has
to take care that the discretisation approximates rotation-
ally invariant behaviourwell and that it satisfies a discrete

maximum–minimum principle which prevents over- and
undershoots.

– For p < 1, the sign in front of the operator uηη becomes
negative, which results in a backward parabolic operator.
Such operators are known to be ill-posed. They require
additional stabilisation in the model and the numerics.

These challenges show that great care must be invested in
the design of appropriate numerical algorithms. Thus, let us
have a deeper look into our efforts along these lines.

Reformulation Using uηη = Δu − uξξ and uξξ =
curv(u)|∇u| with the isophote curvature curv(u) we rewrite
(7) in a numerically more convenient form:

ut = (2 − p) curv(u)|∇u| + (p − 1)Δu . (36)

If p ≥ 1, we apply this equation in all locations, including
extrema.
For p < 1, the second term describes backward diffusion,
which we stabilise by freezing its action in extrema where
|∇u| vanishes:

ut = (2− p) curv(u)|∇u| + (p − 1) sgn(|∇u|)Δu . (37)

In practice, our image domain is finite and of rectangular
size. This motivates us to equip the equations (36) and (37)
with reflecting (i.e. homogeneous Neumann) boundary con-
ditions. Both evolutions (36) and (37) are replaced by finite
difference schemes on a regular grid of size h in x- and
y-direction and time step size τ . By ui, j wedenote an approx-
imation of u in pixel (i, j).

Space discretisation of forward diffusion If p ≥ 1, we
discretiseΔu in (36)with a nine-point stencil. It is aweighted
average of an approximation aligned along the x- and y-axis
with one aligned along the diagonal directions:

1 − ν

h2

0 1 0
1 −4 1
0 1 0

+ ν

(
√
2 h)2

1 0 1
0 −4 0
1 0 1

= 1

2h2

ν 2 − 2ν ν

2 − 2ν 4ν − 8 2 − 2ν
ν 2 − 2ν ν

, (38)

where the weight ν ∈ [0, 1] is used to optimise the rotation
invariance of the stencil. Since the stencil has an axial size
of 3h and a diagonal one of 3

√
2h, we choose ν := √

2− 1.
This leads to the weight ratio (1 − ν) : ν = √

2 : 1, which
compensates for the different sizes. Our experiments will
show that in this way, rotation invariance is approximated
very well.

Space discretisation of backward diffusion For p < 1,
the term (p − 1) sgn(|∇u|)Δu in (37) creates stabilised
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backward diffusion. Here, we base our finite difference
approximation on a minmod discretisation of Osher and
Rudin [44], but improve its rotation invariance again by a
weighted averaging with its diagonally aligned counterpart
with weight ν = √

2 − 1. We denote the forward differ-
ences in x-, y-, and the diagonal directions d = (1, 1) and
e = (1,−1) by

uxi, j := ui+1, j − ui, j
h

, uy
i, j := ui, j+1 − ui, j

h
, (39)

udi, j := ui+1, j+1 − ui, j√
2 h

, uei, j := ui+1, j−1 − ui, j√
2 h

. (40)

By M (a, b, c) we abbreviate the minmod function of three
arguments which chooses the argument of minimal modulus
if the arguments have the same sign, and yields 0 otherwise:

M (a, b, c) :=
⎧
⎨

⎩
argmin
z∈{a,b,c}

|z| if ab ≥ 0 and ac ≥ 0 ,

0 else .

(41)

With these notations we approximate sgn(|∇u|)Δu in pixel
(i, j) by

1−ν
h

(
M (uxi+1, j , u

x
i, j , u

x
i−1, j )

− M (uxi, j , u
x
i−1, j , u

x
i−2, j )

+ M (uy
i, j+1, u

y
i, j , u

y
i, j−1)

− M (uy
i, j , u

y
i, j−1, u

y
i, j−2)

)

+ ν√
2 h

(
M (udi+1, j+1, u

d
i, j , u

d
i−1, j−1)

− M (udi, j , u
d
i−1, j−1, u

d
i−2, j−2)

+ M (uei+1, j−1, u
e
i, j , u

e
i−1, j+1)

− M (uei, j , u
e
i−1, j+1, u

e
i−2, j+2)

)
. (42)

Space discretisation of mean curvature motion Let us now
discuss our approximation of the mean curvature term (2 −
p) curv(u)|∇u| . The isophote curvature

curv(u) = u2xuyy − 2uxuyuxy + u2yuxx

(u2x + u2y)
3/2 (43)

can be discretised in a straightforward way with central dif-
ferences. To avoid a potential singularity in the denominator,
we regularise by adding ε = 10−10 to u2x + u2y . Moreover,
note that the isophote curvature curv(u) describes the inverse
radius of the osculating circle to the level line. Since a discrete
image does not have structures that are smaller than a single
pixel, the smallest practically relevant radius is h

2 . Thus, we
impose a curvature limiter that restricts the computed result
to the range

[− 2
h , 2

h

]
.

Depending on the sign of (2− p) curv(u), we may inter-
pret (2−p) curv(u)|∇u| either as a dilation term (for positive
sign) or an erosion term (for negative sign)with a disc-shaped
structuring element of radius |(2− p) curv(u)|; see e.g. [1].
For a stable discretisation of |∇u|, we use the Rouy–Tourin
upwind scheme [48]. In contrast to our conference paper
[60], we again improve its rotation invariance by a weighted
averaging of axial and diagonal discretisations with weight
ν = √

2 − 1. In the dilation case, this comes down to

|∇u|i, j ≈ (1 − ν)

((
max

(
−uxi−1, j , u

x
i, j , 0

))2

+
(
max

(
−uy

i, j−1, u
y
i, j , 0

))2)1/2

+ ν

((
max

(
−udi−1, j−1, u

d
i, j , 0

))2

+
(
max

(
−uei−1, j+1, u

e
i, j , 0

))2)1/2

(44)

and in the erosion case to

|∇u|i, j ≈ (1 − ν)

((
max

(
−uxi, j , u

x
i−1, j , 0

))2

+
(
max

(
−uy

i, j , u
y
i, j−1, 0

))2)1/2

+ ν

((
max

(
−udi, j , u

d
i−1, j−1, 0

))2

+
(
max

(
−uei, j , u

e
i−1, j+1, 0

))2)1/2

. (45)

Operator splitting The space discretisations we have dis-
cussed convert our PDEs (36) and (37) to systems of ordinary
differential equations (ODEs). Their general structure is
given by

du
dt

= (1 − ν) D+(u) + ν D×(u)

+ (1 − ν) M+(u) + ν M×(u) , (46)

where the vector u assembles the function values of u at
all grid points in our discretised domain. The expressions
D+(u) and D×(u) stand for axial and diagonal discretisa-
tions of the diffusion terms. For p > 1 they refer to the
forward term (p − 1)Δu, and for p < 1 to the stabilised
backward term (p−1)sgn (|∇u|)Δu. Likewise, M+(u) and
M×(u) denote our axial and diagonal discretisations of the
mean curvature motion term (2 − p) curv(u)|∇u|. All dis-
crete operators take into account the homogeneous Neumann
boundary conditions bymirroring oneor two layers of bound-
ary pixels. For t = 0, the ODE system uses the discretised
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original image f as initial condition:

u(0) = f . (47)

For the time discretisation of (46), we proceed in four
explicit fractional steps. Denoting the time step size by τ ,
and u at time level kτ by uk , our scheme is given by

uk+1/4 = uk + τ (1 − ν) D+(uk) , (48)

uk+1/2 = uk+1/4 + τ ν D×(uk+1/4) , (49)

uk+3/4 = uk+1/2 + τ (1 − ν) M+(uk+1/2) , (50)

uk+1 = uk+3/4 + τ ν M×(uk+3/4) . (51)

We will see that compared to an unsplit explicit scheme as
was used in our conference paper [60], the split variant allows
substantially larger time step sizes. For more information on
operator splittingwe refer the reader to the classical literature
[40,41,64].

Consistency Since our resulting explicit scheme uses
various one-sided—and thus first order—finite difference
approximations within its upwind and minmod strategies,
if follows that its general consistency order outside extrema
is O(h + τ). For the pure forward diffusion case p = 2,
however, the second-order stencil (38) gives O(h2 + τ).

Stability Stability of a numerical algorithm typically refers
to the discrete preservation of an essential property of the
continuous process. By design, all M-smoothers satisfy a
maximum–minimum principle, which states that maxima
must not become larger during filtering, and minima not
smaller. Since our PDEs of interest have been derived as
limits of M-smoothers, it is natural that they should obey a
maximum–minimumprinciple aswell. This is also supported
by the fact that all our evolutions under consideration satisfy
ut ≤ 0 in maxima and ut ≥ 0 in minima. This motivates
us to study the stability of our algorithm in terms of a dis-
crete maximum–minimum principle, which obviously also
implies L∞-stability. To this end we show that all fractional
steps (48)–(51) in our explicit scheme are designed to satisfy
a discrete maximum–minimum principle for suitably chosen
time step sizes. Since the details are somewhat cumbersome
and do not give more general insights, we sketch only the
basic ideas.

For p > 1 and ν < 1, the first fractional step (48) approx-
imates the equation ut = (1− ν)(p − 1)Δu with an explicit
axial scheme. This leads to a stencil with weight sum 1. All
noncentral weights are nonnegative, and the central stencil
weight is given by 1 − 4(1 − ν)(p − 1) τ

h2
. It becomes non-

negative for

τ ≤ h2

4(1 − ν) |p − 1| =: τ1 . (52)

In this case the scheme computes a convex combination of
data from the previous time step, which implies a maximum–
minimum principle.
Osher and Rudin [44] report the same stability limit for their
minmod scheme for stabilised backward diffusion as one gets
for the forward process, and they emphasise that their scheme
does neither increase local maxima no does it decrease local
minima. Thus, the step size restriction (52) also holds for the
stabilised backward PDE ut = (1− ν)(p − 1)sgn(|∇u|)Δu
that is approximated by Step (48) for p < 1. Note that (52)
formally becomes singular for p = 1 or ν = 1, when the
evolution equation in the first fractional step degenerates to
ut = 0. In this case the fractional step does nothing at all,
such that its stability limit could be seen as τ1 = ∞. The
same considerations also apply for the step size limits of the
other fractional steps that we discuss below.

The second fractional step (49) approximates the forward
diffusion PDE ut = ν(p− 1)Δu for p > 1, or the stabilised
backward process ut = ν(p − 1)sgn(|∇u|)Δu for p < 1,
but in both cases with a diagonal stencil. Hence, we can use
the same reasoning as in the first step, if we exchange 1 − ν

by ν and h by h
√
2. This leads to the stability limit

τ ≤ h2

2ν |p − 1| =: τ2 . (53)

For an axial stencil, the classical Rouy–Tourin scheme for
the dilation/erosion evolutions ut = ±|∇u| is well known
to satisfy amaximum–minimum principle if its time step size
obeys τ ≤ h

2

√
2 ; see e.g. [9]. Thus, the third fractional step

(50), which approximates ut = (1− ν)(2− p)curv(u)|∇u|
with a curvature limiter interval

[− 2
h , 2

h

]
, must satisfy the

step size restriction

τ ≤ h2

2
√
2 (1 − ν) |2 − p| =: τ3 . (54)

Similar arguments can be used for the fourth fractional
step (51). Since it approximates the equation ut = ν(2 −
p)curv(u)|∇u| on a diagonal stencil, we obtain the time step
size restriction

τ ≤ h2

2 ν |2 − p| =: τ4 . (55)

These considerations immediately lead to the following sta-
bility result:

Proposition 7 (Numerical Stability) Let the splitting scheme
(48)–(51) be equipped with mirrored boundary layers and
initialisation u0 = f . Moreover, let its time step size τ satisfy

τ ≤ min{τ1, τ2, τ3, τ4} (56)
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Fig. 2 Smoothing effect of the
different evolution equations on
the test image trui. Recomputed
from [60] with our improved
algorithm

original (256 × 256) midrange (t = 8) mean (t = 5)

median (t = 5) mode (t = 3) Gabor (t = 2.5)

original (256 × 256) midrange (t = 8) mean (t = 5)

median (t = 5) mode (t = 3) Gabor (t = 2.5)

with τ1, …,τ4 from (52)–(55).
Then the scheme is L∞-stable,

‖uk‖∞ ≤ ‖uk−1‖∞ ∀k ≥ 1 , (57)

and respects the discrete maximum–minimum principle

min
i, j

fi, j ≤ ukn,m ≤ max
i, j

fi, j ∀n,m, ∀k ≥ 1 . (58)

In practice the step size limit (56) is not very restrictive:
With h := 1 and ν = √

2− 1, it comes down to τ ≤ 0.4267
for the diffusion evolution (p = 2), to τ ≤ 0.6035 for
mean curvature motion (p = 1), to τ ≤ 0.2011 for the
mode equation (p = −1), and to τ ≤ 0.1422 for the Gabor
flow (p = −2). These limits are larger than the ones in our
conference paper [60], and they allow efficient numerical
approximations of PDE evolutions for M-smoothers.

7 Experiments

In our experiments, we evaluate the PDE (7) with five differ-
ent settings for p: a temporally rescaled midrange evolution
(p → ∞) using ut = uηη with τ = 0.25, the mean evolution
leading to homogeneous diffusion (p = 2, τ = 0.25), the
median evolution yielding mean curvature motion (p = 1,
τ = 0.25), the mode evolution (p = −1, τ = 0.1), and the
Gabor flow (p = −2, τ = 0.1). Unless stated otherwise, we
use the diagonal weight ν = √

2 − 1. The first two experi-
ments recompute results from our conference paper [60] by

using our novel algorithm that has been improved w.r.t. rota-
tion invariance and efficiency.

Figure 2 illustrates the effect of these equations on the real-
world test image trui. The CPU times for computing each
of these results on a contemporary laptop are in the order
of half a second. We observe that the midrange filter pro-
duces fairly jagged results, although it has a clear smoothing
effect. Homogeneous diffusion does not suffer from jagged
artefacts, but blurs also important structures such as edges.
The median evolution is designed to smooth only along iso-
lines which results in a smaller deterioration of edge-like
structures. The mode and the Gabor evolutions are very sim-
ilar. They produce the sharpest results and may even enhance
edges due to their backward parabolic term (p − 1) uηη.

Figure 3 allows to judge if our numerical algorithm is capa-
ble of reproducing the rotationally invariant behaviour of its
underlying PDE (7). We observe excellent rotation invari-
ance. Moreover, we see that the mode and Gabor evolutions
have comparable shrinkage properties as mean curvature
motion. However, they differ from mean curvature motion
by their backward term (p − 1) uηη, which can compensate
dissipative artefacts that are caused by the discretisations of
the forward parabolic term uξξ .

Figure 4 illustrates the staircasing behaviour of the mode
evolution. As already mentioned, staircasing is a common
phenomenon for PDEs that enhance images by means of
some backward parabolic concepts. It has been observed
for the Perona–Malik filter [47], for forward-and-backward
(FAB) diffusion [26], and for shock filters [35,45]. Stair-
casing becomes pronounced if a smoothly varying image
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Fig. 3 Effect of the different
evolution equations on a disc.
Recomputed from [60] with our
improved algorithm

original (256 × 256) midrange (t = 100) mean (t = 100)

median (t = 1200) mode (t = 400) Gabor (t = 300)

Fig. 4 Staircasing effect of the
mode evolution on a Gaussian
test image, and influence of the
diagonal weight ν on the
rotation invariance. Image size:
256 × 256. Evolution time:
t = 100

original ν = 0 ν =
√
2 − 1

ν = 0.5 ν = 1

structure is to be enhanced. Therefore, we have chosen a
Gaussian-like test image, which also allows to judge the rota-
tion invariance of our algorithm for different values of the
diagonal weight ν. We observe that ν also has some impact
on the number and size of the evolving stairs: Since back-
ward parabolic processes are very sensitive w.r.t. the data and
corresponding algorithms, such a behaviour is not unnatural.
The discretisation with ν = 0 produces the coarsest stairs,

while the ones for ν = √
2−1 are particularly small. Regard-

ing rotation invariance, Fig. 4 shows that a pure axial (ν = 0)
or a pure diagonal approximation (ν = 1) perform relatively
bad, which is to be expected. We see that the proposed value
of ν = √

2−1 ≈ 0.4142 yields the most favourable result. It
also outperforms the result for ν = 0.5. The latter parameter
was used in the discretisation of the diffusion term in our
conference paper [60].
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Fig. 5 Shape simplification
properties of the mode
evolution. Image size:
561 × 792. Source of binarised
original image: https://www.
kissclipart.com/best-priced-
decals-halloween-decor-witch-
and-brew-rmm1nq/

original t = 70 t = 300 t = 800

t = 2000 t = 5000 t = 8000 t = 10000

Fig. 6 Shape simplification
properties of iterated
histogram-based mode filtering
with a disc of radius 13. Image
size: 561 × 792

original 8 iterations 32 iterations 87 iterations

220 iterations 540 iterations 870 iterations 1100 iterations

In Fig. 5, we study the shape simplification properties of
the mode evolution by applying it to the binary image of
a witch. We observe that under the mode evolution, con-
nected components remain connected. It shrinks the shape in
such a way that highly curved structures evolve faster than
less curved ones, resulting in an evolution where nonconvex
shapes become convex and vanish in finite time by shrink-
ing to a so-called circular point. Thus, the mode evolution
appears to enjoy experimentally the same binary shape sim-

plification qualities as the theory states for mean curvature
motion. This may surprise at first glance when looking only
at the PDEs: Mean curvature motion is a morphologically
invariant geometric PDE in the sense of Alvarez et al. [1],
while the mode evolution is not. The M-smoother interpreta-
tion can shed some light on this: While the mode evolution is
designed to reproduce the qualities of mode filtering, mean
curvature motion is related to median filtering. For binary
data, we face a specific scenario where median and mode
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coincide. Moreover, both median and mode filters preserve
the binary nature. Finite difference approximations for mean
curvature motion, however, suffer from dissipative artefacts
which result in unwanted blurring that destroys the binary
nature. Because of its backward parabolic term, the mode
evolution does not suffer from these dissipative artefacts.
Figure 5 shows that it can preserve the binary nature of the
data very well. This property constitutes a distinctive advan-
tage over mean curvature motion and makes the binary mode
evolution attractive for shape analysis problems.

The results in Fig. 5 can be juxtaposed to the ones in
Fig. 6. The latter one shows the effect of a histogram-based
implementation of iterative mode filtering: In every itera-
tion it replaces each pixel by its mode within a disc-shaped
neighbourhood of radius 13 pixels. Although our PDE limit
has been obtained only for vanishing radii and although its
numerical scheme approximates the PDE only with first-
order consistency, we observe a large qualitative agreement
of Figs. 5 and 6. This confirms the validity of the PDE limit.

8 Summary and Conclusions

We have established a comprehensive analysis that identifies
the PDE limit for the full class of iterated M-smoothers with
order-p means. Our discussion was not restricted to the two-
dimensional case which constitutes the most natural setting
in image analysis: We have also derived analog results in the
one- and three-dimensional case. This allows to gain deeper
structural insights into the general behaviour of this filter
class.

In the 2D setting, our analysis does not only reproduce
known results formean andmedian filtering, but also corrects
a common misconception in the literature: We have shown
the surprising fact that in the continuous limit, mode filtering
does not correspond to p = 0, but results from the limit p →
−1. Moreover, our filter class ut = uξξ + (p − 1) uηη can
also be extended to models that have no interpretation within
the setting ofM-smoothers, e.g. Gabor’s classical method for
p = −2.

At the time being, our results are restricted to grey-
value images. An extension to multivariate data such as
colour images or diffusion tensor fields would be interest-
ing but is not straightforward, and has to be left to future
research. Available results on multivariate median filters
[57,58] indicate that substantial work will be required for
such a generalisation.

Since adequate histogram-based implementations of some
M-smoothers such as mode filtering can become highly non-
trivial when using small local histograms [28,34], we have
proposed a novel numerical algorithm in 2D that can handle
the PDE evolution for arbitrary values of p. Although these
evolutions can be highly anisotropic and may even exhibit

backward parabolic behaviour, we managed to come up with
an L∞-stable finite difference scheme that is efficient, sat-
isfies a maximum–minimum principle and shows excellent
rotation invariance. This has been partly achieved by employ-
ing and adapting powerful stabilisation concepts from the
numerics of hyperbolic PDEs, such as upwinding, minmod
functions, and curvature limiters.

It should be emphasised that our numerical algorithm is
applicable to any stable evolution of type ut = a uξξ +b uηη ,
where a and b may have arbitrary sign. Thus, it is of very
general nature and covers also numerous applications beyond
M-smoothing, including image interpolation [12], adaptive
filter design [2,11], many level set methods [43], as well as
other second-order PDEs in gauge coordinates such as p-
Laplacian evolutions [15,36].

Our experiments indicate that the PDEs for p < 1, such
as the mode evolution, are particularly appealing: They com-
bine strong shape simplification properties with pronounced
sharpening qualities. They clearly deserve more research.

Connecting the class of M-smoothers to the family of
PDE-based methods contributes one more mosaic stone to
the mathematical foundations of image analysis. Since M-
smoothers themselves are related to many other approaches
[42,53,62], including W-smoothers, bilateral filters, mean-
shift and robust estimation, our results can help to gain a
broader and more coherent view on the entire field.
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A Proofs of PDE Approximation Results

A.1 Proof of Proposition 1

A.1.1 Preliminaries: Some Important Integrals

We start by collecting some definite integrals that will be
useful in the following. We define for � ∈ (0, 1) and q ∈ R

Iq :=
∫ 1

√
�

√
1 − ξ2 ξq dξ , (59)

Sq :=
∫ π/2

arcsin
√

�

sinq ϕ dϕ . (60)

With the additional abbreviation

Rq := �q/2
√
1 − � (61)
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we can derive via substituting ξ = sin ϕ and integration by
parts (integrating sinq ϕ cosϕ and differentiating cosϕ)

Iq =
∫ π/2

arcsin
√

�

sinq ϕ cos2 ϕ dϕ

= 1

q + 1

[
sinq+1 ϕ cosϕ

]π/2
arcsin

√
�

+ 1

q + 1
Sq+2

= −1

q + 1
Rq+1 + 1

q + 1
Sq+2 (62)

for q �= −1. Moreover, we have by 1 = sin2 ϕ + cos2 ϕ

Sq =
∫ π/2

arcsin
√

�

sinq ϕ cos2 ϕ dϕ + Sq+2

= −1

q + 1
Rq+1 + q + 2

q + 1
Sq+2 (63)

for q �= −1 which allows to transform Sq into Sq+2 and vice
versa.

From (62) we can obtain thereby

Ip−4 = −1

p − 3
Rp−3 + −1

(p − 1)(p − 3)
Rp−1

+ −p

(p + 1)(p − 1)(p − 3)
Rp+1

+ (p + 2)p

(p + 1)(p − 1)(p − 3)
Sp+2 , (64)

Ip−2 = −1

p − 1
Rp−1 + −1

(p + 1)(p − 1)
Rp+1

+ p + 2

(p + 1)(p − 1)
Sp+2 , (65)

Ip = −1

p + 1
Rp+1 + 1

p + 1
Sp+2 , (66)

Ip+2 = −1

p + 4
Rp+3 + 1

p + 4
Sp+2 , (67)

for real pwith exception of some odd integers. Note that also
for the exceptional values (where some of the denominators
become zero) the integrals exist.

A.1.2 Regular Points: Ansatz via Taylor Expansion

Let the image u and mean order p be given as in the proposi-
tion.Assumew.l.o.g. that the regular location x0 is (0, 0)with
u(0, 0) = 0, and that the gradient of u at (0, 0) is in the pos-
itive x direction, i.e. ux > 0, uy = 0. Let a neighbourhood
radius � > 0 be given, and denote the closed (Euclidean)
�-neighbourhood of (0, 0) by D�.

UsingTaylor expansion of u up to third order, we canwrite
for (x, y) ∈ D�

u(x, y) = α
(
x + βx2 + γ xy + δy2 + ε0x

3 + ε1x
2y

+ ε2xy
2 + ε3y

3) + O(
(x + y)4

)
(68)

where α = ux , 2β = uxx/ux , γ = uxy/ux , 2δ = uyy/ux .
We assume that � is chosen small enough such that ux

is positive everywhere in D�, each level set of u within the
disc D� is either a smooth line connecting two points at the
circular boundary of the disc, or one of two single points on
the boundary ofD� whereu takes itsmaximumandminimum
on D�, respectively.

The order-p mean of u within D� is the minimiser of

E0(μ) := sgn (p)
∫∫

D�

|u(x, y) − μ|p dy dx . (69)

By some rough estimates one can conclude that for � → 0,
μ ∼ �2. We substitute therefore

x = �ξ , y = �η , μ = �2ακ , u(x, y) = �αω(ξ, η)(70)

and obtain

E0(μ) = sgn (p)�p+2α pE(κ) , (71)

E(κ) =
∫∫

D1

|ω − κ�|p dη dξ , (72)

ω(ξ, η) = ξ + βξ2� + γ ξη� + δη2� + ε0ξ
3�2 + ε1ξ

2η�2

+ ε2ξη2�2 + ε3η
3�2 + O(

�3(ξ + η)
)

. (73)

In the following we focus therefore on finding the extremum
of E (minimum for p > 0, maximum for p < 0).

A.1.3 Separation of the Integral

The integral E from (72) can be reorganised into a nested
integration where the inner integral integrates along a level
line of ω going through (ξ, 0), and the outer integral then
integrates along the ξ axis. We have

E(κ) =
∫ 1

−1

(∫ η∗+(ξ)

η∗−(ξ)

1
∂ω
∂ξ

(
ξ̃ (η), η

) dη

)

× |ω(ξ, 0) − κ�|p ∂ω

∂ξ
(ξ, 0) dξ + O(�3) (74)

where ξ̃ is a function of η that describes the level line of ω

that goes through (ξ, 0), and reaches the boundary of D1 at
η∗+ > 0 and η∗− < 0. (Note that the fact that ωξ is positive
throughout D1 implies that the level line through (ξ, 0) can
be described in this way.)
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The error termO(�3) results from the neglection of those
level lines near the maximum and minimum of ω within D1

that do not reach the ξ axis within D1.
In (74), the inner integral

V (ξ) :=
∫ η∗+(ξ)

η∗−(ξ)

1
∂ω
∂ξ

(
ξ̃ (η), η

) dη (75)

measures the density of the value ω(ξ, 0) in the overall dis-
tribution of ω values within D1 by integrating along the level
line ξ̃ (η) with η as integration parameter the inverse den-
sity of level lines in ξ direction. It is important here that the
inverse density of level lines is measured in a direction per-
pendicular to that of integration. The density of level lines in
ξ direction is exactly the derivative ∂ω/∂ξ taken at the point
(ξ̃ , η), i.e. the denominator of the integrand.

Integrating the quantity V multiplied with the penaliser
|ω − κ�|p would directly yield E(κ) if the integration were
carried out w.r.t. ω. We prefer, however, to keep the integra-
tion over ξ in order to avoid plugging in the inverse function
of ω(ξ) ≡ ω(ξ, 0) everywhere in the expressions. This is
compensated by the factor (∂ω/∂ξ)(ξ, 0) placed at the end
of the integrand of (74) that represents just the substitution
of ω with ξ (along the ξ axis η = 0) as integration variable.

For ease of evaluation, we combine in the following the
substitution factor with the weight V (ξ) in one single expres-
sion:

W (ξ) := ∂ω

∂ξ
(ξ, 0) V (ξ) =

∫ η∗+(ξ)

η∗−(ξ)

∂ω
∂ξ

(ξ, 0)
∂ω
∂ξ

(
ξ̃ (η), η

) dη (76)

A.1.4 Evaluation of the Inner (Weight) Integral

To evaluate (76), we determine first the level line function
ξ̃ (η) for given ξ = ξ̃ (0) by using the Taylor expansion (73):

ω(ξ, 0) = ω(ξ̃ (η), η) (77)

ξ + βξ2� + ε0ξ
3�2 = ξ̃ + (

βξ̃2 + γ ξ̃η + δη2
)
�

+(
ε0ξ̃

3 + ε1ξ̃
2η + ε2ξ̃ η2 + ε3η

3)�2 + O(�3) (78)

ξ̃ (η) = ξ − (γ ξ + δη)η�

+ (
(2βξ + γ η)(γ ξ + δη) − ε1ξ

2 − ε2ξη − ε3η
2)η�2

+O(�3) . (79)

The η coordinates η∗± of the end points of the level line are
obtained from the condition ξ̃2 + η∗2 = 1 as

η∗± = ±
√
1 − ξ2 + (

γ ξ2 ± δξ
√
1 − ξ2

)
�

+ (
χ(ξ) ± ψ(ξ)

√
1 − ξ2

)
�2 + O(�3) (80)

where

χ(ξ) = χ0 + χ1ξ + χ2ξ
2 + χ3ξ

3 + χ4ξ
4 , (81)

ψ(ξ) = ψ0 + ψ1ξ + ψ2ξ
2 + ψ3ξ

3 (82)

are polynomials in ξ the exact coefficients of which are not
further needed.

Based on the Taylor expansion (73) we obtain

∂ω

∂ξ
(ξ, η) = 1 + (

2βξ + γ η
)
�

+ (
3ε0ξ

2 + 2ε1ξη + ε2η
2)�2 + O(�3) , (83)

∂ω

∂ξ
(ξ, 0) = 1 + 2βξ� + 3ε0ξ

2�2 + O(�3) , (84)

and with (79)

∂ω

∂ξ
(ξ̃ , η) = 1 + (

2βξ + γ η
)
� + (−2βγ ξη − 2βδη

+ 3ε0ξ
2 + 2ε1ξη + ε2η

2)�2 + O(�3) . (85)

Combining (84) and (85) we have

∂ω
∂ξ

(ξ, 0)
∂ω
∂ξ

(ξ̃ , η)
= 1 − γ η� + (

4βγ ξη + 2βδη2 + γ 2η2

− 2ε1ξη − ε2η
2)�2 + O(�3) (86)

and therefore

W (ξ) =
∫ η∗+

η∗−
dη + (−γ � + 4βγ ξ�2 − 2ε1ξ�2)

∫ η∗+

η∗−
η dη

+ (
2βδ + γ 2 − ε2

)
�2

∫ η∗+

η∗−
η2 dη + O(�3)

= (
η∗+ − η∗−

) + 1

2

(−γ + 4βγ ξ� − 2ε1ξ�
)
�
(
η∗+

2 − η∗−
2)

+ 1

3

(
2βδ + γ 2 − ε2

)
�2(η∗+

3 − η∗−
3) + O(�3) . (87)

From (80) one sees that

η∗+ − η∗− = 2
√
1 − ξ2 + 2δξ

√
1 − ξ2�

+ 2ψ(ξ)
√
1 − ξ2�2 + O(�3) , (88)

η∗+
2 − η∗−

2 = 4γ ξ2
√
1 − ξ2� + O(�2) , (89)

η∗+
3 − η∗−

3 = 2(1 − ξ2)3/2 + O(�) , (90)
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which allows to continue (87) into

W (ξ) = 2
√
1 − ξ2 + 2δξ

√
1 − ξ2� + 2ψ(ξ)

√
1 − ξ2�2

− 2γ 2ξ2
√
1 − ξ2�2

+ 2

3

(
2βδ + γ 2 − ε2

)
(1 − ξ2)3/2�2 + O(�3)

=
(
2 +

(
4

3
βδ + 2

3
γ 2 − 2

3
ε2 + 2ψ0

)
�2

) √
1 − ξ2

+ (2δ + 2ψ1�) �ξ
√
1 − ξ2

+
(

−2γ 2 − 4

3
βδ − 2

3
γ 2 + 2

3
ε2 + 2ψ2

)

× �2ξ2
√
1 − ξ2

+ 2ψ3�
2ξ3

√
1 − ξ2 + O(�3)

=
(
(w0,0 + w0,2�

2) + w1�ξ + w2�
2ξ2

+ w3�
2ξ3

)√
1 − ξ2 + O(�3) (91)

with

w0,0 = 2 ,

w0,2 = 4

3
βδ + 2

3
γ 2 − 2

3
ε2 + 2ψ0 ,

w1 = 2δ + 2ψ1� ,

w2 = −2γ 2 − 4

3
βδ − 2

3
γ 2 + 2

3
ε2 + 2ψ2 ,

w3 = 2ψ3 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(92)

A.1.5 Domain Splitting of the Outer Integral

The outer integral of (74), i.e. the integration of W (ξ) with
the penaliser function |ω − κ�|p, is now split into four parts.

First, we split the integration interval at ξ = ν� where
ω(ν�) = κ� to reduce |ω−κ�| to either ω−κ� or−ω+κ�

in each subinterval. By (73) one has ν = κ + O(�2).
Second, the density termW (ξ) contains

√
1 − ξ2 which is

not differentiable at ±1, precluding Taylor expansion of this
term near the outer interval boundaries. On the other hand,
the p-th power penaliser is for p ≤ 1 not differentiable at 0
and can therefore not be treated by Taylor expansion at the
boundary ν between the two integration intervals. For this
reason, we split each of the two intervals again at |ξ | = √

�.
This allows to simplify the integrals in later steps by applying
Taylor expansion to either W (ξ) or the penaliser function,
safely avoiding the critical regions of each.

As a result, we have

E(κ) = F−(κ) + G−(κ) + G+(κ) + F+(κ) + O(�3) ,

(93)

F−(κ) =
∫ −√

�

−1
W (ξ)

(−ω(ξ) + κ�
)p dξ

=
∫ 1

√
�

W (−ξ)
(−ω(−ξ) + κ�

)p dξ , (94)

G−(κ) =
∫ ν�

−√
�

W (ξ)
(−ω(ξ) + κ�

)p dξ

=
∫ √

�+ν�

0
W (−(ξ − ν�))

× (−ω(−(ξ − ν�)) + κ�
)p dξ , (95)

G+(κ) =
∫ √

�

ν�

W (ξ)
(
ω(ξ) − κ�

)p dξ

=
∫ √

�−ν�

0
W (ξ + ν�)

(
ω(ξ + ν�) − κ�

)p dξ ,

(96)

F+(κ) =
∫ 1

√
�

W (ξ)
(
ω(ξ) − κ�

)p dξ . (97)

A.1.6 Evaluation of the Outer Integral I

We start by evaluating the integrals F∓. In the following the
upper signs refer to F−, the lower ones to F+. In expanding
the power (1+ . . .)p by a Taylor series, it is important to note
that �/ξ is of order O(√

�
)
due to the lower integral bound.

F∓ =
∫ 1

√
�

W (∓ξ)
(∓ω(∓ξ) ± κ�

)p dξ

=
∫ 1

√
�

W (∓ξ)
(
ξ ∓ βξ2� ± κ� + ε0ξ

3�2 + O(�3ξ)
)p dξ

=
∫ 1

√
�

W (∓ξ)ξ p
(
1 ± κ

�

ξ
∓ βξ� + ε0ξ

2�2 + O(�3)

)p

dξ

=
∫ 1

√
�

W (∓ξ) ξ p
(
1 ± pκ

�

ξ
∓ pβξ� + pε0ξ

2�2

+
(
p

2

)
κ2 �2

ξ2
− 2

(
p

2

)
βκ�2 +

(
p

2

)
β2ξ2�2

∓
(
p

3

)
κ3 �3

ξ3
+

(
p

4

)
κ4 �4

ξ4
+ O(�5/2)

)
dξ

=
∫ 1

√
�

(
(w0,0 + w0,2�

2) ∓ w1�ξ + w2�
2ξ2

∓ w3�
2ξ3 + O(�3)

)
ξ p

√
1 − ξ2

×
(
1 ± pκ

�

ξ
∓ pβξ� +

(
p

2

)
κ2 �2

ξ2
∓

(
p

3

)
κ3 �3

ξ3
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+ pε0ξ
2�2 − 2

(
p

2

)
βκ�2 +

(
p

2

)
β2ξ2�2

+
(
p

4

)
κ4 �4

ξ4
+ O(�5/2)

)
dξ . (98)

This gives

F− + F+ = 2
∫ 1

√
�

w0,0ξ
p
√
1 − ξ2

(
1 +

(
p

2

)
κ2 �2

ξ2

+ pε0ξ
2�2 − 2

(
p

2

)
βκ�2 +

(
p

2

)
β2ξ2�2

+
(
p

4

)
κ4 �4

ξ4
+ O(�5/2)

)
dξ

+ 2
∫ 1

√
�

(
w0,2 + w2ξ

2
)
�2ξ p

√
1 − ξ2

×
(
1 + O(�1/2)

)
dξ

+ 2
∫ 1

√
�

(
w1�ξ + O(�2)

)
ξ p

√
1 − ξ2

×
(

−pκ
�

ξ
+ pβξ� + O(�3/2)

)
dξ

= 2w0,0

(
p

4

)
κ4�4 Ip−4 + 2w0,0

(
p

2

)
κ2�2 Ip−2

+ 2

(
w0,0 − 2w0,0

(
p

2

)
βκ�2 + w0,2�

2

−w1 pκ�2
)
Ip

+ 2

(
w0,0 pε0�

2 + w0,0

(
p

2

)
β2�2 + w2�

2

+w1 pβ�2
)
Ip+2 + O(�5/2) (99)

and by (64)–(67) we obtain

F− + F+ = 2w0,0

(
p

4

)
κ4�4

(−Rp−3

p − 3
+ −Rp−1

(p − 1)(p − 3)

+ −p Rp+1

(p + 1)(p − 1)(p − 3)

+ (p + 2)p Sp+2

(p + 1)(p − 1)(p − 3)

)

+ 2

(
w0,0

(
p

2

)
κ2�2

) (−Rp−1

p − 1

+ −Rp+1

(p + 1)(p − 1)
+ (p + 2) Sp+2

(p + 1)(p − 1)

)

+ 2

(
w0,0 − 2w0,0

(
p

2

)
βκ�2 + w0,2�

2

−w1 pκ�2)
(−Rp+1

p + 1
+ Sp+2

p + 1

)

+ 2

(
w0,0 pε0�

2 + w0,0

(
p

2

)
β2�2 + w2�

2

+w1 pβ�2)
(−Rp+4

p + 4
+ Sp+2

p + 4

)

+ O(�5/2) (100)

= w0,0
2

p + 1
Sp+2 +

(
w0,0

(p + 2)p

(p + 1)
κ2

−w0,0
2p(p − 1)

p + 1
βκ + w0,2

1

p + 1
− w1

p

p + 1
κ

+ w0,0
2p

p + 4
ε0 + w0,0

p(p − 1)

(p + 4)
β2 + w2

2

p + 4

+w1
2p

p + 4
β

)
�2Sp+2

− w0,0
2

p + 1
�(p+1)/2

√
1 − �

− w0,0 pκ
2�(p+3)/2

√
1 − �

−
(

w0,0
p(p − 1)(p − 2)

12
κ4 + w0,0

p

(p + 1)
κ2

−w0,0
2p(p − 1)

p + 1
βκ

)
�(p+5)/2

√
1 − �

+ O(�5/2) . (101)

In the intermediate step (100) the factors p−1, p−3 occur in
the denominators of some terms, whichwould necessitate the
exclusion of p = 1 and p = 3. However, we see in (99) that
the coefficient

(p
4

)
in front of Ip−4 vanishes for p = 1 and

p = 3, and similarly
(p
2

)
in front of Ip−2 vanishes for p = 1,

thus sparing the expansion of the respective integrals via (64)
and (65). With this consideration, (101) can be obtained also
in these cases.

A.1.7 Evaluation of the Outer Integral II

We turn now to evaluating G∓. After expanding ω in the
penaliser function and cancelling terms due to ν = κ +
O(�2)we substitute ξ = √

� ζ . Using furthermore theTaylor
expansion of ω in ξ direction around ν�,

ω(ν� + ξ) = κ� + (1 + 2 βν�2)ξ + β�ξ2 + O(�3ξ) ,

(102)

we obtain

G∓ =
∫ √

�±ν�

0
W (∓ξ + ν�)

(∓ω(∓ξ + ν�) ± κ�
)p dξ

=
∫ √

�±ν�

0
W (∓ξ + ν�)

(
ξ ∓ ν� ∓ βξ2� + 2βξν�2

+ O(�3ξ) ± κ�
)p dξ

=
∫ √

�±ν�

0
W (∓ξ + ν�)

(
ξ ∓ βξ2� + 2βξν�2

+ O(�3ξ)
)p dξ

= √
�

∫ 1±ν
√

�

0
W

(∓ζ
√

� + ν�
) (

ζ
√

� ∓ βζ 2�2
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+2βζν�5/2 + O(�7/2ζ )
)p

dζ

= �(p+1)/2
∫ 1±ν

√
�

0
W

(∓ζ
√

� + ν�
)

×
(
1 ∓ βζ�3/2 + O(�2)

)p
ζ p dζ

(91)= �(p+1)/2
∫ 1±ν

√
�

0

((
w0,0 ∓ w1�

3/2ζ
)

×
√
1 − (ζ

√
� ∓ ν�)2 + O(�2)

)

×
(
1 ∓ βζ�3/2 + O(�2)

)p
ζ p dζ

(92)= �(p+1)/2
∫ 1±ν

√
�

0

(
2
(
1 ∓ δ�3/2ζ

)

×
(
1 − 1

2
ζ 2� ± ζν�3/2

)

×
(
1 ∓ pβζ�3/2

)
+ O(�2)

)
ζ p dζ

= �(p+1)/2
∫ 1±ν

√
�

0
2

(
1 ∓ δ�3/2ζ − 1

2
ζ 2� ± ζν�3/2

∓ pβζ�3/2
)

ζ p dζ + O(�(p+5)/2)

= 2�(p+1)/2

(∫ 1±ν
√

�

0
ζ p dζ

∓(δ + pβ)�3/2
∫ 1±ν

√
�

0
ζ p+1 dζ

−1

2
�

∫ 1±ν
√

�

0
ζ p+2 dζ

)
+ O(�(p+5)/2)

= 2�(p+1)/2
(

1

p + 1
(1 ± ν

√
�)p+1

∓ 1

p + 2
(δ + pβ)�3/2(1 ± ν

√
�)p+2

− 1

2(p + 3)
�(1 ± ν

√
�)p+3

)
+ O(�(p+5)/2)

= 2�(p+1)/2
(

1

p + 1

(
1 ± (p + 1)ν

√
�

+
(
p + 1

2

)
ν2� ±

(
p + 1

3

)
ν3�3/2

)

∓ 1

p + 2
(δ + pβ)�3/2 − 1

2(p + 3)
�

±(p + 3)ν�3/2
)

+ O(�(p+5)/2) (103)

G− + G+ = 2�(p+1)/2
(

2

p + 1
+ pν2� − 1

p + 3
�

)

+ O(�(p+5)/2) . (104)

A.1.8 Extremum of the Combined Integral

Combining (93), (101) and (104), applying (92) and ν =
κ + O(�2) we obtain

E(κ) = 4

p + 1
Sp+2 +

(
2
(p + 2)p

p + 1
κ2 − 2

2p(p − 1)

p + 1
βκ

+
(
4

3
βδ + 2

3
γ 2 − 2

3
ε2 + 2ψ0

)
1

p + 1

− 2δ
p

p + 1
κ + 2

2p

p + 4
ε0 + 2

p(p − 1)

p + 4
β2

+
(

−2γ 2 − 4

3
βδ − 2

3
γ 2 + 2

3
ε2 + 2ψ2

)
2

p + 4

+ 2δ
2p

p + 4
β

)
�2Sp+2

− 4

p + 1
�(p+1)/2

√
1 − � − 2pκ2�(p+3)/2

√
1 − �

+ 2�(p+1)/2
(

2

p + 1
+ pκ2� − 1

p + 3
�

)

+ O(�5/2) + O(�(p+5)/2)

= const(κ)

+
(

−−4p(p − 1)

p + 1
β�2Sp+2 − 2p

p + 1
δ�2Sp+2

)
κ

+
(
2(p + 2)p

p + 1
�2Sp+2 − 2p�(p+3)/2

√
1 − �

+2p�(p+3)/2
)

κ2 + O(
�min{(p+5)/2,5/2})

= const(κ) + O(
�min{(p+5)/2,5/2})

+
(

−−4p(p − 1)

p + 1
β�2Sp+2 − 2p

p + 1
δ�2Sp+2

)
κ

+
(
2(p + 2)p

p + 1
�2Sp+2

)
κ2 . (105)

It is worth noting that the �(p+3)/2 contributions cancelling
in the last step belong to the integration boundaries of F∓
and G∓ at ±√

�.
For � → 0, the last expression (105) is a quadratic func-

tion of κ with its apex at

κ = −−−4p(p−1)
p+1 β�2Sp+2 − 2p

p+1δ�
2Sp+2

2 2(p+2)p
p+1 �2Sp+2

+ O(�min{(p+1)/2,1/2})

= p − 1

p + 2
β + 1

p + 2
δ + O(�min{(p+1)/2,1/2}) . (106)

Due to the sign of the κ2 coefficient in (105) the apex is a
minimum for p > 0 and a maximum for p < 0. The sgn (p)
factor in the original energy function E0 compensates for this
such that E0 is always minimised.
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A.1.9 Conclusion for Regular Points

From (106) the claim of the proposition for regular points
follows by substituting back κα�2 = μ, αβ = uxx/2, αδ =
uyy/2, and noticing that by our ansatz ux > 0, uy = 0 the
coordinates x , y coincide with the geometric coordinates η,
ξ as used in the proposition.

A.1.10 Critical Points

The inequalities for local minima (maxima) are obvious con-
sequences of the fact that for any � > 0 the mean-p filter
value is in the convex hull of values u(x), x ∈ D�(x0). ��

A.2 Proof of Proposition 2

With the same substitutions as in the previous proof, themode
of ω is given by the maximiser of V (ξ). By a slight modi-
fication of the calculations of the previous proof one finds

V (ξ) = 2 (1 + δξ� − 2βξ�)
√
1 − ξ2 + O(ξ2�2) . (107)

Equating V ′(ξ) to zero yieldsω(ξ) = (δ−2β)�+O(�2) for
the mode. For local minima (maxima), the same reasoning
as in the previous proof applies. ��

A.3 Proof of Proposition 3

We proceed largely analogous to the proof of Proposition 1
in Appendix A.1. However, the integral decomposition gets
simpler since no infinite ascents of the weighting at the inte-
gral boundaries ±1 need to be controlled.

A.3.1 Regular Points: Ansatz via Taylor Expansion

Let the signal u and mean order p be given as in the propo-
sition. Assume w.l.o.g. that the regular location x0 is 0 with
u(0) = 0, and that the derivative of u at 0 is positive,
ux (0) > 0. Let a neighbourhood radius � be given.

Using Taylor expansion of u up to third order, we obtain
for −� ≤ x ≤ � the following expression:

u(x) = α(x + βx2 + εx3) + O(x4) (108)

where α = ux , 2β = uxx/ux .
We assume that � is chosen small enough so ux is pos-

itive throughout [−�, �], i.e. u is strictly monotonic within
this interval. The order-p mean of u within [−�, �] is the
minimiser of

E0(μ) := sgn (p)
∫ �

�

|u(x) − μ|p dx . (109)

By rough estimates one can again conclude that for � → 0,
μ ∼ �2. We substitute therefore

x = �ξ , μ = �2ακ , u(x) = �αω(ξ) (110)

and obtain

E0(μ) = sgn (p)�p+1α pE(κ) , (111)

E(κ) =
∫ �

�

|ω − κ�|p dξ , (112)

ω(ξ) = ξ + βξ2� + εξ3�2 + O(�3ξ) . (113)

In the following we focus therefore on finding the extremum
of E (minimum for p > 0, maximum for p < 0).

A.3.2 Domain Splitting of the Integral

We split the integral (112) into two parts, using again the
location ξ = ν� where ω(ν�) = κ� as splitting point. By
(113), one has ν = κ + O(�2). We have then

E(κ) = F−(κ) + F+(κ) , (114)

F−(κ) =
∫ ν�

−1

(
κ� − ω(ξ)

)p dξ , (115)

F+(κ) =
∫ 1

ν�

(
ω(ξ) − κ�

)p dξ . (116)

By substituting the integration variables, one obtains

F∓ =
∫ 1±ν�

0

(∓ω(∓ξ + ν�) ± κ�
)p dξ (117)

where again the upper and lower signs refer to F− and F+,
respectively.

A.3.3 Evaluation of the Integrals

The Taylor expansion forω around ν� is identical with (102).
Inserting this into (117), we have further

F∓ =
∫ 1±ν�

0

(
(1 + 2 βν�2)ξ ∓ β�ξ2 + O(�3ξ)

)p dξ

=
∫ 1±ν�

0
ξ p(1 + 2 βν�2 ∓ β�ξ + O(�3)

)p dξ

=
∫ 1±ν�

0
ξ p

(
1 + 2 pβν�2 ∓ pβ�ξ + p(p − 1)

2
β2�2ξ2

+ O(�3)

)
dξ

= (
1 + 2 pβν�2 + O(�3)

) ∫ 1±ν�

0
ξ p dξ

123



Journal of Mathematical Imaging and Vision (2021) 63:157–185 179

∓ pβ�

∫ 1±ν�

0
ξ p+1 dξ

+ p(p − 1)

2
β2�2

∫ 1±ν�

0
ξ p+2 dξ , (118)

from which by evaluating the standard integrals, adding F−
and F+ and inserting ν = κ + O(�2) we reach

E(κ) = F−(κ) + F+(κ)

= const(κ) + p�2
(

κ2 − 2
p − 1

p + 1
βκ

)
+ O(�3) .

(119)

The extremumof E is again found as the apex of the quadratic
function on the r.h.s., fromwhich the claim for regular points
follows.

For critical points, the reasoning from Appendix A.1
applies. ��

A.4 Proof of Proposition 4

Assuming again that the regular location for the signal u
is x0 = 0, and u is strictly monotonically increasing and
Lipschitz within [−�, �], the density of each value u(x) for
−� ≤ x ≤ � is proportional to 1/u′(x). The maximum of
these values is reached at u(−�) if u is convex, or u(�) if u
is concave. This proves the claim for regular points. If x0 is a
local extremum, the density has a pole at u(x0) and is finite
for all other values, making u(x0) the mode. �

A.5 Proof of Proposition 5

A.5.1 Regular Points: Ansatz via Taylor Expansion

Let the volume image u and mean order p be given as in the
proposition. Assume w.l.o.g. that the regular location x0 is
(0, 0, 0) with u(0, 0, 0) = 0, and that the gradient of u at
(0, 0, 0) is in the positive x direction, i.e. ux > 0, uy = uz =
0. Let a neighbourhood radius � > 0 be given, and denote
the closed (Euclidean) �-neighbourhood of (0, 0, 0) by B�.

UsingTaylor expansion of u up to third order, we canwrite
for (x, y, z) ∈ B� the ansatz

u(x, y, z) = α
(
x + βx2 + γ0xy + γ1xz + δ0y

2 + δ1yz + δ2z
2

+ ε0x
3 + ε10x

2y + ε01x
2z + ε20xy

2 + ε11xyz

+ ε02xz
2 + ε30y

3 + ε21y
2z + ε12yz

2 + ε03z
3)

+ O(
(x + y + z)4

)
. (120)

We assume that � is chosen small enough such that ux
is positive everywhere in B�, each level set of u within the
ball B� is either a smooth surface patch bounded by a closed
regular curve on the boundary of the ball, or one of two single

points on the boundary of B� where u takes its maximum and
minimum on B�, respectively.

The order-p mean of u within B� is the minimiser of

E0(μ) := sgn (p)
∫∫∫

B�

|u(x, y, z)−μ|p dz dy dx . (121)

Rough estimates again ensure μ ∼ �2 for � → 0. Combin-
ing an appropriate rescaling with a transition to cylindrical
coordinates with the axis in gradient (x) direction, we sub-
stitute

x = �ξ , y = �η cosϕ , z = �η sin ϕ , μ = �2ακ ,

(122)

u(x, y, z) = �αω(ξ, η, ϕ) (123)

and obtain

E0(μ) = sgn (p)�p+3α pE(κ) , (124)

E(κ) =
∫∫

D1

∫ 2π

0
|ω(ξ, η, ϕ) − κ�|pη dϕ dη dξ , (125)

where the integration in cylindrical coordinates has been
written using the disc D1 for the ξ , η coordinates. The Taylor
expansion of u transfers to

ω(ξ, η, ϕ) = ξ + βξ2� + γ (ϕ)ξη� + δ(ϕ)η2�

+ ε0ξ
3�2 + ε1(ϕ)ξ2η�2 + ε2(ϕ)ξη2�2

+ ε3(ϕ)η3�2 + O(
�3(ξ + η)

)
, (126)

γ (ϕ) := γ0 cosϕ + γ1 sin ϕ , (127)

δ(ϕ) := δ0 cos
2 ϕ + δ1 cosϕ sin ϕ + δ2 sin

2 ϕ , (128)

ε1(ϕ) := ε10 cosϕ + ε01 sin ϕ , (129)

ε2(ϕ) := ε20 cos
2 ϕ + ε11 cosϕ sin ϕ + ε02 sin

2 ϕ ,

(130)

ε3(ϕ) := ε30 cos
3 ϕ + ε21 cos

2 ϕ sin ϕ

+ ε12 cosϕ sin2 ϕ + ε03 sin
3 ϕ . (131)

We aim again at finding the extremum of E .

A.5.2 Separation of the Integral

Similar to Appendix A.1.3, the integral E from (125) can be
reorganised into a nested integration where the inner double
integral (in polar coordinates) integrates over a level surface
of ω going through (ξ, 0, 0), and the outer integral then inte-
grates along the ξ axis. We have

E(κ) =
∫ 1

−1

(∫ 2π

0

∫ η∗(ϕ)

0

η

∂ω
∂ξ

(
ξ̃ (η), η, ϕ

) dη dϕ

)
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× |ω(ξ, 0, 0) − κ�|p ∂ω

∂ξ
(ξ, 0, 0) dξ + O(�3)

(132)

where ξ̃ is a function of η, ϕ that describes the level set of ω

which goes through (ξ, 0, 0), and reaches the boundary of B1

at (η∗(ϕ), ϕ). (Note that our initial assumptions on u ensure
that the level set can be described in this way.)

Analogously to Appendix A.1.3 we rewrite (132) as

E(κ) =
∫ 1

−1
W (ξ) dξ , (133)

W (ξ) :=
∫ 2π

0

∫ η∗(ϕ)

0
η

∂ω
∂ξ

(ξ, 0, 0)
∂ω
∂ξ

(
ξ̃ (η), η, ϕ

) dη dϕ . (134)

A.5.3 Evaluation of the Weight Integral

Within any axial plane (ϕ = const), (126) is exactly
(73). We can therefore transfer verbatim the analysis from
Appendix A.1.4, which leads to the expression (79) for ξ̃ ,
the expression for η∗+ from (80) for η∗(ϕ), and (86) for
∂ω
∂ξ

(ξ, 0, 0)/ ∂ω
∂ξ

(ξ̃ , η, ϕ).
Inserting (86) into the inner integral of (134) leads to

W (ξ, ϕ) :=
∫ η∗(ϕ)

0
η

∂ω
∂ξ

(ξ, 0, 0)
∂ω
∂ξ

(
ξ̃ (η), η, ϕ

) dη

=
∫ η∗(ϕ)

0
η dη

+ (−γ (ϕ)� + 2βγ (ϕ)ξ�2 − 2ε1(ϕ)ξ�2)
∫ η∗

0
η2 dη

+ (
2βδ(ϕ) + γ (ϕ)2 − ε2(ϕ)

)
�2

∫ η∗

0
η3 dη

+ O(�3)

= 1

2
η∗(ϕ)2

+ 1

6
(−γ0 + 2βγ0ξ� − 2ε10ξ�)�η∗(ϕ)3 cosϕ

+ 1

6
(−γ1 + 2βγ1ξ� − 2ε01ξ�)�η∗(ϕ)3 sin ϕ

+ 1

4
(2βδ0 + γ 2

0 − ε20)�
2η∗(ϕ)4 cos2 ϕ

+ 1

2
(2βδ1 + γ0γ1 − ε11)�

2η∗(ϕ)4 cosϕ sin ϕ

+ 1

4
(2βδ2 + γ 2

1 − ε02)�
2η∗(ϕ)4 sin2 ϕ

+ O(�3) . (135)

To finally obtain W (ξ), the latter expression needs to be
integrated over ϕ. From (80) one obtains by lengthy but
straightforward calculation

∫ 2π

0
η∗(ϕ)2 dϕ

= π
(
2(1 − ξ2) + 2(δ0 + δ2)(1 − ξ2)ξ� + (γ 2

0 + γ 2
1 )ξ4�2

+ 1
4 (3δ

2
0 + δ21 + 3δ22 + 2δ0δ2)

+ 2Ψ (ξ)(1 − ξ2)�2)
)

+ O(�3) , (136)

where Ψ is a third-order polynomial in ξ obtained by inte-
grating (82) w.r.t. ϕ,

Ψ (ξ) = 1

π

∫ 2π

0
ψ(ξ, ϕ) dϕ = Ψ0 + Ψ1ξ + Ψ2ξ

2 + Ψ3ξ
3 .

(137)

Analogously one obtains

∫ 2π

0
η∗(ϕ)3 cosϕ dϕ = 3πγ0(1 − ξ2)ξ2� + O(�2) ,(138)

∫ 2π

0
η∗(ϕ)3 sin ϕ dϕ = 3πγ1(1 − ξ2)ξ2� + O(�2) ,(139)

∫ 2π

0
η∗(ϕ)4 cos2 ϕ dϕ = π(1 − ξ2)2 + O(�) , (140)

∫ 2π

0
η∗(ϕ)4 cosϕ sin ϕ dϕ = 0 + O(�) , (141)

∫ 2π

0
η∗(ϕ)4 sin2 ϕ dϕ = π(1 − ξ2)2 + O(�) . (142)

Inserting (135)–(142) into (134) yields after sorting terms,
similarly to (91), (92),

W (ξ) =
(
(w0,0 + w0,2�

2) + (w1,1 + w1,2�)�ξ

+ (w2,0 + w2,2�
2)ξ2 + (w3,1 + w3,2�)�ξ3

+ w4,2�
2ξ4 + w5,2�

2ξ5
)
π + O(�3) (143)
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with

w0,0 = 1 ,

w0,2 = 1
2β(δ0 + δ2) + 1

4 (γ
2
0 + γ 2

1 )

− 1
4 (ε20 + ε02) + Ψ0 ,

w1,1 = δ0 + δ2 ,

w1,2 = Ψ1 ,

w2,0 = −1 ,

w2,2 = −β(δ0 + δ2) − 3
2 (γ

2
0 + γ 2

1 ) + 1
2 (ε20 + ε02)

+ 1
8 (3δ

2
0 + δ21 + 3δ22 + 2δ0δ2) + Ψ2 − Ψ0 ,

w3,1 = −(δ0 + δ2) ,

w3,2 = Ψ3 − Ψ1 ,

w4,2 = 1
2β(δ0 + δ2) + 9

4 (γ
2
0 + γ 2

1 ) − 1
4 (ε20 + ε02)

− 1
8 (3δ

2
0 + δ21 + 3δ22 + 2δ0δ2) − Ψ2 ,

w5,2 = −Ψ3 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(144)

A.5.4 Domain Splitting of the Outer Integral

As the outer integral of (132) has the same structure as in the
2D case, we use the same domain splitting (93).

A.5.5 Evaluation of the Outer Integral I

The first steps in evaluating the integrals F∓ are as in the 2D
case. In (98), the longer expansion (143) has to be used for
W (∓), which then leads to

F∓ =
∫ 1

√
�

(
(w0,0 + w0,2�

2) + (w1,1 + w1,2�)�ξ

+ (w2,0 + w2,2�
2)ξ2 + (w3,1 + w3,2�)�ξ3

+ w4,2�
2ξ4 + w5,2�

2ξ5 + O(�3)
)
πξ p

×
(
1 ± pκ

�

ξ
∓ pβξ� +

(
p

2

)
κ2 �2

ξ2
∓

(
p

3

)
κ3 �3

ξ3

+ pε0ξ
2�2 − 2

(
p

2

)
βκ�2 +

(
p

2

)
β2ξ2�2

+
(
p

4

)
κ4 �4

ξ4
+ O(�5/2)

)
dξ , (145)

which yields

F− + F+ = 2π
∫ 1

√
�

(w0,0 + w2,0ξ
2)ξ p

(
1 +

(
p

2

)
κ2 �2

ξ2

+ pε0ξ
2�2 − 2

(
p

2

)
βκ�2 +

(
p

2

)
β2ξ2�2

+
(
p

4

)
κ4 �4

ξ4
+ O(�5/2)

)
dξ

+ 2π
∫ 1

√
�

(w0,2 + w2,2ξ
2 + w4,2ξ

4)�2ξ p

×
(
1 + O(�1/2)

)
dξ

+ 2π
∫ 1

√
�

(w1,1ξ + w3,1ξ
3)�ξ p

×
(

−pκ
�

ξ
+ pβξ� + O(�3/2)

)
dξ

+ 2π
∫ 1

√
�

(w1,2ξ + w3,2ξ
3 + w5,2ξ

5)�2ξ p

×
(

−pκ
�

ξ
+ O(�1/2)

)
dξ . (146)

Using the abbreviation

Jq :=
∫ 1

√
�

ξq dξ , (147)

we can sort this into

F− + F+ = 2π

(
w0,0

(
p

2

)
κ2�2 Jp−2

+
(

w0,0 +
(
−2w0,0

(
p

2

)
βκ + w2,0

(
p

2

)
κ2

+ w0,2 − w1,1 pκ
)
�2

)
Jp

+
(

w2,0 +
(
w0,0 pε0 + w0,0

(
p

2

)
β2

− 2w2,0

(
p

2

)
βκ + w2,2 + w1,1 pβ

− w3,1 pκ
)
�2

)
Jp+2

+
(

w2,0 pε0 + w2,0

(
p

2

)
β2 + w4,2

+ w3,1 pβ

)
�2 Jp+4

)
+ O(�5/2) , (148)

which by Jq = 1
q+1 (1 − �(q+1)/2) for q �= −1 (the special

case J−1 only occurs as Jp−2 for p = 1 and has then a
vanishing coefficient) yields

F− + F+ = 2π

(
w0,0

1

p + 1
+ w2,0

1

p + 3

+
(

w0,0
p

2
κ2 − 2w0,0

p(p − 1)

2(p + 1)
βκ

+ w2,0
p(p − 1)

2(p + 1)
κ2 + w0,2 − w1,1

p

p + 1
κ

+ w0,0
p

p + 3
ε0 + w0,0

p(p − 1)

2(p + 3)
β2
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− 2w2,0
p(p − 1)

2(p + 3)
βκ + w2,2

1

p + 3

+ w1,1
p

p + 3
β − w3,1

p

p + 3
κ

+ w2,0
p

p + 5
ε0 + w2,0

p(p − 1)

2(p + 5)
β2

+ w4,2
1

p + 5
+ w3,1

p

p + 5
β

)
�2

− w0,0
1

p + 1
�(p+1)/2

−
(

w0,0
p

2
κ2 + w2,0

1

p + 3

)
�(p+3)/2

)

+ O(�5/2) + O(�(p+5)/2) . (149)

A.5.6 Evaluation of the Outer Integral II

Starting with the same substitution ξ = √
� ζ and Taylor

expansion of ω in ξ direction as in Appendix A.1.7, we eval-
uate

G∓
(143)= π�(p+1)/2

∫ 1±ν
√

�

0

(
w0,0 + w2,0�ζ 2 ∓ w1,1�

3/2ζ

∓ 2w2,0ν�3/2ζ + O(�2)
)

× (
1 ∓ βζ�3/2 + O(�2)

)p
ζ p dζ

= π�(p+1)/2w0,0

∫ 1±ν
√

�

0
ζ p dζ

∓ π�(p+4)/2(w1,1 + 2w2,0ν + w0,0 pβ)

∫ 1±ν
√

�

0
ζ p+1 dζ

+ π�(p+3)/2w2,0

∫ 1±ν
√

�

0
ζ p+2 dζ + O(�(p+5)/2)

= π�(p+1)/2

p + 1
w0,0(1 ± ν

√
�)p+1

∓ π�(p+4)/2

p + 2
(w1,1 + 2w2,0ν + w0,0 pβ)(1 ± ν

√
�)p+2

+ π�(p+3)/2

p + 3
w2,0(1 ± ν

√
�)p+3 + O(�(p+5)/2)

= π�(p+1)/2

p + 1
w0,0(1 + ν2�)

∓ π�(p+4)/2

p + 2
(w1,1 + 2w2,0ν + w0,0 pβ)

+ π�(p+3)/2

p + 3
w2,0 + O(�(p+5)/2) , (150)

G− + G+ = 2π�(p+1)/2
(

1

p + 1
w0,0 + p

2
ν2�w0,0

+ 1

p + 3
�w2,0

)
+ O(�(p+5)/2) . (151)

A.5.7 Extremum of the Combined Integral

When we finally combine (93), (149) and (151) and apply
(144) and ν = κ + O(�2), we observe as in the 2D case
than all terms originating from G− + G+ (151) cancel, and
it remains

E(κ) = const(κ) + O(
�min{(p+5)/2,5/2})

+
(
p − p(p − 1)

p + 1

)
π�2κ2

+
(

−2p(p − 1)

(p + 1)
β + 2p(p − 1)

(p + 3)
β

− 2p

p + 1
(δ0 + δ2) + 2p

p + 3
(δ0 + δ2)

)
π�2κ

= const(κ) + O(
�min{(p+5)/2,5/2})

+ 2p

p + 1
π�2κ2 −

(
4p(p − 1)

(p + 1)(p + 3)
β

+ 4p

(p + 1)(p + 3)
(δ0 + δ2)

)
π�2κ . (152)

For � → 0, the extremum of E(κ) can again be found as
the apex of the quadratic function in (152), which yields

κ =
4p(p−1)

(p+1)(p+3)β + 4p
(p+1)(p+3) (δ0 + δ2)

4p
p+1π�2

+ O(�min{(p+1)/2,1/2})

= p − 1

p + 3
β + 1

p + 3
(δ0 + δ2)

+ O(�min{(p+1)/2,1/2}) . (153)

A.5.8 Conclusion of the Proof

From (153) the claim of the proposition for regular points
follows by substituting back κα�2 = μ, αβ = uxx/2, αδ0 =
uyy/2, αδ2 = uzz/2 and noticing that by our ansatz ux >

0, uy = uz = 0 the coordinates x , y, z coincide with the
geometric coordinates η, ξ , χ as used in the proposition.

For critical points, the reasoning from Appendix A.1
applies. ��

A.6 Proof of Proposition 6

Analogous to Appendix A.2, we calculate

V (ξ) = π(1 + (δ0 + δ2)ξ� − 2βξ�)(1 − ξ2) + O(ξ2�2) .

(154)

The relevant solution of V ′(ξ) = 0 yields up to higher order
terms ω(ξ) = 1

2 (δ0 + δ2 − 2β)�. ��
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B Continuous Order-pMeans andMode: A
Toy Example

To understand the behaviour of order-p mean filters for p >

−1, p �= 0 and their relation to the mode of a continuous
density, we consider the following simple example. Let z be
a real random variable with (non-normalised) density

γ (z) =
{
1 − λ(z − m)2 , −1 ≤ z ≤ 1 ,

0 otherwise.
(155)

Here, 0 < m << 1 is a fixed parameter, and 0 < λ ≤
(1 + m)−2 to ensure that γ (z) ≥ 0 for all z. Obviously, the
mode of z is the maximum of γ , i.e. m.

For any p > −1, p �= 0 the order-p mean of z is given
by the minimiser of E(μ) where

sgn (p)E(μ) =
∫ 1

−1
γ (z) |z − μ|p dz

=
∫ μ

−1

(
1 − λ(z − m)2

)
(−z + μ)p dz

+
∫ 1

μ

(
1 − λ(z − m)2

)
(z − μ)p dz

=
∫ 1+μ

0

(
1 − λ(z − μ + m)2

)
z p dz

+
∫ 1−μ

0

(
1 − λ(z + μ − m)2

)
z p dz

= (
1 − λ(μ − m)2

) (∫ 1+μ

0
z p dz +

∫ 1−μ

0
z p dz

)

+ 2λ(μ − m)

(∫ 1+μ

0
z p+1 dz −

∫ 1−μ

0
z p+1 dz

)

− λ

(∫ 1+μ

0
z p+2 dz +

∫ 1−μ

0
z p+2 dz

)

= 1

p + 1

(
1 − λ(μ − m)2

) (
(1 + μ)p+1 + (1 − μ)p+1

)

+ 2λ

p + 2
(μ − m)

(
(1 + μ)p+2 − (1 − μ)p+2

)

− λ

p + 3

(
(1 + μ)p+3 + (1 − μ)p+3

)

= 2

p + 1

(
1 − λ(μ − m)2

) (
1 +

(
p + 1

2

)
μ2 + O(μ4)

)

+ 4λ

p + 2
(μ − m)

(
(p + 2)μ + O(μ3)

)

− 2λ

p + 3

(
1 +

(
p + 3

2

)
μ2 + O(μ4)

)

= 2

p + 1
+ pμ2 − 2λ

p + 1
μ2 + 4λ

p + 1
mμ − 2λ

p + 1
m2

− pλm2μ2 + 4λμ2 − 4λmμ − 2λ

p + 3
− (p + 2)λμ2

+ O(μ3)

= const(μ) +
(

4λ

p + 1
− 4λ

)
mμ

+
(
p − 2λ

p + 1
− pλm2 + 4λ − (p + 2)λ

)
μ2 + O(μ3)

= const(μ) + −4pλ

p + 1
mμ

+
(
p − p(p − 1)

p + 1
λ − pλm2

)
μ2 + O(μ3) (156)

from which the minimiser μ∗ of E(μ) can be read off as the
apex of the quadratic function of μ as

μ∗ = −−2pλ

p + 1
m

/(
p − p(p − 1)

p + 1
λ − pλm2

)

= 2λ

(p + 1) − (p − 1)λ
m + O(m3) . (157)

For any fixed λ ∈ (
0, (1 + m)−2

)
, the minimiser μ∗ goes to

m for p → −1, but approaches 2λm/(1 + λ) < m − m2/3
for p → 0. Moreover, if we send λ to 0, making the density
more and more uniform, for any p > −1 we have μ∗ → 0
which comes as no surprise as for a flattening out density,
any penalisation where the penaliser increases with distance
will end up in the symmetry centre of the support interval
[−1, 1].
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