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Abstract
This paper investigates a new stochastic algorithm to approximate semi-discrete optimal transport for large-scale problem, i.e.,
in high dimension and for a large number of points. The proposed technique relies on a hierarchical decomposition of the target
discrete distribution and the transport map itself. A stochastic optimization algorithm is derived to estimate the parameters
of the corresponding multi-layer weighted nearest neighbor model. This model allows for fast evaluation during synthesis
and training, for which it exhibits faster empirical convergence. Several applications to patch-based image processing are
investigated: texture synthesis, texture inpainting, and style transfer. The proposed models compare favorably to the state of
the art, either in terms of image quality, computation time, or regarding the number of parameters. Additionally, they do not
require any pixel-based optimization or training on a large dataset of natural images.

Keywords Optimal transport · Texture synthesis · Patch matching · Image inpainting · Style transfer

1 Introduction

Since its original formulation by Monge [38], the theory of
optimal transportation has been very widely developed [52,
63] and has found many applications in computational sci-
ences [45]. Given two probability distributions μ (source)
and ν (target), the optimal transport (OT) problem consists
in finding a way to transfer the source mass μ onto the target
mass ν while minimizing a transportation cost. The solution
then defines a distance betweenμ and ν that is truly sensitive
to the distances in the underlying spaces. Thus, OT provides
a natural way to compare probability distributions.

Therefore, OT has been used for numerous applications in
imaging science. First, applying OT in the color space per-
mits to evaluate the distance between the color distributions
of two images, which was used in [51] for image retrieval.
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The corresponding OT maps provide candidates to transfer
the colors from one image to the other, but must be regular-
ized to produce the visually plausible results [48]. Similarly,
from two images, one can transfer the colors to a kind of
averaged color distribution, which was coined as midway
image equalization in [7]. Both problems of color transfer
and color equalization have found a variational formulation
in [44]. In these color applications, the transport maps act
on a three-dimensional space for RGB images and on a one-
dimensional space for gray-level images. Even before that,
a one-dimensional OT distance was used to compare angu-
lar descriptors identified as probability distributions on the
circle, in order to address image matching [47].

In a higher-dimensional setting, several authors propose
to use OT distances to compare images identified as proba-
bility distributions. For example, a Kantorovich–Rubinstein
norm was used in the data-fidelity term for image denois-
ing in [30]. Transportation maps acting on images can then
be used to perform image warping [1,12,22,35,43], which is
relevant for images that reflect some kind of density of mate-
rial. Notice that similar tools can also be used to process
shapes identified as probability distributions which allows to
perform shape interpolation [57] and shape registration [10]
with applications in brain imaging [11].

Several other imaging applications require to use optimal
transport in a feature space. Indeed, gathering several features

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-020-00975-4&domain=pdf
http://orcid.org/0000-0002-2944-257X


Journal of Mathematical Imaging and Vision (2021) 63:282–308 283

defined around a pixel gives information on the regularity or
textural aspect of the image in the neighborhood. Such a point
of viewwas alreadydeveloped in [51] for image retrieval. The
authors of [49] proposed to address image segmentation by
constraining the distribution of features (color andderivatives
norms) in the segmented regions. More generally, it is possi-
ble to use OT distances between feature distributions, or even
image distributions, for texture modeling. In [64], the OT
distance between Gaussian texture models was related to the
distance between Fourier transform modulii, which led to an
elegant formulation of Gaussian texture mixing. The authors
of [58] proposed to use OT distances between distributions
of linear and nonlinear features (e.g., wavelet responses or
dictionary-based features) to address texture synthesis and
restoration. In the present paper, considering that the textural
aspect is encoded in the patch distribution, we will exploit
OT between patch distributions to address texture synthesis.

A common bottleneck with many imaging applications of
theOT framework is that, except in one dimension, solving an
OT problem is usually difficult and computationally expen-
sive. Indeed, in the case of two discrete distributions, the OT
problem is equivalent to a linear programming problem. If the
distributions support have the same number of points n, this
problem can be solved with the Hungarian algorithm [28]
which has complexity O(n3) and thus scales quite badly
with n. One possibility to overcome this numerical issue is to
add an entropic penalization in theOTproblem, leading to the
definition of Sinkhorn distances [6,27,50]. Such regularized
OT distances can be computed with a fixed point algorithm
that is geometrically convergent. However, for some imag-
ing applications, the entropic regularization may deteriorate
the OT plan. And besides, the computational gain is only
available for the case of two discrete distributions with n
points, whereas for high-dimensional OT problems, the dis-
cretization of the underlying space is prohibited (representing
100-dimensional distributions with ten bins in each direction
would require to store a discrete vector of size 10100).

In this paper, we will focus on the semi-discrete case of
OT,meaning that the source distributionμ is assumed to have
a density with respect to the Lebesguemeasure, while the tar-
get distribution ν is discrete. The authors of [2] have shown
that in this case, the OT map takes the form of a weighted
nearest neighbor (NN) assignment where the weight param-
eters solve a differentiable concave optimization problem.
Since [2], several numerical solutions have been proposed
to solve the semi-discrete OT problem [25,26,31,37], but
they often require the exact computation of a gradient which
amounts to computing the μ-measure of polytopes. In a
high-dimensional setting, computing such integrals may be
intractable. Thus, one may turn to stochastic gradient algo-
rithms to approximate the OT maps, as proposed in [19] and
later studied in [3].Butwhen thenumber J of points in the tar-

get distribution is large, this stochastic algorithm converges
slowly [15].

A classical way to improve the practical convergence of
optimizationmethods is to exploit amultiscale representation
of the data. For which concerns optimal transport, numer-
ous multiscale strategies have already been proposed which
essentially consists in working on simplified versions of the
measures μ and ν. Several authors [5,21,42] have proposed
to discretize the measures on a grid and then use a grid
refinement strategy to target the true OT map. They pro-
pose different arguments to demonstrate the stability of the
refined transport plans (which exploits directly or indirectly
the sparsity of the true OT plan when μ and ν are absolutely
continuous). In the case of large-scale discrete OT, the author
of [53,54] proposed multiscale algorithms for unregularized
and regularizedOTproblems that exploit a hierarchical repre-
sentation of the supports of the source and target distributions
in order to drastically diminish the number of variables in the
dual formulation of OT. This coarse-to-fine strategy was also
used in [11] to accelerate computations onvery large datasets.
However, for semi-discreteOT in a high-dimensional setting,
these multiscale schemes are hardly tractable.

Another strategy is to consider amultiscale decomposition
(ν�)0≤�<L of the measure ν, meaning that ν� is an approx-
imation of ν with a fixed budget of J � points, J 0 > J 1 >

· · · > J L−1 (and similarly for the source μ). This approach
was proposed in [37] to solve richer and richer semi-discrete
OT problem by initializing the optimization algorithm at one
scale with an extrapolation of the solution at the previous
scale. A similar approach (with decomposition of both the
source and target measures) was followed by [20] to solve
large-scale discrete OT problems.

In this paper, we propose a different multiscale approach
to approximately solve the semi-discrete OT problem. The
main idea is to consider so-called multi-layer transport maps
that can be roughly understood as a composition of weighted
NN assignments that solve restricted OT problems between
μ and the simplified measures ν� (obtained with a hierarchi-
cal clustering of ν at different resolutions). In general, such a
multi-layer transport mapmay not exactly solve theOT prob-
lem because a simple weighted NN assignment may not be
decomposed as a multi-layer map. In other words, restricting
to such multi-layer maps induces a bias that can be related
to the geometry of the hierarchical clustering of ν. How-
ever, optimizing such a multi-layer transport map amounts to
solving many semi-discrete OT problems with much smaller
target distributions. For that reason, when using stochastic
algorithms for semi-discrete OT, we demonstrate that nearly
optimal cost can be attained in a faster way with multi-layer
transport maps (even if the total number of parameters of a
multi-layer map is slightly larger than a weighted NN assign-
ment).
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Such a multi-layer approach thus helps to efficiently solve
high-dimensional semi-discreteOTproblems linked to imag-
ing applications. In particular, we will be able to improve a
texture model [15] based on semi-discrete OT in the patch
space. The initial model presented in [15] was limited to
target distributions of 1000 patches of size 3 × 3. Using
multi-layer transport maps will allow to consider richer dis-
tributions of patches with larger size, thus enriching the class
of well-reproduced texture. We will see that these new tex-
ture models can also be used for texture inpainting and style
transfer.

The rest of the paper is organized as follows. In Sect. 2,
we recall the framework of semi-discrete optimal transport.
Section 3 is devoted to multi-layer transport maps. First, we
define multi-layer transport maps and analyze their optimal-
ity conditions.And then,we propose a stochastic algorithm to
optimizemulti-layer transportmaps and examine its behavior
on a simple one-dimensional example. In Sect. 4, we demon-
strate that such multi-layer transport maps can be used to
improve a texture model based on semi-discrete OT. We also
show that this texture model can be used to address textu-
ral inpainting. Finally, in Sect. 5, we propose to extend the
framework used in texture synthesis to address style trans-
fer. Let us mention that a preliminary version of this work
has been published as a conference paper [29]. Compared
to the conference version, we contributed with a more thor-
ough study of optimality conditions for multi-layer transport
maps, a more extensive study of the performance of these
models in texture synthesis and new applications on textu-
ral inpainting and style transfer. The experiments shown in
this paper can be reproducedwith theMATLAB implementa-
tion available at https://www.math.u-bordeaux.fr/~aleclaire/
texto/multilayer.php.

2 Semi-discrete Optimal Transport

Let μ, ν be two probability measures on RD . For the sake of
simplicity, we will restrict to the case of the quadratic cost,
even if some of the concepts developed in this paper could
be used with other cost functions. For the quadratic cost,
Monge’s formulation of OT consists in solving

inf
T

∫
RD

‖x − T (x)‖2dμ(x), (OT-M)

where the infimum is taken over all measurable functions
T : RD → R

D for which T�μ = ν, where T�μ is the push-
forwardmeasure defined by T�μ(A) = μ(T−1(A)) for every
Borel set A ⊂ R

d . The Monge problem admits a convex
relaxation due to Kantorovich

W 2(μ, ν) = inf
Π

∫
RD×RD

‖x − y‖2dΠ(x, y), (OT-K)

where the infimum is taken on all probability distributions
Π on R

D × R
D with marginal μ, ν. If (OT-M) admits a

solution T , then (Id ⊗ T )�μ is a solution to (OT-K). But the
Kantorovich problem is more general in the sense that they
may exist no map T such that T�μ = ν. Besides, under some
conditions (that will be satisfied in the semi-discrete case),
one can show that (OT-M) admits a solutionwhich is uniquely
defined almost everywhere. In such a case, the solution will
be denoted by T ∗. We refer the reader to the books [52,63]
for an exhaustive presentation of the OT framework.

In this paper, we only consider the semi-discrete case of
optimal transportation. Indeed, we assume that μ is abso-
lutely continuous with respect to the Lebesgue measure on
R

D with density ρ and that ν is supported on a finite set Y

ν =
∑
y∈Y

ν(y)δy . (1)

As proved in [2,26,31], the solution of (OT-M) has the form
of a weighted NN assignment. Indeed, for v ∈ R

Y , one can
define TY ,v by

TY ,v(x) := argmin
y∈Y

‖x − y‖2 − v(y). (2)

This map is defined almost everywhere (i.e., at all points
where the previous argmin is uniquely defined). The preim-
ages

Lv(y) = T−1
Y ,v({y}) (3)

are called the Laguerre cells and form a partition of RD up
to a negligible set called the Laguerre tessellation (or also
power diagram).

Then, it is known [2,26] that TY ,v is a solution of (OT-M)
as soon as v maximizes the concave function

H(v) := EX∼μ [h(X , v)] (4)

where

h(x, v) =
(
min
y∈Y ‖x − y‖2 − v(y)

)
+

∑
y∈Y

v(y)ν(y). (5)

One can see that for all v ∈ R
J and for almost all x ∈ R

D ,

∂v(y)h(x, v) = −1Lv(y)(x) + ν(y) (6)

where 1Lv(y) is the indicator function of Lv(y), and that

∂v(y)H(v) = EX∼μ

[
∂v(y)h(X , v)

]
= −μ(Lv(y)) + ν(y). (7)

123

https://www.math.u-bordeaux.fr/~aleclaire/texto/multilayer.php
https://www.math.u-bordeaux.fr/~aleclaire/texto/multilayer.php


Journal of Mathematical Imaging and Vision (2021) 63:282–308 285

Several authors [2,26,31,37] haveproposed exact gradient-
basedmethods or quasi-Newton schemes in order to optimize
the weights v when the distributions μ and ν are defined on
R

D for D = 2 or D = 3 dimensions, in cases where the
μ-measure of the Laguerre cells needed in (7) is tractable.
However, in a high-dimensional framework where such inte-
grals are not tractable, one may turn to the average stochastic
gradient descent (ASGD) Algorithm 1 to solve it. One can
show [3,15,19] that this algorithm has a convergence guar-
antee in O(

log k√
k

) (in expectation). Numerical experiments
also confirm its slow convergence rate, especially when the
number J of points in the target distribution gets very large.

Algorithm 1: ASGD to estimate OT map TY ,v , solution
of (OT-M)
1: Inputs: source density μ, target discrete distribution ν,

initial assignment weight (e.g., ṽ = 0 and v = 0), and
gradient step (e.g., C = 1)

2: for k = 1, 2, . . . do
3: Draw a sample x ∼ μ

4: Compute the gradient g ← ∇vh(x, ṽ) (see Eq. (6))
5: Gradient ascent of weights: ṽ ← ṽ + C√

k
g

6: Average of updates: v ← k−1
k v + 1

k ṽ

7: return v

3 Multi-layer Semi-discrete Transport Maps

In order to cope with the slow convergence of the stochas-
tic algorithm used to estimate the semi-discrete OT map,
we propose to approximate the optimal map with hierarchi-
cal applications of several weighted NN assignments that
are tuned to solve simpler semi-discrete OT problems (i.e.,
with smaller target distributions). These smaller problems are
related to a multiscale decomposition ν0, . . . , νL−1 of the
target measure, that is, a collection of measures that “sum-
marizes” ν from fine (� = 0) to coarse (� = L) resolution.

As already mentioned in the introduction, a multiscale
algorithm for semi-discrete OT has already been proposed
in [37]. However, as reported in [29] and illustrated in exper-
imental Sect. 3.6, it is not straightforward to design an
“upscaling” scheme that gives a good initial guess for the
variable v at one scale from the solution found at the previ-
ous scale. In the following, we thus propose a new strategy
which consists in:

1. modeling the OT map itself as a multiscale hierarchical
operator;

2. optimizing at all scales simultaneously.

In order to avoid confusion with aforementioned multiscale
techniques, we refer to the proposed hierarchical model as a
multi-layer transport map.

3.1 Decomposition of the Target Measure

In all this section, we will work with a decomposition

ν0, . . . , νL−1, νL (8)

of the target measure. By convention, ν0 = ν and νL will be
supported on a singleton, so that there are only L non-trivial
scales. At scale � ∈ {0, . . . , L}, we will use a measure

ν� =
∑
y∈Y �

ν�(y)δy (9)

supported by a finite set Y � of cardinal J � (which is a
prescribed budget of points at scale �, with J 0 = J , and
J L = 1).

Following [37], this decomposition is built recursively: the
measure ν�+1 should be a close approximation of ν� with a
budget of J �+1 points. More precisely, given ν�, ν�+1 is built
as an approximate solution of

min
m

W 2(ν�,m) (10)

where the min is taken on all discrete measures m on R
D

whose support has J �+1 points.
This non-convex problem is known to be equivalent to a

weighted K-means problem, which we approximately solve
with Lloyd’s algorithm. At the end of this algorithm, we
get a set Y �+1 ⊂ R

D of J �+1 centroids corresponding to a
partition

Y � =
⊔

y∈Y �+1

C�
y (11)

and the associated masses

∀ y ∈ Y �+1, ν�+1(y) = ν�(C�
y). (12)

Additionally, we consider normalized distributions per clus-
ter

∀ y ∈ Y �+1,∀ z ∈ C�
y ν̃�

y(z) = ν�
y(z)

ν�
y(C

�
y)

. (13)

With the convention J L = 1, the clustering of Y L−1 is trivial
with only one cluster, and the corresponding centroid (the
only point of Y L ) is the νL−1-barycenter of Y L .

An illustration of such amultiscale decomposition is given
in Fig. 1. Let us emphasize that the previous decomposition
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Fig. 1 Illustration of themultiscale approximation of the discrete target
distribution ν in the 1D case and the multi-layer transport map T (x)
applied sequentially with L = 3 layers. See the text for more details
about notation

algorithm (based on K -means) can be called hierarchical in
the sense that there exists a tree structure on the elements of
the sets Y �, (Each y ∈ Y � has exactly one parent in Y �+1.)
This hierarchical structurewill be crucial for the construction
of multi-layer transport maps.

3.2 Multi-layer Transport Maps

Now, we can define multi-layer transport maps by using a
hierarchical tree search based on weighted NN assignments.

Definition 1 Let us denote by Y the hierarchical clustering
of Y composed of the sets (Y 0,Y 1, . . . ,Y L) and the clusters
(C�

y)0≤�<L,y∈Y �+1 satisfying (11). Let us also consider the
multi-layer parameters

v =
(
v�
y

)
0≤�<L,y∈Y �

∈
L−1∏
�=0

R
Y �

. (14)

Then, we can define a multi-layer map TY,v recursively as
follows. Let us fix x ∈ R

d .We set T L(x) = yL (only point in
Y L ). And then, for � = L−1, . . . , 0, denoting y = T �+1(x),
we set

T �(x) = TC�
y ,v

�
y
(x) = argmin

z∈C�
y

‖x − z‖2 − v�
y(z). (15)

Then, TY,v(x) = T 0(x) (Fig. 2).

3.3 Optimal Multi-layer Maps

Let TY,v be amulti-layer map, andwe recall the definition T �

(� = L, . . . , 0) of the intermediate maps. Notice that apply-
ing these intermediate maps at a point x amounts to tracing

back a hierarchy of Laguerre cells to which x belongs. There-
fore, the sets L�

y = (T �)−1({y}) provide a decomposition

R
D =

⊔
y∈Y �

L�
y (16)

which is a partition up to a negligible set. These subsets are
obtained by intersectingLaguerre cells in a nestedway; there-
fore the L�

y will be called the nested cells.
In the following, we denote by μ|A the restriction of the

measure μ to the Borel set A.

Definition 2 Amulti-layermap TY,v associatedwith the hier-
archical clusteringY is said to be optimal if, for all 0 ≤ � < L
and all y ∈ Y �+1, TC�

y ,v
�
y
realizes the semi-discrete OT from

μ|L�+1
y

to ν�
|C�

y
.

Remark Let us emphasize that this optimality conditionmust
be understood in a coarse to fine manner. Indeed, for a given
scale 0 ≤ � < L , the conditions μ(L�+1

y ) = ν�(C�
y), i.e.,

μ(L�+1
y ) = ν�+1(y) are ensured for all y ∈ Y �+1 if and only

the map T �+1 realizes the semi-discrete OT at the previous
scale. By uniqueness of optimal semi-discrete OT maps, it
follows that there exists a unique optimal multi-layer map
(up to a μ-negligible set).

Alternately, for a given nested cell L�+1
y , y ∈ Y �+1 at the

previous scale, one can consider the normalized measure

μ̃�+1
y =

μ|L�+1
y

μ(L�+1
y )

. (17)

Then, from the last remark, we get that a multi-layer map
TY,v is optimal if and only if for all 0 ≤ � < L and all
y ∈ Y �+1, TC�

y ,v
�
y
realizes the semi-discrete OT from μ̃�+1

y

to ν̃�
y .
It is also possible to express the optimality of multi-layer

maps in terms of the variables v: For all 0 ≤ � < L and all
y ∈ Y �+1, the weights v�

y should maximize the function

H �
y (v

�
y) =

∫
L�+1

y

min
z∈C�

y

(‖x − z‖2 − v�
y(z))dμ(x)

+
∑
z∈C�

y

v�
y(z)ν

�(z) (18)

Notice that the weights v should solve, at each layer �, J �+1

subproblems of semi-discreteOTwhere the nested cellsL�+1
y

intervene.

Proposition 1 The multi-layer map TY,v solves the semi-
discrete OT problem between μ and ν if and only if
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Fig. 2 Illustration of a multi-layer map ( for L = 2 layers). Here the
source distribution μ is chosen to be a Gaussian mixture model with
4 components (in gray levels). For each layer �, the arrows illustrate

T �(x) (arrows) the multi-layer mapping of samples x drawn from μ

(circle points on the left) to the points of the discrete distribution ν�

(diamonds for layer � = 1 and square for layer � = 0)

Fig. 3 Bias due to the hierarchical clustering. In this figure, we illustrate
the bias which is induced by the hierarchical clustering and quan-
tized by (27). Here, μ is the uniform distribution on the largest square,
and ν the discrete uniform distribution on the eight blue crosses. The
red points form a possible clustering at level 1. We draw the optimal
Laguerre cells with blue boundaries and the optimal Laguerre cells at
level 1 with red boundary. For the very particular case of the left dia-
gram, the OT map is exactly the optimal multi-layer map. However,
on the right diagram, the hierarchical induces a bias at level 1 that can
be measured by the area of the region colored in green (Color figure
online)

∀y ∈ Y , L0
y = (T ∗)−1({y}) (19)

up to a μ-negligible set. In this case, at each scale �, all the
nested cells L�

y can be written as a reunion of Laguerre cells
associated with the OT map T ∗, up to a μ-negligible set.

Proof First of all, let us recall that with the adopted assump-
tions on μ, the OT map T ∗ is uniquely defined μ-almost
everywhere. It follows that TY,v = T ∗ a.e. is equivalent
to (19). The last statement holds because, by construction
of the maps T �, for all 0 ≤ � < L and all y ∈ Y �+1,

L�+1
y =

⋃
z∈C�

y

L�
z . (20)

��
One practical consequence of Proposition 1 is that, if TY,v

is optimal, then the boundary of a nested cell L�
y is included

in the reunion of boundaries of (T ∗)−1({z}) for all z ∈ Y
that are children of y. But, except for very particular cases
(see Fig. 3), this has no reason to happen because each face
composing the boundary of L�

y is orthogonal to one of the

segments joining two points of Y �. Therefore, the geometry
of the partition (L�

y)y∈Y � at scale � is very much impacted

by the positions of the centroids y ∈ Y �. In other words, the
choice of hierarchical clustering imposes a bias that cannot
be coped with by the optimization of the weights v.

In dimension D = 1, the situation is much simpler, as
shown by the next proposition.

Proposition 2 Assume that the dimension D = 1. Let us also
assume that the hierarchical clustering is increasing in the
following sense: For all 0 ≤ � < L, for all y1, y2 ∈ Y �+1

such that y1 < y2 then we have z1 < z2 for all z1 ∈ C�
y1

and z2 ∈ C�
y2 . Then, the optimal multi-layer map realizes the

semi-discrete OT from μ to ν.

Proof Let us show by induction on � = L − 1, . . . , 0
that T � is non-decreasing and realizes the semi-discrete OT
between μ and ν�. By Definition 2 and since there is only
one point in Y L (for which LL

y = R
D and CL−1

y = Y ),
T L−1 is the OT map between μ and νL−1. Next, assume
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that T �+1 is non-decreasing and realizes the OT between μ

and ν�+1. Again, from Definition 2, and for all y ∈ Y �+1,
on L�+1

y , T � coincides with TC�
y ,v

�
y
which realizes the OT

fromμ|L�+1
y

to ν�
|C�

y
, and which is thus non-decreasing. Thus,

T � is a non-decreasing map such that for each z ∈ Y �,
μ((T �)−1({z})) = ν�(z). This implies that T � is the semi-
discrete OT map between μ and ν�. ��
Remark The above discussion shows that, except in dimen-
sion 1, fixing a hierarchical clustering of ν imposes con-
straints on the shapes of the optimal nested cells. Optimizing
both the multi-layer maps and the hierarchical clustering of ν
seem worth of interest, but it would probably lead to a much
more complex non-convex problem.

3.4 Stochastic Optimization

As already said, finding an optimal multi-layer map amounts
to compute in a coarse-to-fine manner many semi-discrete
OT maps, by solving the restricted semi-dual problems (18).
If we have optimality at the previous scales �′ > �, then the
OT problem at scale � is well-defined. Then, going back to
the Monge formulation of these separates subproblems, the
map T � actually minimizes
∫
RD

‖T �(x) − x‖2dμ(x) =
∑

y∈Y �+1

∫
L�+1

y

‖T �(x) − x‖2dμ(x)

(21)

but with marginal constraints on each of the Laguerre cells
L�+1
y .
If we consider the concave problem (18), the gradient of

H �
y can still be computed

∂H �
y

∂v�
y(z)

= −μ(L�+1
y ∩ L�

z) + ν�(z) (22)

where we kept the notation L�+1
y ∩ L�

z for L�
z to emphasize

that L�
z is a subset of L�+1

y which is fixed by the previous

layer. If v�
y is a critical point of H

�
y , then

∀z ∈ C�
y, μ(L�+1

y ∩ L�
z) = ν�(z) (23)

which implies that μ(L�+1
y ) = ν�(C�

y). However, this last
condition is not guaranteed if we do not have optimality at
the previous scales. In this case, H �

y have no critical point
and thus no maximum.

For that reason, we can only propose a heuristic algorithm
to optimize the multi-layer map TY,v. It consists in perform-
ing gradient ascent to simultaneously increase the values of
all functions H �

y for all layers 0 ≤ � < L and all y ∈ Y �+1.
However, in order to cope with the fact that the OT maps

are not optimal at the previous layers, we consider instead
the cost adapted to the normalized measures defined in (17)
and (13)

H̃ �
y (v

�
y) := EX∼μ̃�+1

y

[
h̃�
y(X , v�

y)
]

(24)

with

h̃�
y(x, v

�
y) =

(
min
z∈C�

y

‖x − z‖2 − v�
y(z)

)
+

∑
z∈C�

y

v�
y(z)ν̃

�
y(z).

(25)

The corresponding gradient

∂ h̃�
y

∂v�
y(z)

(x, v�
y) = −1L�

z
(x) + ν̃�

y(z) (26)

is normalized as well (i.e., it has zero sum after taking the
expectation) and is used in lieu of the former gradient esti-
mate Eq. (22). The corresponding optimization procedure is
summarized in Algorithm 2.

Algorithm2:ASGDfor the estimationof themulti-layer

map TY,v.

Inputs: source density μ, target distribution ν, gradient

step C , number of layers L and number of iterations T

1: Hierarchical clustering {ν0, . . . , νL−1} of ν

2: Set ν̃�
y ∀ �, y using Eq. (13) (normalized measures)

3: Set ṽ�
y ← 0, ∀ �, y (weights initialization)

4: Set n�
y ← 0, ∀ �, y (number of visits in cluster C�

y)

5: for t = 1, . . . , T do

6: Draw a sample x ∼ μ

7: for � = L − 1, . . . , 0 do

8: Using T �+1(x), compute the cluster index

y = T �(x) (Eq. (15))

9: n�
y ← n�

y + 1

10: g ← ∇ṽ�
y
h̃�
y(x, ṽ

�
y) (Eq. (26))

11: ṽ�
y ← ṽ�

y + C√
n�
y

g

12: v�
y ← v�

y + 1
n�
y

(
ṽ�
y − v�

y

)

Outputs: {ν�}0≤�<L and v =
(
v�
y

)
0≤�<L,y∈Y �
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3.5 Aggregating the Errors

In order to measure how much a multi-layer map drifts from
the true OT map T ∗, one may essentially distinguish two
types of errors. The first one is the bias that is induced by a
fixed hierarchical clustering and which cannot be coped with
the optimization of v, as discussed in Sect. 3.3. Denoting
by L∗�

y the nested cells of the optimal multi-layer map, it is
possible to quantize this bias at level � by

bias(�) =
∑
y∈Y �

μ

⎛
⎝L∗�

y

⋃
z∈C(y)

(T ∗)−1({z})
⎞
⎠ (27)

where AB refers to the symmetric difference between the sets
A, B, and where C(y) is the set of children of y at scale 0.
In Fig. 3, we illustrate this bias on a simple two-dimensional
example. In general, computing this bias is a difficult problem
since it requires to know the optimal nested cells L∗�

y , which
is equivalent to know the optimal multi-layer map. However,
in dimension 1, this bias is known to be zero by Proposition 2.

Another source of error comes from the suboptimality of
the elementary transport maps TC�

y ,v
�
y
parameterized by the

vectors v�
y . Of course, one could directly consider the values

of the functions H �
y . But it is certainly more revealing to

consider the L1-norm of their gradients (22) and to aggregate
them. Therefore, we obtain an error

E =
L−1∑
�=0

∑
z∈Y �

|μ(L�
z) − ν�(z)|. (28)

Analogously to the single-layer case, this corresponds to the
amount of mistransported mass at all scales. Given a hier-
archical clustering Y, then min E = 0 which, by definition,
is attained only for the optimal multi-layer map. Notice also
that, contrary to (27), the error (28) can be estimated by a
Monte Carlo method.

3.6 1D Experiments

Experimental setting In this section,wepropose a simple one-
dimensional experiment to evaluate the convergence speed of
the Algorithm 2 to approximate the optimal multi-layer map.
For all the experiments shown in this section,

• μ is he standard Gauss distribution N (0, 1),
• ν is the uniform discrete distribution on J equally spaced
points between −1 and 1.

The benefit of such a one-dimensional setting is that the OT
map between μ and ν can be computed (using the quantiles
of μ), and besides, it is easy to compute distances between

a transported measure T�μ and ν. In the following, we will
focus on the Kolmogorov distance dKOL(T�μ, ν), which is
defined as the L∞ distance between cumulative distribution
functions. Another benefit of the one-dimensional setting is
that, as shown by Proposition 2, the bias (27) induced by
the monotone hierarchical clustering is zero. Therefore, the
optimal multi-layer map targeted by Algorithm 2 is exactly
the optimal transportmap T ∗. The budget J � of points at scale
� is chosen manually (see more explanation below), and the
hierarchical clustering is computed with Lloyd’s algorithm.

Let usmention that in themulti-layer setting, the compari-
son cannot be fairly performed at a fixed number of iterations
since one iteration of ASGD for the one-layer transport has
not the same cost as one iteration of ASGD for multi-layer
transport. Therefore, the comparisonwill be based on the true
computational time (in seconds).
Multi-layer versus one layer First, let us compare the multi-
layer framework with L = 2 (Algorithm 2) with the single-
layer framework (Algorithm 1) with J = 103 and 104 points
in the target distribution. The number of clusters for the 2-
layer transport is J 1 = �√J� (integer part of √

J ). We also
compare to a naive multiscale variant of Algorithm 2 that
consists in exploiting another decomposition ν� of the target
measures (withmore scales) and estimating the semi-discrete
OT from μ to ν� in a coarse-to-fine manner by initializing
the weights v with an extrapolation of the weights found
at the previous scale (for example, simply propagating the
values from parent to children in the hierarchical clustering).
Such an extrapolating rule was also presented in [37] for a
deterministic framework (based on an efficient second-order
optimization scheme which is not implemented here).

The results can be seen in Fig. 4. One can see that the
bilayer algorithm reaches a good value for the distance
dKOL(T�μ, ν) in a faster way than the single-layer algorithm,
especially when J gets very large. However, in the case of
J = 1000 points, it is interesting to notice that, up to a cer-
tain time, the single-layer algorithm attains a better cost (even
if the bias induced by the hierarchical clustering is exactly
zero). This reflects the fact that Algorithm 2 is only a heuris-
tic optimization scheme, and it is expected to have a more
oscillatory behavior than the single-layer algorithm. In par-
ticular, we observed that the convergence at the fine layers
is slower because the current cells at this layer depend on
those obtained at the coarsest scales (and setting the cells at
the coarsest scale is an instance of a stable convex stochas-
tic optimization algorithm). Thus, it is especially interesting
to turn to the multi-layer algorithm if J is very large with
a constrained computational time. Notice also that, in the
stochastic setting, the naive multiscale procedure does not
help much in terms of convergence speed. Besides, in this
naive procedure, one should choose a budget of iterations
per scale, which is less trivial in the stochastic setting than in
the deterministic quasi-Newton setting of [37] (where only
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Fig. 4 Two-layer versus one-layer. We compare with the multi-layer
Algorithm 2) (two-layer) with the single-layer algorithm (one-layer)
and with the naive multiscale procedure (naive-multiscale). We moni-
tor the Kolmogorov distance between T�μ and ν . The horizontal axis
represents the computational time (in seconds) and the vertical axis the
Kolmogorov distance between the current transported measure T�μ and
the target measure ν.When J is very large, the two-layer approach leads
to a better transport map in a reasonable time

≈ 10 iterations are needed to obtain the solution with very
good precision).
Setting the number of clusters We first assume here for sim-
plicity that Y can be decomposed into L scales with balanced
clusters. We denote by nL the number of NN comparison
required to evaluate the L-layer transport map TY,v (15) at
a given point; pL is the number of weight parameters v�

y(z)
describing TY,v.

For L = 1, we have n1 = J and p1 = J .
For L = 2 layers with J1 balanced clusters and a total of

J points, n2 = J1+ J
J1
: the minimum number of comparison

is then n2 = 2
√
J for J1 = √

J . The corresponding number
of parameters is p2 = J1 + J1 × J

J1
= √

J + J .
For L = 3 layers with J1 and J2 balanced clusters at

each layer respectively, the number of points comparison per
iteration for J points is n3 = J1 + J2 + J

J1 J2
: the minimum

number of comparison is then n3 = 3 3
√
J < n2 for J2 =

J1 = 3
√
J . The number of parameters is then p3 = J1+ J1×

J2 + J1 J2 × J
J1 J2

= 3
√
J + 3

√
J 2 + J > p2.

Thus, from the sole perspective of computation load indi-
cated by nL , one should use a hierarchical representation
where the number of clusters per scale is close to L

√
J . One

could then hope that such a choice would provide a faster
convergence, since the number of iteration per second is
maximized. This is confirmed empirically in Fig. 5, where
we consider the same experimental setting as before, with
J = 104 (Fig. 5a), J = 105 (Fig. 5b) and J = 106 (Fig. 5c).
In these experiments, the optimal number of clusters for con-
vergence corresponds approximately to L

√
J .

Setting the number of layers Observe now that the number
of comparisons nL decreases much faster than the number
of parameters pL increases when using perfectly balanced
clusters. Moreover, it is interesting to notice that, while the
number of parameters grows with the number of layers, the
maximum number of parameters is actually bounded by 2J .
Indeed, even if the following geometric sum is divergent

pL =
L∑

�=1

J
�
L = 1 − J

1+L
L

1 − J
1
L

− 1 −−−→
L→∞ +∞

the worst practical case, i.e., the deepest possible search tree
that can be built, corresponds to the binary classification tree,
for which we have (setting J = 2L )

pL =
L∑

�=1

2� = 21+L − 2 = 2(J − 1) < 2J

but only nL = 2L comparisons.
Setting aside questions about complexity (such as opti-

mization of memory access, data structure and parallel
computing), one would be tempted to conclude that, as the
number of layers does not impactmuch the number of param-
eters of the model while providing an interesting speed-up,
one should use the highest possible number of layers. How-
ever, increasing the number of layers makes it more difficult
for the estimated transport map to get close to the optimal
one. Hence, there is a trade-off between using more layers
to reduce the computation time and less layers to reduce the
complexity of the model.

Figures 5 and 6 illustrate the impact of increasing the num-
ber of layers on convergence speed for L ∈ {1, 2, 3} layers
and from J = 104 to J = 107. The comparison of perfor-
mance shows that, even if a larger number of layers allows
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(a) (b) (c)

Fig. 5 Comparison of convergence speed for estimating themulti-layer
transportation plan, according to the number L of layers and the number
J � = K of clusters. Increasing the number of layers accelerates conver-
gence when the number of clusters is optimal (K ≈ L

√
J ). (Note: each

curve is displayed every 104 iterations; the initial offset corresponds
to the amount of time required to reach such a number of iterations,
increasing with K .)

(a) (b)

Fig. 6 Comparison of convergence speed for estimating the multi-layer transportation plan for a large number J of points. We see here that
increasing the number of layers can improve the convergence speed when J is very large, but it may increase the bias due to hierarchical clustering.

for more samples to be drawn during optimization, the bias
error caused by clustering discussed previously in Sect. 3.5
is more difficult to cope with. Nevertheless, the benefit of
increasing the number of layers is yet overwhelming when
considering a large number of points J (Fig. 6).

4 Application to Texture Synthesis

In this section, we show how the optimal multi-layer maps
introduced above can be used to enrich a texture model based
on OT in the patch space [15]. One main interest of semi-
discrete OTmaps for patch-based texture synthesis is that the
transport maps project onto patches seen in the exemplar tex-
ture while maintaining a global statistical consistency. The

main limitation of the model of [15] was that the discrete
target patch distributions were constrained to have ≈ 103

points (otherwise, the ASGD algorithm would converge too
slowly), which prevents one from using patches larger than
3 × 3 (e.g., the 7 × 7 patch distribution of a natural tex-
ture needs much more than 103 patches to be accurately
represented). As was shown in the previous sections, the
multi-layer strategy allows to approximate the transport map
with larger discrete target distributions and thus to extend
our texture model to 7 × 7 patches, which greatly enlarges
the class of well-reproduced textures. Let us emphasize that
one must not confound the layers of the multi-layer OTmaps
of the previous section and the image resolutions; the model
here defined will indeed be multiscale in both these aspects.
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In all the following,wedenote byu : Ω → R
d the original

texture (with d channels, d = 1 for gray-level images, and
d = 3 for color images).We also denote byω = {0, . . . , w−
1}2 the patch domain and by R

D the patch space (where
D = dw2).

4.1 Single-ResolutionModel

The texture model [15] consists in transforming a stationary
Gaussian random field by applying patch transport maps at
several resolutions. First, we recall the construction of the
texture model for a single resolution.

The single resolution model is built on the Gaussian ran-
dom field U defined by

∀ a ∈ Z
2, U (a) = ū +

∑
b∈Z2

tu(b)W (a − b), (29)

where ū = 1
|Ω|

∑
a∈Ω u(a), W is a normalized centered

Gaussian random field (i.e., the W (a) are independent with
standard N (0, 1) distribution), and where tu = 1√|Ω| (u −
ū)1Ω . Then, we extract all patches U|a+ω of U , apply to all
these patches the same map T : RD → R

D and then aggre-
gate the transformed patches with a simple average. In other
words, we define the transformed random field by

∀a ∈ Z
2, V (a) = 1

|ω|
∑
b∈ω

T (U|a−b+ω)(b). (30)

In order to reimpose geometric structures of the exemplar tex-
ture in a statistically coherent way, the patch map T should
solve (at least approximately) theOTbetween the distribution
μ of a patchU|ω ofU (which is a Gaussian distribution with
explicit parameters) and the empirical distribution ν of the
patches of u. Such a transformed random field is still station-
ary and possesses some properties that were listed in [15], for
example a covariance control and long-range independence.

Therefore, μ is absolutely continuous and ν is discrete so
that the OT between μ and ν is actually a weighted NN
assignment as in Eq. (2). In our previous work [15], we
used such a weighted NN assignment, estimated with Algo-
rithm 1. But again, the estimation step was then very slow for
J � 1000 and so we restricted to J = 1000 patches in the
target distribution, which constrained us to work only with
3 × 3 patches. The rest of this section aims at replacing the
weighted NN assignment by a multi-layer map and precisely
assessing the benefit of such multi-layer maps when working
with larger target distributions and larger patches.

Before presenting the results, let us give the details about
the remaining parameters of the model. In contrast to our
previous work, the target distribution ν is here given by
all patches of u. Thus, the monolayer transport map Tv is
parameterized by a single v ∈ R

J where J is the number

of patches in u (for example, for a 128 × 128 image, we
have J ≈ 16000). For the multi-layer transport, we use only
L = 2 layers (thereby defining bilayer transport maps) and
perform a two-scale hierarchical clustering with J 1 = 40.
(The clusters are found using Lloyd’s k-means algorithm.)

In Fig. 7, in the single-resolution case, we compare the
synthesized images obtained with a monolayer patch trans-
port and a bilayer patch transport,with patch sizew = 3, 5, 7.
One can first remark that the visual quality of the synthesized
texture is very limitedwith thismodelworking at a single res-
olution. Indeed, increasing the patch size allows to retrieve
larger geometric structures from the exemplar, but w = 7
is not large enough to capture all structures of the textures
shown in Fig. 7. We will cope with this strong restriction in
Sect. 4.2.

However, beyond the geometric content, the patch statis-
tics are better retrieved with a bilayer map than a monolayer
map. This reflects again that Algorithm 2 allows to better
approximate the transport map in a more reasonable time.
Indeed, in this experiment, the number of iterations was set
to 105 for monolayer transport, and 106 for bilayer transport,
and yet, the required computational time was much lower in
the bilayer case.

The statistical benefit is confirmed by the patch distri-
butions shown in Fig. 8. Since the patch space is high-
dimensional (D = 75 for color 5 × 5 patches), we only
represent the one-dimensional distributions obtained after
projecting on a few principal components of the patch space.
In general, on the most important principal components, the
multi-layer map will perform at least as good as the mono-
layer map, (Even if, in some cases, the approximation is
not perfect.) Actually, applying the same methodology on
a larger set of textures and principal components (not shown
here) allows to do draw the following conclusions:

– On a wide majority of components, the multi-layer and
monolayer maps perform nearly equally.

– On fewmain principal components (that will dominate in
the visual perception), themulti-layermap better approx-
imates the reference distribution.

– Sometimes (for example, on the last principal compo-
nents with less energy), the monolayer map performs
better.

These remarks correlate the visual differences observed in
Fig. 7.

4.2 Multi-resolutionModel

In this section, we define a texture model using multi-layer
maps at several image resolutions. We will work with S sub-
sampled versions us , (0 ≤ s ≤ S − 1) of the original image
at different resolutions, us being defined on a subdomain
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Fig. 7 Single-resolution model, synthesis results. For several original
textures shown in the first column, we compare several synthesis results
obtained by the single-resolution transformed random field (30), where
T is either a monolayer or bilayer transport map and where the patch

size w ranges from 3 to 7. Even if the visual differences between the
monolayer and bilayermap are subtle in terms of geometric content, one
can see that the patch statistics (and in particular the color distribution)
are better respected with the bilayer transport maps

Ωs ⊂ 2sZ2. We will also denote by νs the empirical distri-
bution of w × w patches of us .

The model is defined by successive patch transport and
exemplar-based upsampling as summarized in Algorithm 3.
The estimation of the model can be done during one initial
pass of synthesis (that can be performed offline).At the coars-
est resolution s = S−1, as in the previous section, the model
is initialized with the Gaussian random fieldUS−1 associated
with uS−1. Then, for every scale s = S − 1, . . . , 1, a patch
transform Ts is applied to all patches of the current synthesis.
This transformation is computed during the estimation stage
with the two following steps:

• Fit a GMM distribution μs to the patches of Us .
• Compute the patch transformation Ts that realizes the OT

from μs to νs .

Once estimated, all patches are transformedwith Ts and aver-
aged, which defines a transformed random field

Vs(a) =
∑
b∈2sω

Ts(Us|a−b+2sω)(b), x ∈ 2sZ2. (31)

Since Ts is actually a patch assignment, there is a “coordinate
map” Cs : 2sZ2 → Ωs which allows to express Vs as

Vs(a) =
∑
b∈2sω

us
(
Cs(a − b) + b

)
, x ∈ 2sZ2. (32)

Then, an exemplar-based upsampling step allows to initialize
the synthesis at the next resolution. It consists in taking twice
larger patches at the same positions. This is equivalent to set
for all a ∈ 2sZ2 and for all t ∈ {0, 2s−1}2,

Us−1(a + t) =
∑
b∈2sω

us−1
(
Cs(a − b) + b + t

)
. (33)

An illustration of this coarse-to-fine synthesis procedure is
available in [15].

Here again, instead of taking a single-layer transport map
for Ts , we propose to use a bilayer transport map that better
approximates the semi-discrete OT between μs and νs , even
for larger patches. Therefore, in contrast to [15] (referred
to as a single-layer model or “1-layer” in the captions), the
model will not be limited to 3 × 3 patches anymore. Indeed,
in the experiments shown in this section, the bilayer maps
are defined on 7 × 7 patches.
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Fig. 8 Single-resolution model, output patch distributions. In this fig-
ure, we examine the output patch distributions after the monolayer and
bilayer transport maps for the single-resolution model with patch size
w = 5, for the textures shown in the two first rows of Fig. 7. Each
diagram represents the one-dimensional distribution obtained after pro-
jecting on a principal axis in the patch space, and the corresponding
patch principal component is displayed just below. On each diagram,

the black curve is the reference distribution, the blue curve is the distri-
bution aftermulti-layer transport, and the yellowcurve is the distribution
after monolayer transport. This experiment reflects again the fact that
in a large-scale setting, multi-layer maps provide better transportation
maps which here help to better preserve patch distributions compared
to monolayer maps

Algorithm 3: Texture analysis/synthesis
1: Inputs: input texture u
2: Initialization: Sample US−1 (29).
3: for s = S − 1, . . . , 0 do
4: if Analysis then
5: · Fit GMM μs to the patches of Us .
6: · Estimate transport Ts from μs to νs

(with stochastic Algorithm 2)
7: Apply patch transport Ts on patches of Us

8: Aggregate patches to get Vs (31)
9: if s > 1, upsample Vs to get Us−1 (33)
10: return V0

Let us give the parameters of the used bilayer maps. In all
the examples shown below, we used S = 4 scales for images
smaller than 500 × 500 and S = 6 scales for larger images.
Since the target patch distribution νs of the exemplar texture
has amore complex structure for coarse scales, the number of
clusters J 1 is adapted to the scale, i.e., we take J 1 = 10 for
s = S−1, J 1 = 20 for s = S−2, and J 1 = 40 for s < S−2.
The hierarchical clustering is again found using the k-means
algorithm; however, in order to keep a reasonable complexity
even if the exemplar texture is very large, we fix a budget B of

patches in each cluster. If the number of patches in a cluster
C0
y exceeds B, then we randomly select B patches in this

cluster. This budget also depends on the scale: B = 100 for
s = S−1, B = 200 for s = S−2 and B = 400 for s < S−2.
At the finest scales, the global budget is thus 40 × 400 =
16000; this selection step amounts to simplifying ν with only
16000 patches. For which regards the source distribution,
during the estimation phase, a GMM distribution μs with 10
components is fitted to the current patch distribution of Us

using the Expectation Maximization algorithm [36]. Using
10Gaussian components tomodel the 7×7 patch distribution
of a texture seems relevant in comparison with [15] where 4
components were used to model the 3× 3 patch distribution
of a texture and also to [65] where ≈ 20 components were
used to model the 8×8 patch distribution of a natural image.
Finally, in order to reimpose details at the finest resolution,
we apply on V0 a last bilayer transport map on 3× 3 patches
to get the output image V .

Let us emphasize on the fact that the overall algorithm
can be decoupled into an estimation and synthesis step. In
other words, the estimation of bilayer transport maps at all
resolutions (which is quite costly) can be done once and for
all. Once estimated, these transport maps can be applied to
all patches and also be used to synthesize many images with
arbitrary size. For this reason, if the model is pre-estimated,
then the synthesis algorithm has a very low computational
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Fig. 9 Multi-resolution model, synthesis results. For several exemplar
textures displayed in the middle column, we present several synthesis
results obtained with a multi-resolution model exploiting multi-layer

transport maps working on 7 × 7 patches at each resolution. We com-
pare with the previous model [15] based on single-layer transport on
3 × 3 patches. See the text for comments
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Fig. 10 Preserving fine scale details. This figure illustrates that the
multi-layer model retrieves geometric structures of the exemplar in a
cleaner way. In particular, applying the single-layer model on patches

7 × 7 is not sufficient to produce relevant structures. Also, one can see
that the last 3×3 transport applied at resolution 0 is important to retrieve
fine scale structures

time, comparable to methods based on pre-estimated feed-
forward networks like [59].

Several synthesis results obtained with the multi-layer
model are displayed in Fig. 9. Compared to the previous
model [15], it is clear that working on 7× 7 patches (instead
of 3 × 3 patches) allows to capture larger geometric struc-
tures of the exemplar texture. This is not surprising since
the semi-discrete transport maps that are used are essentially
weighted NN assignments that use patches seen in the exem-
plar texture. But still, combining the Gaussian initialization
at coarse resolution and the patch averaging procedure at all
resolutions permits to create new patches which are not seen
in the exemplar. This is where the model gets its capacity of
innovation. The copy-paste effect will be discussed below.
Let us also mention that the new model is able to better
respect fine details, thanks to the last 3 × 3 transport map
applied at the finest resolution, see Fig. 10.

In Fig. 11, we compare the multi-resolution model with
other state-of-the-art texture models. The model of Gatys
et al. [16] consists in optimizing the image (starting from
a white noise) in order to match some spatially averaged
second-order responses obtained in a pre-learned neural net-
work. The model of Ulyanov et al. [59] consists in learning a
feed-forward neural network that mimicks the optimization
procedure of Gatys’ method. Finally, the model of Raad et
al. [46] consists in progressively growing the texture using
patch conditional sampling (also working in a coarse-to-fine
manner so that one resolution is conditioned by the previous
coarser resolution).

One can see that the visual quality is comparable to the
one attained by the model of Gatys et al. [16] and is clearly
higher than the one obtained by the other models (should
it be in terms of details, frequency content, or spectrum).
However, compared to [16], the images generated with our
model are often smoother; this is probably due to the aver-
aging step used to merge patches at all resolutions. Also,
the unstructured texture of the fifth row of Fig. 11 is worth
of comment; on this example, both models fail to preserve

the frequency content of the texture, but the failure of our
model can be avoided by properly setting the parameter S.
Indeed, one should set the number S resolutions depending
on the size of structures present in the exemplar image, keep-
ing in mind that the receptive field is of size 2S−1w×2S−1w

(for example, with S = 4 resolutions and 7 × 7 patches,
the receptive field is 56 × 56). For a texture with no salient
structure (like the one shown in the 5th row of Fig. 11), tak-
ing a single-resolution model (i.e., S = 1) is sufficient to
obtain a perfect result. Observe that pseudo-periodic patterns
are often not well reproduced by neural network methods,
while long correlations can be captured by our multiscale
model. This phenomenon can be circumvented by adding
other terms to the considered loss function, adding Fourier
spectrum information [34] or spatial correlation [55].

Additionally, it is interesting to compare the results by
looking at the resulting patch distributions, as is proposed in
Fig. 12. Since the patch distribution is very high-dimensional,
for that, one can plot the one-dimensional distributions
obtained after projections in the principal components of
the patch space (the principal component analysis being led
on the patches of the original texture). Curiously, even if
our model is inherently designed to preserve the patch dis-
tribution, one can see that the model by Gatys et al. often
outperforms it in terms of proximity to the original patch dis-
tribution. Again, this may be caused by the averaging step,
or also by the fact that the multi-layer maps do not attain
exactly the target empirical patch distributions. However, this
is very difficult how some observed drifts on the patch dis-
tributions (on some principal components) will impact the
visual perception. Complementing the study by looking at
the color distribution or the spectrum helps to understand the
failure/success of the different algorithms.

Let us also remark that, even if our model does not
reach the visual quality of Gatys’ model, it reaches a very
good compromise between visual quality and synthesis time
(since, again, themodel estimation can be performed offline).
In contrast, the model by Ulyanov et al. [59], which can also
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Fig. 11 Comparison. For each row, we display, from left to right, an
original texture, the result of the model based on two-layer patch trans-
port, the result of the feed-forward network of [59], the result of the

neural optimization procedure of [16] and the results of the patch-based
method of [46]. See the text for comments

123



298 Journal of Mathematical Imaging and Vision (2021) 63:282–308

Fig. 12 In this figure, we compare the synthesis results obtained with
the model based on bilayer OT and with the models of [59] and [16].
The first and fifth rows contain images synthesized with these three
models. In the second row, we display the output color distributions
visualized with [33]. The patch distributions obtained with the different

models are displayed in the third and seventh rows (summarized by the
one-dimensional distribution of the projections on the principal compo-
nents shown in fourth and eighth rows). In the sixth row, we display the
Fourier spectrum of images of the fifth row. See the text for comments

123



Journal of Mathematical Imaging and Vision (2021) 63:282–308 299

Fig. 13 Innovation capacity. In this figure, we illustrate the capacity of
innovation of three texture models by looking for several patches of the
exemplar texture (marked with red, green and blue squares) the 50 NN
in the synthesis (marked with squares with corresponding color). Com-

pared to other recent texture synthesis algorithms, our texture model
generates patterns which are more similar to those of the exemplar tex-
ture (becausemulti-layermaps projects of patches seen in the exemplar),
but always with some local variations due to patch averaging

be estimated offline and has a comparable synthesis time,
produces the results with curious visual artifacts that can be
analyzed in the patch distribution or the spectrum.

Finally, we propose one last experiment that aims at eval-
uating the capacity of innovation of the previous models. For
several large patches in the original texture, we propose to
single out their NN in the synthesis. The results can be seen in
Fig. 13. Since the bilayer transport maps project onto patches
seen in the original texture, it is expected that some pieces
of the synthesis are quite close to the original. However, one
can see that there are always small differences thanks to the
patch averaging step.

4.3 Textural Inpainting

To close this section, we propose to show briefly that the
texturemodel defined in the previous section can also be used
to address textural inpainting. Indeed, if the original texture
u : Ω → R is known outside a mask M ⊂ Ω , one can define
the target patch distribution as the empirical distribution of
available patches. Working with several resolutions is not
an issue either since one can compute subsampled versions
us : Ωs → R and define an adapted mask Ms at resolution
s (for example, by thresholding the bilinear reduction in the
indicator function of M).

However, at the coarsest scale, the synthesized Gaussian
texture should agree with the unmasked content. Fortunately,
in the Gaussian case, the inpainting problem can be for-
mulated as a conditional Gaussian model estimated outside
the mask as proposed in [14]. The benefit of such a condi-
tional simulation is that, at the coarsest scale, the synthesized
content will extend the long-range correlations that can be
observedoutside themask.Then, using thisGaussian inpaint-
ing of the coarsest scale, one can apply the bilayer transport
maps at several resolutions in order to reimpose geometric
structures, as shown in Fig. 14. The model is estimated in the
same way than for the case of pure synthesis, except that the
target patch distributions contain only patches which do not
overlap the mask. (The number of scales should be some-
times reduced in order to find enough available patches at
the coarsest resolution.) Also, a crucial difference lies in the
patch recomposition: One should apply the transport maps
to all patches that overlap the mask boundary (and average
them to get an image).

Some textural inpainting results can be seen in Figs. 14, 15
and 16. As can be observed in Figs. 14 and 15, this inpainting
model allows to inpainting structured textures in a reasonable
way. However, for complex sharp textures, some blur can be
perceived at the boundary of the mask (for example, in the
second example of Fig. 16). Also, the comparison of Fig. 16
highlights the benefit of considering the patch distributions.
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Fig. 14 Multiscale Textural inpainting. The proposed textural inpainting consists in using a Gaussian conditional sampling at the coarsest scale
(first row, third column) and then adding details with bilayer patch transport maps

Indeed, constraining the patch distribution allows to avoid
inpainting failures that are undesirable optima when opti-
mizing functionals based only on the distance to the patch
NN.

Figure 17 compares our approach with two other inpaint-
ing techniques [4,61] that have a limited amount of artifacts
at the boundary of the mask. On the one hand, deep image
prior [61] consists in training a fully convolutional neural
network (in this specific case, with skipping connections) to
generate the masked image from a (fixed) noise input using a
mean square error loss function outside the masked domain.
Due to the continuous nature of the generative network, this
technique gives sometimes surprisingly good results with a
seamless transition at the border of the mask. On the other
hand, we compare to the greedy patch-based copy method
of [4], where an efficient blending technique is proposed to
avoid block artifacts when combining locally patches from
different locations in the image. Again, our approach com-
pares favorably to those methods, despite introducing some
noticeable blur at the finest resolution due to the averaging
of patches.

5 Application to Style Transfer

5.1 A Short Review on Image Stylization

The principle of image stylization or style transfer (see, e.g.,
[8,9,13,16,23,24,59,66]) is to give a source image the artistic
look of an example (or style) image, such as a painting, a
texture or another picture with the desired visual features

(e.g., color or dynamic range). The most important aspect
of this problem is that the synthesized image should at the
same time have similar visual features than the style image
and preserve the geometrical content of the original image.

Until recently, most successful approaches consisted in
patch-based methods that are largely based on texture syn-
thesis [8,23]. Often, the only main difference is that the
initialization, instead of using random noise, is the image
to be modified itself. However, there is no guarantee that the
resulting image will keep most of its important geometrical
structures. In order to copewith this issue, othermethods rely
on a variational formulation that balances the two objectives:
An objective function comparing style features to the style
image, linearly combined with a second objective comparing
other geometric features to the original image. Such formu-
lations are usually used to drive an optimization algorithm
that iteratively updates the pixel values of the synthesized
image.

As was already discussed in the introduction, textural or
style features can be based on patch representations [9,13].
However, a more popular way to extract features is to use
a visual representation of images that is learned on a large
dataset of natural images, as initiated in [16]. In practice,most
techniques use features extracted from layers of the deep
convolutional neural network VGG-19 [56] trained on Ima-
geNet, but random representations could be used aswell [62].
Note that learned representations for image classification
are known to be heavily biased toward textural information
[18,39]. In order to use such a network for style transfer, spa-
tial information linked to geometrical features of the input
must be kept while the style features must be extracted
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Fig. 15 Textural inpainting results. For several masked textures (first
and third rows), we display the inpainting result obtainedwith themodel
based on two-layer patch transport. Notice that the inpainted content

blends quite nicely with the rest of the image, even if a residual blur is
sometimes perceived due to patch averaging

with spatially averaged statistics (often with second-order
statistics, like Gram matrices). Although using deep rep-
resentations makes the optimization more involved (as it
requires backward propagation through a deep network), it
improves greatly the visual quality [17].

The authors of [24] have shown that this optimization pro-
cess could be performed offline by training a deep network to
achieve a given type of stylization on a dataset (MS-COCO
with 80k training images). After training, the corresponding
stylization of a new source image is simply done by a single
forward propagation through the neural network. Afterward,
the authors of [59] demonstrated that such a technique can be
used for texture synthesis as well, or for multiple styles [66].
While image quality might not be on par with deep opti-
mization technique [17], the speed-up is of several orders of
magnitude, as it requires less computations than for a single
iteration which involves forward & backward propagation
through a deep descriptive network.

5.2 Feed-Forward Texture Transfer

We propose here to adapt the multi-resolution texture syn-
thesis algorithm of the last section to perform style transfer
in a “feed-forward” fashion. More precisely, we estimate
the multi-resolution texture model associated with the style
image, and then, we directly apply the multi-layer transport
maps to the source image in a coarse-to-fine manner, with-
out any optimization. The main difference is the following:
At each scale, the upscaled output from the previous scale is
now blended with geometric features from the source image.
For simplicity, we use only edges as geometric features. Note
that, as for the “perceptual loss” in [16,24,59], style features
do not encode spatial information in our case (patch distribu-
tion) but geometrical features do. The method is summarized
in Algorithm 4 and detailed in the next paragraphs. Con-
trary to other aforementioned approaches, our algorithm is
not optimizing the input image nor trained on a dataset.
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Fig. 16 Textural inpainting comparison. In this figure, we compare our
approach for textural inpaintingwith the oneofNewsonet al.[40]. (Their
result was obtainedwith the online demo [41].) Notice that our approach
blends the synthesized content with more blur, but also in a way that

is less oblivious of the surrounding content. In contrast, with [40], the
generated content often disagrees with the context at the boundary of
the mask

Fig. 17 Textural inpainting comparison. In this example, we compare
our approach withDeep image prior [61] (which optimizes a deep neu-
ral network with skipping connection to generate the masked image
using Mean Square Error criterion) and with [4], where patches from

the uncovered part of the image are used to fill in the masked domain
and blended to avoid blocking artifacts. Notice that the available textu-
ral content is better represented with our approach since it is inherently
designed to respect the patch distribution
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(a)

(c) (d) (e)

(f) (g) (h)

(b)

Fig. 18 Illustration of contour extraction and blending for texture
transfer. This figure contains the style image u (a), the source image
w (b), the mask Mw (c) defined from Eq. (35), the preprocessed image
w̃ (d) defined from Eq. (34), the contour image Mww̃ (e), the result
of multiscale blending (f) obtained from Alg. 4, the result with naive
blending (g), and the synthesis without blending (h). Note that the direct
blending of the contours in the synthesized texture is not sufficient (g).
Using blending directly during the multi-resolution synthesis (f) gives
more satisfying results

Preprocessing We denote by w the input image to be pro-
cessed and u the style image. In order to ensure that the
patch distribution ofw at the coarsest resolution s = S−1 is
close to the one of u (which serves to estimate the transport
maps), we first preprocessw to match the patch second-order
statistical properties of u. Namely, the preprocessed image
w̃ is constructed by overlapping transformed patches:

w̃(a) = 1

|ω|
∑
b∈ω

A(w|a−b+ω)(b), (34)

where A is an affine transform that imposes the patch
mean and patch covariance of u. Because the reconstructed
image w̃ may have out of range values, a local histogram
equalization of the intensity channel inLab color space is per-
formed. An example illustrating this preprocessing is shown
in Fig. 18d.
Blending geometric and texture information Geometric fea-
tures are based on contour extraction. A mask is first
computed from the gradient intensity on the smoothed input

image and normalized using a sigmoid function:

Mw(x) = St
(‖∇(w ∗ gγ )(x)‖) (35)

where ∗ indicates the discrete convolution with the Gaussian
density function gγ of standard deviation γ (controlling the
detection scale), and

Sτ (w) = 1

1 + e−10w−τ
τ

(36)

parameterized by τ , which controls the detection intensity.
Figure 18c shows the mask computed at the largest resolu-
tion.

The blending of texture synthesis with geometric features
is performed with a convex combination between the current
upsampled image (33) and the preprocessed image w̃s (34)
(Fig. 18e)

Ũs(x) = (
1 − Mws (x)

)
Us(x) + Mws (x)w̃s(x). (37)

Once blended, we can apply the pre-learned multi-layer
transport map as in (31). Figure 18 shows that applying the
blending before the transport map (Fig. 18g) rather than after
(Fig. 18h) gives a much better result.

In practice, as shown in Fig. 19, decreasing the threshold τ

adds details with less contrast from the input, and decreasing
γ keeps only fine details.

Remark Observe that, as we blend the preprocessed input
image with textures, the patch distribution of the stylized
image does not follow the GMM that served as the source of
the transport maps. However, as we change patches only at
some edges of the texture image, the difference is practically
negligible for this application.

Algorithm 4: Feed-forward image stylization
1: Inputs: style image u and source image w

2: Offline: Estimate the transport maps Ts of the texture
model defined by u.

3: Pre-processing: Compute w̃ (34).
4: Initialization: Sample US−1 (29) (same size as w).
5: for s = S − 1, . . . , 0 do
6: Resize images at scale s: us , ws and w̃s

7: Contour detection: Compute mask Mws (35)
8: Blending: Compute Ũs from w̃s and Us (37)
9: Apply patch transport Ts on patches of Ũs

10: Aggregate patches to get Vs (31)
11: If s > 1, upsample Vs to get Us−1 (33)
12: return V0
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(a)

(c) (d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

(b)

Fig. 19 Illustration of contour extraction and blending parameters γ

and τ for texture transfer. The same random seed is used to generate
the style on the first two lines. The last row shows the effect of chang-
ing the random seed used to initialize the algorithm Gaussian random
field (29), where τ = 0.02 and γ = 0.8 (as fixed throughout the rest of
experiments)

Additionally, Fig. 19 shows the stylization results with
different random initializations. It should be noted that we
do not have any of the diversity problems reported for feed-
forward networks in [60] and [32] for instance.

5.3 Stylization Results

First, Fig. 20 gives a comparison of our image stylization
approach (Fig. 20g) with the gold standard technique of deep
image optimization introduced byGatys et al. [17] (Fig. 20f).
As already mentioned, the optimization process is based on
an objective function, linearly combining a style loss with a
content loss function weighted by a parameter λ. The inter-
esting aspect of using deep image representation is that it
enables a more liberal definition of the content of the image
to be preserved than ours, resulting in mixing the content of
both images in intricate patterns (see, for instance, the posts
becoming curved like the branches in the source image).
However, as already reported in previous work (see, e.g.,
[34]), some features are not well preserved, such as color, and
checkerboard artifacts may also appear. On the other hand,
as previously demonstrated, our technique aims at match-

Fig. 20 Image stylization comparison of the proposed approach with
other feed-forward techniques requiring learning over a dataset. We
display the style image (a), the source image (b), the result of Johnson
et al. [24] (c), the result of Zhang et al. [66], the result of our approach
for several values of the blending parameter τ (e, g, i), and the result of
Gatys et al. [17] for several values of the weighting parameter λ (f, h,
j). See the text for comments

ing the patch distribution from the style image, hence being
better at preserving color and reproducing tiny details from
the exemplar image. For a complete comparison, we display
stylization with our method when incorporating only geo-
metric details at low resolution (by setting τ = 0 after the
third scale, and referred to as low in Fig. 20e) or with all
details at high resolution (by setting τ = 1 after the third
scale, referred to as high in Fig. 20i).
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Fig. 21 Feed-forward multi-layer style transfer. Note that the same
random seed (i.e., used to generate the Gaussian texture sample at the
coarsest scale) is used for all examples, showing how incorporating
geometric features in Algorithm 4 changes the outcome. Stylization

parameters are fixed throughout all experiments as well (γ = 0.8 and
τ = 0.02) but could be adapted depending on the geometric content of
the source image
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Comparing our technique to other feed-forward
approaches from the literature [24,66] (that still require train-
ing on a large dataset of natural images) is interesting as
well. Both techniques (Johnson et al. [24] in Fig. 20c, Zhang
et al. [66] in Fig. 20d) do not manage to preserve the main
features of the style image, thus highlighting the benefit of
our statistical framework. Quite interestingly, unlike Gatys
et al. [17], these methods have automatically learned to pre-
serve the contours from the source image, as we choose to
do explicitly.

Figure 21 shows various stylization results for different
types of source image. In these experiments, all stylization
parameters are fixed (same random seed, τ = 0.02 and
γ = 0.8) and the same parameters have been used for learn-
ing all bilayer transportation maps from the style image (as
detailed in Sect. 4.2). To start with, observe that our method
is better suited for style images which are textures, which is
the main hypothesis of our statistical framework. When it is
not the case, we observed that themulti-layermodel hasmore
trouble to match statistics with the same set of parameters,
requiring more iterations during training, and more sampled
patches, more GMM components, etc. Yet, it is still provid-
ing interesting results on non-stationary style examples (such
as rows 1, 4 and 8 of Fig. 21).

6 Conclusion

In this paper, we have proposed to approximate a semi-
discrete OTmap with multi-layer transport maps that exploit
a hierarchical clustering of the target discrete distribution.
After studying the optimality condition for such multi-layer
maps, we have shown that they can be optimized with a
heuristic stochastic optimization approach. The correspond-
ing algorithm performs better than the usual stochastic
algorithm for semi-discrete OT, especially when the target
discrete distribution has a very large support. However, we
have shown that, except in dimension 1, the hierarchical clus-
tering of the target distribution induces a bias that cannot be
coped with by the optimization procedure.

Such multi-layer transport maps, therefore, can be used
for applications that rely on a large-scale OT setting (both
in terms of dimensions of the underlying space and in terms
of support of the target distribution). In particular, we pro-
posed to exploit this multi-layer approach to tackle OT in the
patch space, which is useful for several imaging applications,
and we gave the results in texture synthesis, texture inpaint-
ing and style transfer. For texture synthesis, the multi-layer
approach allowed us to consider larger patches in a previous
texture model, which considerably enrich the class of well-
reproduced textures. We thus obtained a texture model that is
comparable to state-of-the-art models in terms of visual qual-
ity, while maintaining several mathematical properties (like

long-range independence), and a good empirical control on
visual statistics (like the color distribution of the spectrum).
Besides, once estimated, such a texturemodel can be sampled
in a fast manner (since it consists only in recursive weighted
NN patch assignments) and thus has a competitive computa-
tional time compared to recent neural network techniques.

This texture model can also be used to address texture
inpainting (by relying on a Gaussian conditional sampling
scheme for the coarse resolution) or style transfer (with a
feed-forward approach that blends the source image with
a synthesized texture and which does not need pixel-based
optimization). For both these problems, this model produces
the visual results that compare well to other competingmeth-
ods, with the benefit of a good statistical control, in the sense
that all the textural content visible in the input texture (or the
style image) will be fairly represented in the output image.
For inpainting, this statistical control allows to avoid trivial
solutions of patch-based approach (for example, flat areas
obtained by repeating a flat available patch).

The main limitation of this texture model lies in its con-
strained architecture. While the number of scales is easily
tuned, the patch recomposition strategy is here fixed as a sim-
ple average. Although this linear strategy helps to preserve
the covariance structure of the randomfield, it inexorably pro-
duces some blur in the synthesized images, which is often the
main explication for the failure cases encountered in this arti-
cle. This issue would certainly be solved by constraining the
patch distribution after the patch recomposition strategy. But
this would require a radical change of the model architecture
that we leave for further investigation.
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