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Abstract
This paper combines image metamorphosis with deep features. To this end, images are considered as maps into a high-
dimensional feature space and a structure-sensitive, anisotropic flow regularization is incorporated in the metamorphosis
model proposed by Miller and Younes (Int J Comput Vis 41(1):61–84, 2001) and Trouvé and Younes (Found Comput Math
5(2):173–198, 2005). For this model, a variational time discretization of the Riemannian path energy is presented and the
existence of discrete geodesic paths minimizing this energy is demonstrated. Furthermore, convergence of discrete geodesic
paths to geodesic paths in the time continuous model is investigated. The spatial discretization is based on a finite difference
approximation in image space and a stable spline approximation in deformation space; the fully discrete model is optimized
using the iPALM algorithm. Numerical experiments indicate that the incorporation of semantic deep features is superior to
intensity-based approaches.

Keywords Image morphing · Metamorphosis model · Variational time discretization · Mosco convergence · Convolutional
neural networks

Mathematics Subject Classification 65D18 · 37L65 · 49M25 · 53C22 · 65L20

1 Introduction

In mathematical imaging, image morphing is the problem of
computing a visually appealing transition of two images such
that semantically corresponding regions are mapped onto
each other. A well-known approach for image morphing is
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the metamorphosis model originally introduced by Miller et
al. [16,29,30], which generalizes the flow of diffeomorphism
model and the large deformation diffeomorphic metric map-
ping (LDDMM) which dates back to the pioneering work of
Arnold [1] with its exploration and extension in imaging by
Dupuis et al. [3,10,14,18,31,32]. From the perspective of the
flow of diffeomorphism model, each point of the reference
image is transported to the target image in an energetically
optimal way such that the image intensity is preserved along
the trajectories of the pixels. Here, the energy measures the
total dissipation of the underlying flow. The metamorphosis
model additionally allows for image intensity modulations
along the trajectories by incorporating themagnitude of these
modulations, which is reflected by the integrated squared
material derivative of image trajectories as a penalization
term in the energy functional. Recently, the metamorphosis
model has been extended to images on Hadamard manifolds
[13,20], to reproducing kernel Hilbert spaces [26], to func-
tional shapes [6] and to discrete measures [25]. For a more
detailed exposition of these models, we refer the reader to
[17,33] and the references therein.

Starting from the general framework for variational
time discretization in geodesic calculus [27], a variational
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time discretization of the metamorphosis model for square-
integrable images L2(�,Rn)was proposed in [4].Moreover,
the existence of discrete geodesic paths as well as the Mosco
convergence of the time discrete to the time continuous
metamorphosis model was proven. However, the classical
metamorphosis model, its time discrete counterpart and the
spatial discretization based on finite elements in [4] exhibit
several drawbacks:

– The comparison of images in their original gray- or color
space is not invariant to natural radiometric transforma-
tions caused by lighting or material changes, shadows,
etc., and hence might lead to a blending along the dis-
crete geodesic path instead of flow-induced geometric
transformations.

– Texture patterns, which are important for a natural
appearance of images, are often destroyed along the
geodesic path due to the color-based matching.

– Sharp interfaces such as object boundaries, which fre-
quently coincidewith depth discontinuities of a scene, are
in general not preserved along a geodesic path because
of the strong smoothness implied by the homogeneous
and isotropic variational prior for the deformation fields.

To overcome these problems originating from the inten-
sity-based matching, we propose a multiscale feature space
approach incorporating the deep convolution neural network
introduced in [28]. In detail, this convolutional neural net-
work, which was trained to classify the ImageNet dataset
[15], extracts semantic features using 19 weight layers, each
composed of small 3×3-convolution filters with subsequent
nonlinear ReLU activation functions. This network defines a
feature extraction operator, where each feature map is con-
sidered as a continuous map into some higher-dimensional
feature space consisting of vectors in R

C , where C ranges
from 64 to 512 depending on the considered scale associated
with a certain network layer. Throughout the paper, we refer
to this network as VGG network (“Visual Geometry Group
in Oxford”). Compared to the original time discrete meta-
morphosis model [4], we advocate a metamorphosis model
in a deep feature space, which amounts to replacing the
input images by feature vectors combining image intensities
and semantic information generated by the feature extraction
operator. To explicitly allow for discontinuities in the defor-
mation fields, we introduce an anisotropic regularization of
the timediscrete deformation sequence. Sincemotiondiscon-
tinuities and object interfaces in images commonly coincide,
the considered anisotropy solely depends on the magnitude
of image gradients.

We prove the existence of discrete geodesic paths for the
deep feature metamorphosis model and discuss its Mosco
convergence to the appropriate time continuous metamor-
phosis model in deep feature space. This in particular

implies the convergence of time discrete to time contin-
uous geodesic paths and establishes the existence of time
continuous geodesics as minimizers of the time continuous
metamorphosis model.

We propose a finite difference/third order B-spline dis-
cretization for the fully discrete feature spacemetamorphosis
model and use the iPALM algorithm [24] for the optimiza-
tion, which leads to an efficient and robust computation
of morphing sequences that visually outperform the prior
intensity-based finite element discretization discussed in [4].
This scheme is significantly less sensitive to intensity mod-
ulations due to the exploitation of semantic information.

Note that this publication is an extended version of the
conference proceeding [12], in which the model is adapted
and in addition a rigorousmathematical analysis of this novel
model is presented. In fact, the morphing sequence is no
longer retrieved in a post-processing step. Instead, the color
values are part of the feature vector. Different from the prior
proceedings article, we prove the existence of time discrete
geodesics in feature space, present a time continuous model
and discuss the issue of convergence of the discrete function-
als.

Notation Throughout this paper, we assume that the image
domain � ⊂ R

n for n ∈ {2, 3} is bounded and strongly Lip-
schitz. We use standard notation for Lebesgue and Sobolev
spaces from the image domain � to a Banach space X ,
i.e., L p(�, X) and Hm(�, X) and omit X if the space is
clear from the context. The associated norms are denoted by
‖ · ‖L p(�) and ‖ · ‖Hm (�), respectively, and the seminorm in
Hm(�) is given by | · |Hm (�), i.e.,

| f |Hm (�) = ‖Dm f ‖L2(�) , ‖ f ‖2Hm (�) =
m∑

j=0

| f |2H j (�)

for f ∈ Hm(�). We use the notation Ck,α(�, X) for Hölder
spaces of order k ≥ 0 with regularity α ∈ (0, 1], the corre-
sponding (semi)norm is

| f |C0,α(�) = sup
x �=y∈�

| f (x) − f (y)|
|x − y|α ,

‖ f ‖Ck,α(�) =‖ f ‖Ck (�) +
∑

|β|=k

|Dβ f |C0,α(�) .

The symmetric part of amatrix A ∈ R
n,n is denoted by Asym,

i.e., Asym = 1
2 (A + A�) and the symmetrized Jacobian of

a differentiable function φ by ε[φ] = (Dφ)sym. We denote
by GL+(n) the elements of GL(n) with positive determi-
nant, and by 1 both the identity map and the identity matrix.
Finally, ḟ refers to the temporal derivative of a differentiable
function f .
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Organization This paper is structured as follows: in Sect. 2,
we review the classical metamorphosis model and present its
extension to deep feature spaces. Then, in Sect. 3 we intro-
duce the timediscrete deep featuremetamorphosismodel and
prove the existence of geodesic paths. In Sect. 4, we present
a time continuous metamorphosis model and comment on
the Mosco convergence in deep feature space. The fully dis-
crete model and the optimization scheme using the iPALM
algorithm are presented in Sect. 5. Finally, in Sect. 6 sev-
eral examples demonstrate the applicability of the proposed
methods to real image data.

2 Metamorphosis Model

In this section, we briefly review the classical flow of dif-
feomorphism model and the metamorphosis model as its
generalization. Then, we extend the metamorphosis model
to the space of deep features, where we additionally incor-
porate an anisotropic regularization.

2.1 Flow of Diffeomorphism

Inwhat follows,we present a very short exposition of the flow
of diffeomorphismmodel and refer the reader to [3,10,14,18]
for further details. In the flow of diffeomorphism model, the
temporal change of image intensities is determined by a fam-
ily of diffeomorphisms (ψ(t))t∈[0,1] : � → R

n describing a
flow transporting image intensities along particle paths. The
main assumption of this model is the brightness constancy
assumption, which is equivalent to a vanishing material
derivative D

∂t u = u̇ + v · Du along a path (u(t))t∈[0,1] in the
space of images, where v(t) = ψ̇(t) ◦ ψ−1(t) denotes the
time-dependent Eulerian velocity. The Riemannian space of
images is endowedwith the followingmetric and path energy

gψt (ψ̇t , ψ̇t ) =
∫

�

L[v, v] dx ,

Eψt [(ψt )t∈[0,1]] =
∫ 1

0
gψt (ψ̇t , ψ̇t ) dt .

Note that we use ψt as a shortcut for the function x 
→
ψ(t, x). Here, the quadratic form L is the higher order elliptic
operator

L[v, v] = λ

2
(trε[v])2 + μtr(ε[v]2) + γ |Dmv|2,

where m > 1 + n
2 and λ,μ, γ > 0. Physically, the metric

gψt (ψ̇t , ψ̇t ) describes the viscous dissipation in a multipolar
fluid model as investigated by Nečas and Šilhavý [21]. The
first two terms of the integrand represent the dissipation den-
sity in a Newtonian fluid and the third term can be regarded

as a higher order measure for friction. Following [10, The-
orem 2.5], paths with a finite energy, which connect two
diffeomorphisms ψ0 = ψA and ψ1 = ψB , are actually one-
parameter families of diffeomorphisms. Given two image
intensity functions u A, u B ∈ L2(�), an associated geodesic
path is a family of images u = (u(t) : � → R)t∈[0,1]
with u(0, ·) = u A(·) and u(1, ·) = u B(·), which minimizes
the path energy. The resulting flow of images is given by
u(t, ·) = u A ◦ ψ−1

t (·).

2.2 Metamorphosis Model in Image Space

The metamorphosis approach originally proposed by Miller
et al. in [16,29,30] generalizes the flow of diffeomorphism
model by allowing for image intensity variations along
motion paths and penalizing the squared material derivative
in the metric. Under the assumption that the image path u is
sufficiently smooth, the metric and the path energy read as

g(u̇, u̇) = min
v:�→Rn

∫

�

L[v, v] + 1

δ
z2 dx ,

E[u] =
∫ 1

0
g(u̇(t), u̇(t)) dt

for a penalization parameter δ > 0, where z = D
∂t u = u̇ +

v · Du denotes the material derivative of u. The Lagrangian
formulation of this variation of the image intensity along
motion trajectories can be phrased as follows: for all s, t ∈
[0, 1] we have

u(t, ψt ) − u(s, ψs) =
∫ t

s
z(r , ψr ) dr . (1)

Hence, the flow of diffeomorphism model is the limit case
of the metamorphosis model for δ → 0. This definition of
the metric has two major drawbacks: In general, paths in the
space of images do not exhibit any smoothness properties
(neither in space nor time), and therefore the evaluation of the
material derivative is not well-defined. Moreover, since dif-
ferent pairs (v, D

∂t u)of velocityfields andmaterial derivatives
can imply the same time derivative of the image path u̇, the
restriction to equivalence classes of pairs is required, where
two pairs are equivalent if and only if they induce the same
temporal change of the image path u̇.

To tackle both problems, Trouvé and Younes [29] pro-
posed a nonlinear geometric structure in the space of RGB
images I := L2(�,R3). In detail, for a given image
path u ∈ L2([0, 1], I) and an associated velocity field v ∈
L2((0, 1),V), where V := Hm(�,Rn) ∩ H1

0 (�,Rn)

denotes the velocity space, the weak material derivative
z ∈ L2((0, 1), L2(�,R3)) is incorporated in the model,
which is implicitly given by
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∫ 1

0

∫

�

ηz dx dt = −
∫ 1

0

∫

�

(∂tη + div(vη))u dx dt (2)

for a smooth test function η ∈ C∞
c ((0, 1)×�). We consider

(v, z) as a tangent vector in the tangent space of I at the
image u and write (v, z) ∈ TuI defined by (2). Indeed, (v, z)
represents a variation of the image u via transport and change
of intensity. This (weak) formulation and the consideration of
equivalence classes of motion fields and material derivatives
inducing the same temporal change of the image intensity
gives rise to the notion H1([0, 1], I) for regular paths in the
space of images. For details, we refer the reader to [29]. The
path energy in the metamorphosis model for a regular path
u ∈ H1([0, 1], I) is then defined as

E[u] =
∫ 1

0
inf

(v,z)∈TuI

∫

�

L[v, v] + 1

δ
z2 dx dt . (3)

Then, image morphing of two input images u A, u B ∈
I amounts to computing a shortest geodesic path u ∈
H1([0, 1], I) in the metamorphosis model, which is defined
as a minimizer of the path energy in the class of regular
curves such that u(0) = u A and u(1) = u B . The existence
of a shortest geodesic is proven in [29, Theorem 6]. Note
that the infimum in (3) is attained, which is shown in [29,
Proposition 1 & Theorem 2].

2.3 Metamorphosis Model in Deep Feature Space

In this subsection, we extend the metamorphosis model to
images as maps into a deep feature space with the aim
to increase the reliability and robustness of the resulting
morphing. To further improve the quality of the deforma-
tions, we incorporate an anisotropic regularization of the
deformation field. We will compute geodesic paths in the
feature space F := L2(�,R3+C ) for C ≥ 0. Here, the
first part u ∈ I of a feature vector f = (u, f̃ ) ∈ F
encodes the RGB image intensity values, the remaining com-
ponent f̃ ∈ L2(�,RC ) represents deep features, which are
high-dimensional local image patterns describing the local
structure of the image as a superposition on different lev-
els of a multiscale image approximation. Let us denote by
P the projection onto the image component of a feature,
i.e., P[ f ] = u. To compute the geodesic sequence in the
deep feature space, we extract the features F(u A),F(u B) ∈
L2(�,RC ) from the fixed input images u A, u B ∈ I and
define for a fixed (small) η > 0

f A = (ηu A,F(u A)) , fB = (ηu B,F(u B)) .

The computation of the VGG features is composed of con-
volution operators and nonlinear ReLU activation functions
which are both continuous mappings. Hence, it is reason-

able to assume in our mathematical model that the mapping
F : I → L2(�,RC ) is continuous. Following [28], we
define for the fully discrete model discussed in Sect. 5 a dis-
crete feature operator to incorporate semantic information
in image morphing based on convolutional neural networks,
where C ranges from 64 to 512. The parameter η is used
to scale down the RGB component mainly needed to com-
pute the anisotropy (see below) and to primarily focus on the
actual VGG features when estimating the transport.

Next, we include an anisotropic elliptic operator L in our
model to properly account for image structures such as sharp
edges or corners. To this end,we consider an anisotropy oper-
ator a : I → L∞(�) fulfilling the following assumptions:

(A1) boundedness and coercivity: ca < a[u](x) < Ca for
0 < ca < Ca and all u ∈ I and a.e. x ∈ �,

(A2) compactness: uk⇀u in I implies a[uk] → a[u] in
L∞(�),

(A3) Lipschitz continuity: for all neighborhoods U ⊂ I
there exists La > 0 such that ‖a[u] − a[ũ]‖L∞ ≤
La‖u − ũ‖I for all u, ũ ∈ U .

In the numerical experiments, we use the operator [23]

a[u](x) = exp

(
−‖(Gρ ∗ DGσ ∗ u)(x)‖22

ξ1

)
+ ξ2, (4)

for fixed ξ1, ξ2 > 0, where Gσ , Gρ are the Gaussian kernels
with standarddeviationσ, ρ > 0.Note that (4) satisfies (A1)–
(A3). In fact, the anisotropy operator a is a scale factor for the
elliptic operator of the deformation field, which nearly van-
ishes in the proximity of interfacial structures. Thus, large
deformation gradients are less penalized in these regions
and consequently sharp edges can be better preserved along
geodesic paths. Now we are in the position to introduce the
variational model for deep feature metamorphosis. Instead
of generalizing the definition of regular paths and adapting
the notion of a weak material derivative (2) originally pro-
posed by Trouvé and Younes, we follow the relaxed material
derivative approach proposed in [13], in which the material
derivative quantity is retrieved from a variational inequality.
In [13, Section 3], the equivalence of this energy functional
and (3) in the isotropic case has been shown. Let ψ as above
denote the Lagrangian flow map induced by the Eulerian
motion field with ψ̇t (x) = v(t, ψt (x)) and ψ0(x) = x .
Then, we replace the equality (1) (rephrased for the fea-
ture map f as f (t, ψt ) − f (s, ψs) = ∫ t

s z̃(r , ψr ) dr with
z̃ ∈ L2((0, 1) × �,R3+C ) being the weak material deriva-
tive) by the inequality

| f (t, ψt (x)) − f (s, ψs(x))| ≤
∫ t

s
z(r , ψr (x)) dr (5)
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for a.e. x ∈ � and all 1 ≥ t > s ≥ 0, where formally
the scalar valued z = |z̃| replaces the actually vector-valued
material derivative. In fact, this inequality defines a set C( f )

of admissible pairs (v, z) given a path f in L2([0, 1],F).
This relaxed approach will turn out to be very natural when
it comes to lower semicontinuity of the path energy in the
context of the existence proof for geodesic paths. For more
details, we refer the reader to Sect. 4.

Definition 1 (Continuous path energy) We consider the
anisotropic elliptic operator

L[ã, v, v] = ã

(
λ

2
(trε[v])2 + μtr(ε[v]2)

)
+ γ |Dmv|2

for an anisotropy operator ã ∈ L∞(�), a velocity field v ∈ V
and γ, μ, λ > 0. Then, we define the path energy

E[ f ] =
∫ 1

0
inf

(v,z)∈C( f )

∫

�

L[a[P[ f ]], v, v] + 1

δ
z2 dx dt (6)

for a path f ∈ L2([0, 1],F), where

C( f ) ⊂ L2((0, 1),V) × L2((0, 1) × �)

denotes the set of admissible pairs of the velocity and a scalar
quantity z fulfilling (5).

Let us stress that the anisotropy ã = a[P[ f ]] solely takes into
account local RGB values and not the actual VGG features
with their discriminative multiscale characteristics.

Geodesic curves f ∈ L2([0, 1],F) in the deep feature
space joining f A, fB ∈ F are defined as minimizers of the
path energy E among all curves with the fixed boundary con-
ditions f (0) = f A and f (1) = fB .

Remark 1 One observes that a path f ∈ L2([0, 1],F)

in feature space with finite energy E[ f ] < ∞ exhibits
additional smoothness properties. Indeed, the boundedness
of v in L2((0, 1), Hm(�,Rn)) implies that the flow is
in ψ ∈ H1((0, 1), Hm(�,�)) and, by using Sobolev

embedding arguments, inC0, 12 ([0, 1], C1,α(�,�))with α ∈
(0,min{1, m − 1 − n

2 }). The same observation holds for
ψ−1 by noting that ψ−1

t (·) is the flow associated with the
backward motion field −v(1 − t, ·). This together with the
variational inequality (5) and z in L2((0, 1) × �) ensures

that t 
→ f (t, ψ(t, ·)) ∈ H1((0, 1),F) ⊂ C0, 12 ([0, 1],F).
Using approximation by smooth functions, one shows that
t 
→ f (t, ·) ∈ C0([0, 1],F) is uniformly continuous, and by
using (A3) the mapping t 
→ a[P[ f (t, ·)]] is well-defined
and in C0([0, 1], L∞(�)).

3 Variational Time Discretization

In this section, we develop a variational time discretization
of the deep feature space metamorphosis model taking into
account the approach presented in [4,27].

Wedefine the time discrete pairwise energy for two feature
maps f , f̃ ∈ F by

W[ f , f̃ ] = min
φ∈A

WD[a[P[ f̃ ]], f , f̃ , φ] ,

where WD : L∞(�) × F × F × A → R is given by

WD[ã, f , f̃ , φ]
=

∫

�

ãW(Dφ) + γ |Dmφ|2 + 1

δ
| f̃ ◦ φ − f |2 dx . (7)

Here, the set of admissible deformations is

A = {φ ∈ Hm(�,�) : det(Dφ) > 0 a.e. in �,

φ|∂� = 1}.

Note that the anisotropy operator only depends on the image
component of the second feature f̃ in the pairwise energy.We
make the following assumptions with respect to the energy
density function W:

(W1) W : Rn,n → R
+
0 andW ∈ C4(GL+(n)) is polyconvex

and W(1) = 0, DW(1) = 0,
(W2) there exist constantsCW,1, CW,2, rW > 0 such that for

all A ∈ GL+(n) the growth estimates

W(A) ≥ CW,1|Asym − 1|2 , if |A − 1| < rW ,

W(A) ≥ CW,2 , if |A − 1| ≥ rW

hold true,
(W3) for all A ∈ R

n,n the relation

1

2
D2W(1)(A, A) = λ

2
(trA)2 + μtr((Asym)2)

holds true.

The first two assumptions ensure existence of a minimizing
deformation in (7), and the third is a consistency assumption
with respect to the differential operator L required to guaran-
tee that the below defined discrete path energy is consistent
with the time continuous path energy (6).

The particular energy density function

W(Dφ) = λ

2

(
e(log det(Dφ))2 − 1

)
+ μ|ε[φ] − 1|2 (8)

used for all numerical experiments satisfies (W1)–(W3). The
first term enforces the positivity of the determinant of the
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Jacobian matrix of a deformation and favors a balance of
shrinkage and growth as advocated in [5,9], while the second
term penalizes large deviations of the deformation from the
identity. Here, the positivity constraint of the determinant of
the Jacobian of the deformations prohibits interpenetration
of matter [2].

We proceed with the definition of the discrete path energy
and the discrete geodesic between two features f A =
(ηu A,F(u A)), fB = (ηu B,F(u B)) ∈ F .

Definition 2 (Discrete path energy) Let K ≥ 1 and f0 =
f A, fK = fB ∈ F . The discrete path energy EK for a dis-
crete (K + 1)-path f = ( f0, . . . , fK ) ∈ FK+1 is defined
as

EK [f] := K
K∑

k=1

W[ fk−1, fk] . (9)

A discrete geodesic path morphing f A ∈ F into fB ∈ F is
a discrete (K + 1)-tuple that minimizes EK over all discrete
paths f = ( f A, f̂, fB) ∈ FK+1 with f̂ = ( f1, . . . , fK−1) ∈
FK−1.

For arbitrary vectors f = ( f0, . . . , fK ) ∈ FK+1 and � =
(φ1, . . . , φK ) ∈ AK we set

EK ,D[f,�] := K
K∑

k=1

WD[a[P[ fk]], fk−1, fk, φk] . (10)

In what follows, we will investigate the existence of dis-
crete geodesic curves in the time discrete deep feature space
metamorphosis model. To this end, we combine the proofs of
the local well-posedness of the pairwise energy W with the
existence result of a feature vector minimizing EK ,D for a
fixed vector of deformations. We remark that the structure of
all proofs is similar to the corresponding proofs in [4,11] and
we focus on the adaptations necessitated by the anisotropic
regularization.

The following lemma, which provides an estimate for the
Hm(�)-norm of the displacement, is crucial for the well-
posedness of the energy.

Lemma 1 Let (W1)–(W2) and (A1) be satisfied. Then, there
exists a continuous and monotonically increasing function
θ : R+

0 → R
+
0 with θ(0) = 0, which only depends on �, m,

n, γ , ca, CW,1, CW,2 and rW, such that

‖φ − 1‖Hm (�) ≤ θ
(
WD[a[P[ f̃ ]], f , f̃ , φ]

)

for all f , f̃ ∈ F and all φ ∈ A. Furthermore, θ(x) ≤
C(x + x2)

1
2 for a constant C > 0.

Proof Set W = WD[a[P[ f̃ ]], f , f̃ , φ]. An application of
the Gagliardo–Nirenberg inequality [22] yields

‖φ − 1‖Hm (�) ≤ C(‖φ − 1‖L2(�) + |φ − 1|Hm (�)) . (11)

The last term in (11) is bounded by

|φ − 1|Hm (�) = |φ|Hm(�) ≤
√
W
γ

. (12)

By using the embedding of Hm(�,�) into C1,α(�,�) and
the uniform boundedness of the minimizing sequence in

L2(�,�) we get ‖φ − 1‖C1,α(�) ≤ C + C
√
W . To con-

trol the lower order term appearing on the right-hand side
of (11), we define S = {x ∈ � : |Dφ(x) − 1| < rW} and
use (A1) and (W2) to obtain

|�\S|caCW,2 ≤
∫

�

a[P[ f̃ ]]W(Dφ) dx ≤ W ,

which implies |�\S| ≤ W
caCW,2

. Hence, by the embedding

Hm(�,�) ↪→ C1(�,�) we infer

∫

�

|ε[φ] − 1|2 dx

≤
∫

S
W(Dφ)

CW,1
dx + |�\S|

(
C + C

√
W

)2

≤ W
CW,1

+ W
caCW,2

(
C + CW)

. (13)

We remark that the inequality

‖φ − 1‖L2(�) ≤ C‖ε[φ] − 1‖L2(�) (14)

holds true, which follows from Korn’s inequality and the
Poincaré inequality. Thus, the lemma follows by combining
(11), (12), (13) and (14). ��
Proposition 1 (Well-posedness of W) Let f ∈ F be a fixed
feature vector. Under the assumptions (W1)–(W2) and (A1),
there exists a constant CW (depending on �, m, n, γ, δ,

μ, λ, ca, CW,1, CW,2, rW) such that for every fixed

f̃ ∈ {g ∈ F : ‖ f − g‖F < CW } (15)

there exists φ ∈ A which minimizes WD[a[P[ f̃ ]], f , f̃ , ·]
defined in (7) and φ is a C1(�,�)-diffeomorphism.

Proof For fixed f ∈ F , let f̃ be a feature vector satisfy-
ing (15) for a constantCW specified below. Let {φ j } j∈N ∈ A
be any sequence such that the mismatch WD[a[P[ f̃ ]], f ,

f̃ , φ j ] converges to

W = inf
φ∈A

WD[a[P[ f̃ ]], f , f̃ , φ] ≥ 0.
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Since 1 ∈ A, we can deduce using (W1) that

W ≤ WD[a[P[ f̃ ]], f , f̃ , φ j ]

≤ W := WD[a[P[ f̃ ]], f , f̃ ,1] = 1

δ
‖ f̃ − f ‖2F <

C2
W
δ

for all j ∈ N. Using again the Gagliardo–Nirenberg inequal-
ity we infer that {φ j } j∈N is uniformly bounded in Hm(�,�)

because of the estimate |φ j |2Hm(�) ≤ W
γ
. Due to the

reflexivity of Hm(�,�), there exists a weakly convergent
subsequence (not relabeled) such that φ j⇀φ in Hm(�,�).
By using the Sobolev embedding theorem as well as the
Arzelà–Ascoli theorem, we can additionally infer that for
a subsequence (again not relabeled) φ j → φ in C1,α(�,�)

for α ∈ (0, m − 1 − n
2 ) holds true. Then, Lemma 1 implies

‖φ j − 1‖C1(�) ≤ Cθ(W) < Cθ(δ−1C2
W ) .

Thus, by choosing CW sufficiently small and taking into
account the Lipschitz continuity of the determinantwe obtain
‖ det(Dφ j ) − 1‖L∞(�) ≤ Cdet for a constant Cdet ∈ (0, 1)
and all j ∈ N, which implies det(Dφ j ) ≥ C > 0 for a
constant C . Note that all estimates remain valid for the limit
deformation φ ∈ A. By [7, Theorem 5.5-2] the deforma-
tions {φ j } j∈N andφ areC1(�,�)-diffeomorphisms. Finally,
(W1) and the lower semicontinuity of the seminorm imply

lim inf
j→∞

∫

�

a[P[ f̃ ]]W(Dφ j ) + γ |Dmφ j |2 dx

≥
∫

�

a[P[ f̃ ]]W(Dφ) + γ |Dmφ|2 dx .

It remains to verify that

‖ f̃ ◦ φ j − f ‖F → ‖ f̃ ◦ φ − f ‖F (16)

as j → ∞. To this end, we approximate f̃ by smooth func-
tions f̃ i ∈ C∞(�,R3+C ) with ‖ f̃ − f̃ i‖F → 0. Then,
using the transformation formula we obtain

‖ f̃ ◦ φ j − f̃ ◦ φ‖F
≤ ‖ f̃ ◦ φ j − f̃ i ◦ φ j ‖F + ‖ f̃ i ◦ φ j − f̃ i ◦ φ‖F

+ ‖ f̃ i ◦ φ − f̃ ◦ φ‖F
≤ ‖ f̃ − f̃ i ‖F

(
‖ det(D(φ j )−1)‖

1
2
L∞(�)

+ ‖ det(Dφ−1)‖
1
2
L∞(�)

)
+ ‖D f̃i ‖L∞(�)‖φ j − φ‖L2(�) ,

where det(D(φ j ))−1 and det(D(φ))−1 are pointwise esti-

mated by (1− Cdet)
1
2 . Finally, by first choosing i and then j

we obtain (16) and thereby verify the claim. ��

This proposition guarantees the existence of an admissi-
ble vector of deformations � ∈ AK such that EK ,D[f,�] =
EK [f] provided that each pair of features ( fk, fk+1) con-
tained in f = ( f0, . . . , fK ) ∈ FK+1 satisfies (15).

In what follows, we prove the existence of an energy min-
imizing vector of features for a fixed vector of deformations.

Proposition 2 Let K ≥ 2, f A, fB ∈ F and � = (φ1, . . . ,

φK ) ∈ AK be fixed. We assume that the deformations satisfy

min
k∈{1,...,K }min

x∈�

det(Dφk(x)) ≥ cdet (17)

for a constant cdet > 0. Then, under the assumptions (W1)–
(W2) and (A1)–(A2) there exists a feature vector f with f0 =
f A and fK = fB such that

EK ,D[f,�] = inf
{
EK ,D[( f A, ĝ, fB),�] : ĝ ∈ FK−1

}
.

Proof We consider a minimizing sequence of features f̂ j =
( f j

1 , . . . , f j
K−1) ∈ FK−1, j ∈ N, for the energy ĝ 
→

EK ,D[( f A, ĝ, fB),�]. Then,

0 ≤ EK ,D[( f A, f̂ j , fB),�]
≤ EK ,D[( f A, ( f A, . . . , f A), fB),�] =: EK ,D .

A straightforward computation reveals

EK ,D ≤ K
K∑

k=1

Ca‖W(Dφk)‖L1(�) + γ ‖φk‖2Hm (�)

+ C K 2

δ

(
(1 + c−1

det )‖ f A‖2F + c−1
det‖ fB‖2F

)
,

where we used (A1), (17) and the transformation formula.
Furthermore, again by (17) one obtains

‖ f j
k ‖F ≤‖ f j

k+1 ◦ φk+1 − f j
k ‖F + ‖ f j

k+1 ◦ φk+1‖F

≤
√

δEK ,D

K
+ c

− 1
2

det ‖ f j
k+1‖F . (18)

Thus, an induction argument (starting from k = K − 1)
shows that f̂ j = ( f j

1 , . . . , f j
K−1) is uniformly bounded in

FK−1 independently of j , which implies for a subsequence
(not relabeled) f̂ j⇀f̂ in FK−1.

In what follows, we prove the weak lower semicontinuity
of the discrete path energy along the minimizing sequence.
We observe that (A2) implies a[P[ f j

k ]] → a[P[ fk]] in
L∞(�), which yields

lim
j→∞

∫

�

a[P[ f j
k ]]W(Dφk) dx =

∫

�

a[P[ fk]]W(Dφk) dx
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for every k = 1, . . . , K . It remains to verify the weak lower
semicontinuity of the matching functional, i.e.,

‖ fk ◦ φk − fk−1‖2F ≤ lim inf
j→∞ ‖ f j

k ◦ φk − f j
k−1‖2F (19)

for every k = 1, . . . , K . To this end, we first show f j
k ◦

φk⇀ fk ◦ φk in F . For every g ∈ F , the transformation
formula yields

∫

�

( f j
k ◦ φk − fk ◦ φk) · g dx

=
∫

�

( f j
k − fk) · (g(det(Dφk))

−1) ◦ φ−1
k dx ,

which converges to 0 since (g(det(Dφk))
−1) ◦φ−1

k ∈ F due

to (17). Hence, f j
k ◦φk − f j

k−1⇀ fk ◦φk − fk−1 inF , which
readily implies (19). Hence,

lim inf
j→∞ EK ,D[( f A, f̂ j , fB),�] ≥ EK ,D[( f A, f̂, fB),�] ,

which proves the proposition. ��
We can now combine both previous propositions to prove
the existence of discrete geodesics for the deep feature space
metamorphosis model.

Theorem 1 (Existence of discrete geodesics)Let the assump-
tions (W1)–(W2) and (A1)–(A2) be satisfied, K ≥ 2 and
f A ∈ F . Then, there exists a constant CE > 0, which is
independent of K , such that for every

fB ∈
{

g ∈ F : ‖g − f A‖F < CE
√

K
}

(20)

there exists f̂ ∈ FK−1 such that

EK [( f A, f̂, fB)] = inf
ĝ∈FK−1

EK [( f A, ĝ, fB)]

and the associated vector of minimizing deformations con-
sists of C1(�,�)-diffeomorphisms.

Proof For a fixed f A ∈ F let fB satisfy (20) for a constant
CE specified below. For k = 0, . . . , K let f k = k

K fB + (1−
k
K ) f A ∈ F be a convex combination of the input features.
We first note that

EK :=EK ,D[( f 0, f 1, . . . , f K ), (1, . . . ,1)]

= K

δ

K∑

k=1

‖ fk − fk−1‖2F = 1

δ
‖ fB − f A‖2F <

C2
EK

δ

is a finite upper bound for the energy. Consider the minimiz-
ing sequence

(f j ,� j ) = (( f j
0 , . . . , f j

K ), (φ
j
1 , . . . , φ

j
K )) ∈ FK+1 × AK

for j ∈ N with f j
0 = f A and f j

K = fB associated with
the variational problem (f,�) 
→ EK ,D[f,�], which has
the finite upper bound EK . Following the same line of argu-
ments as in Proposition 1, we obtain the boundedness of
� j in Hm(�,�), which results in a weakly convergent
subsequence (not relabeled) � j⇀� in Hm(�,�). Due to
Hm(�,�) ↪→ C1(�,�) one obtains� j → � inC1(�,�)

for a further subsequence (not relabeled). By taking into
account Lemma 1, we get

‖φ j
k − 1‖C1(�) ≤ C‖φ j

k − 1‖Hm (�)

≤ Cθ(K −1EK ) ≤ Cθ(δ−1C2
E)

for every j ∈ N and every k = 1, . . . , K . By adapting CE if
necessary we can assume

inf
j∈N min

k=1,...,K
min
x∈�

det(Dφ
j
k (x)) > cdet

for a constant cdet > 0. Taking into account [7, Theorem
5.5-2] we can conclude that � j and � are C1(�,�)-
diffeomorphisms. Using Proposition 2, we can replace f j

by the energy minimizing feature vector associated with
� j , which possibly reduces the path energy. The features
f j are uniformly bounded in FK+1, which follows from
an analogous reasoning as (18). Thus, f j⇀f holds true
for a subsequence (not relabeled) in FK+1, which implies
a[P[ f j

k ]] → a[P[ fk]] in L∞(�) due to (A2). Consequently,
for every k = 1, . . . , K we obtain

lim inf
j→∞

∫

�

a[P[ f j
k ]]W(Dφ

j
k ) dx ≥

∫

�

a[P[ fk]]W(Dφk) dx .

Finally, we verify the lower semicontinuity estimate

‖ fk ◦ φk − fk−1‖2F ≤ lim inf
j→∞ ‖ f j

k ◦ φ
j
k − f j

k−1‖2F (21)

for every k = 1, . . . , K . To this end, we take into account
the decomposition

f j
k ◦ φ

j
k − fk ◦ φk = ( f j

k ◦ φ
j
k − fk ◦ φ

j
k )

+( fk ◦ φ
j
k − fk ◦ φk) .

The second term is estimated as in the proof of (16). Thus,
it remains to consider the convergence properties of the first
term. For a test function g ∈ F , we obtain using the trans-
formation rule

∫

�

( f j
k ◦ φ

j
k − fk ◦ φ

j
k ) · g dx

=
∫

�

( f j
k − fk) · (g(det(Dφ

j
k ))−1) ◦ (φ

j
k )−1 dx .
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The right hand side converges to 0 due to the convergence
(det(Dφ

j
k ))−1 ◦ (φ

j
k )−1 → det(Dφk))

−1 ◦ φ−1
k in L∞(�)

and f j
k ⇀ fk in F for j → ∞. Thus, f j

k ◦ φ
j
k ⇀ fk ◦ φk for

j → ∞, which together with the lower semicontinuity of the
L2-norm proves (21). Altogether, we observe that EK [f] ≤
EK ,D[f,�] ≤ lim inf

j→∞ EK ,D[f j ,� j ] . ��

4 Convergence of Discrete Geodesic Paths

In this section, we provide a precise statement of the Mosco
convergence for K → ∞ of a suitable temporal extension of
the time discrete path energy EK in the deep metamorphosis
model to the time continuous path energy E introduced in
Definition 1. Furthermore, the convergence of time discrete
geodesics to time continuous geodesic paths is established,
which in particular implies the existence of time continuous
geodesics in the deep feature metamorphosis model with an
anisotropic regularizer.

We recall the definition ofMosco convergence [19], which
can be seen as a modification of �–convergence. For further
details, we refer the reader to [8].

Definition 3 Let X be a Banach space. Consider functionals
{EK }K∈N and E from X to R that satisfy

(i) for every sequence {x K }K∈N ⊂ X with x K ⇀x ∈ X
the estimate lim infK→∞ EK [x K ] ≥ E[x] holds true
(“lim inf–inequality”),

(ii) for every x ∈ X there exists a recovery sequence
{x K }K∈N ⊂ X satisfying x K → x in X such that the
estimate lim supK→∞ EK [x K ] ≤ E[x] is valid.

Then, {EK }K∈N converges to E in the sense of Mosco.

In what follows, we define temporal extensions of all
relevant quantities required for the statement of the Mosco
convergence. We remark that this construction is similar to
[4,13], where further details can be found.

To ensure that the involved deformations are diffeomor-
phisms and to avoid the interpenetration of matter along the
morphing sequence, we replace in the definition of A the
positivity constraint for the determinant by the stronger con-
dition det(Dφ) ≥ ε for a fixed (small) ε > 0 as already
proposed in [13]. Note that all existence results from the pre-
vious section remain valid for this modified definition.

For K ∈ N, let �K = (φK
1 , . . . , φK

K ) ∈ AK be the vector
of deformations associated with a vector of features fK =
( f K

0 , . . . , f K
K ) ∈ FK+1. In particular, if�K is optimal, then

EK [fK ] = EK ,D[fK ,�K ]. For k = 1, . . . , K , we define for
t K
k := k

K , t ∈ [t K
k−1, t K

k ], and x ∈ � the discrete transport
map

yK
k (t, x) = x + (t − t K

k−1)K (φK
k (x) − x) . (22)

Note that yK
k (t K

k−1, x) = x and yK
k (t K

k , x) = φK
k (x). Fol-

lowing [7, Chapter 5], the condition

max
k=1,...,K

‖DφK
k − 1‖C0(�) < 1

implies that yK
k (t, ·) is invertible, which follows for K large

enough from the lim inf-part of the proof of Theorem 2
below, and we denote the inverse by x K

k (t, ·). In this case,
we consider the feature extension operator FK [fK ,�K ] ∈
L2([0, 1] × F) for t ∈ [t K

k−1, t K
k ] by

FK [fK ,�K ](t, x)

:=
(

f K
k−1 + K (t − t K

k−1)( f K
k ◦ φK

k − f K
k−1)

)
(x K

k (t, x)) ,

to define an extension EK : L2([0, 1] ×F) → [0,∞] of the
discrete path energy EK ,D , where

EK [ f ] = inf
�

K ∈AK

{
EK ,D[fK ,�

K ] : FK [fK ,�
K ] = f

}

if there exist fK ∈ FK+1 and �K ∈ AK such that f =
FK (fK ,�K ), else we set EK [ f ] = ∞.

We can now state the main theorem of this section:

Theorem 2 (Mosco convergence of the discrete path ener-
gies) Let (W1)–(W3) and (A1)–(A3) be satisfied. Then, the
time discrete path energy {EK }K∈N converges to E in the
sense of Mosco in the L2([0, 1]×F)-topology for K → ∞.

Proof The proof follows the structure of the Mosco conver-
gence proof [13, Theorem 5.2 & Theorem 5.4] with adap-
tations required due to the incorporation of the anisotropy.
Furthermore, in our case images are not pointwise maps into
a general Hadamard manifold but rather maps into some
Euclidean space. To keep the exposition compact, we focus
here on these adaptations. To facilitate reading, we give an
overviewof the general structure of the proof, which retrieves
the overview of the proof structure in [13]. Many of the tech-
nical arguments already appeared in the proof of existence
of discrete geodesics in Sect. 3 and were given there in full
detail. Thus, we keep these arguments brief here.

(i) lim inf-inequality.

– The identification of the image (feature) and deformation
vectors is unaltered compared to the proof in [13]. Indeed,
one obtains that the sequence f K of feature maps with
uniformly bounded energy converges weakly to a feature
map f ∈ L2([0, 1],F) with finite energy. In fact, fK

and the optimal�
K
can be retrieved from f K , where the

existence of �
K
follows as in [13, Lemma 5.1].
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– The verification of the lower semi-continuity of the weak
material derivative in the sense

‖z‖2L2([0,1]×�)
≤ lim inf

K→∞ K
K∑

k=1

‖ f K
k−1 − f K

k ◦ φ
K
k ‖2L2(�)

.

for z being the weak limit of zK in L2((0, 1) × �) with

zK
∣∣[t K

k−1,t
K
k )

:= K | f K
k−1(x K

k ) − f K
k ◦ φ

K
k (x K

k )|

is identical to the corresponding reasoning in [13]. At
this point, we also observe that the velocity fieldwK with

wK := wK
k := K (φ

K
k − 1) on [t K

k−1, t K
k ) is uniformly

bounded in L2((0, 1),V) and thus converges weakly in
L2((0, 1),V) to some limit velocity field v. This fact is
again proved following the corresponding reasoning as
in [13].

– Also the verification of the admissibility of the limit,
i.e., (v, z) ∈ C( f ), stays unaltered compared to [13].
To this end, one shows that the discrete flow ψ K asso-

ciated with the motion field vK (t, x) := K (φ
K
k −

1)(x K
k (t, x)) for t ∈ [t K

k−1, t K
k ) uniformly converges in

C0,α([0, 1], C1,α(�)) for a suitable constant α > 0 to
the continuous flow induced by the velocity v. More-
over, the variational inequality for the material derivative
holds true in the limit.

– In the final step, the lower semi-continuity of the viscous
dissipation has to be shown, i.e.,

∫ 1

0

∫

�

L[a[P[ f ]], v, v] dx dt

≤ lim inf
K→∞ K

K∑

k=1

∫

�

a[P[ f K
k ]]W(Dφ

K
k ) + γ |Dmφ

K
k |2 dx .

Therefore, we define aK , aK ∈ L∞((0, 1) × �,R+)

via aK
∣∣[t K

k−1,t
K
k )

:= a[P[ f K
k ]] and aK := a[P[ f K ]].

We have to show in addition to [13] that aK converges
strongly to a := a[P[ f ]] in L∞((0, 1) × �). To this
end, we first use the uniform boundedness of f K in
L∞([0, 1],F), an approximation argument and (A3) to
show the convergence aK − aK → 0 in L∞((0, 1) × �)

for K → ∞. It remains to verify aK → a in L∞((0, 1)×
�) for K → ∞. The variational inequality

| f K (t, ψ K
t (x)) − f K (s, ψ K

s (x))| ≤
∫ t

s
zK (r , ψ K

r (x)) dr

implies f K (t)⇀ f (t) in F for every t ∈ [0, 1] using similar
arguments as in step (iv) of [4, Theorem 4.1], which leads to
aK (t, ·) → a(t, ·) in L∞(�) using (A2). We are left to show

‖aK (t + τ, ·) − aK (t, ·)‖F → 0

uniformly in K and t as τ → 0, which follows by (A3) from
‖ f K (t +τ, ·)− f K (t, ·)‖F → 0. This equicontinuity in time
is a consequence of the variational inequality, the uniform
boundedness of zK in L2((0, 1) × �), the uniform bound-
edness of ψ K and (ψ K )−1 in C0, 12 ([0, 1], C1,α(�)) for a
suitable α > 0, and an approximation argument for f K .
Then, the actual lower semicontinuity is verified using a
Taylor expansion of W based on (W3) to relate the energy
density W with L , where the accumulated remainder is of

order K − 1
2 .

(ii) Recovery sequence. Before constructing the recovery
sequence, we note that the infimum in (6) is actually attained
with an associated pair (v, z) ∈ C( f ), which follows from
[13, Proposition 5.3] together with Remark 1.

– To construct the recovery sequence, one considers the
above pair (v, z) ∈ C( f ) with an associated flow ψ and
defines φK

k (x) := ψt K
k−1,t

K
k

(x), f K
k (x) := f (t K

k , x), and

aK
k = a[P[ f K

k ]] for k = 1, . . . , K , where
ψa,b(·) = ψ(b, ψ−1(a, ·)), for a, b ∈ [0, 1].

– Next, the identification of the recovery sequence limit
is done, i.e., one can show that the extension f K :=
FK [fK ,�K ] of the time discrete feature vectors fK =
( f0, . . . , fK ) converges to f in L2([0, 1],F). To this
end, the discrete flow ψ K associated with the time dis-
crete family of deformations �K is defined in the same
way as in the proof of the lim inf–inequality. Follow-
ing [13], the convergence f K → f is implied by
the variational inequality and the convergence of ψ K

to the time continuous flow ψ associated with v in
C0,α([0, 1], C1,α(�)) for a suitable α > 0.

– Furthermore, we have to verify the lim sup-inequality.
The leading order term of a Taylor expansion of the k-th
component of the discrete path energy
∫

�

aK
k W(DφK

k ) + γ |DmφK
k |2 dx

is given by K −2
∫
�

L[aK
k , wK

k , wK
k ] dx , where wK

k :=
K (φK

k − 1). The remainder is of higher order follow-
ing the argumentation in [13]. Using Jensen’s inequality

and wK
k = −

∫ t K
k

t K
k−1

v(t, ψ K
k (t, x)) dt with ψ K

k (t, x) :=
ψt K

k−1,t
(x) we obtain

∫

�
L[aK

k , wK
k , wK

k ] dx

≤
∫

�
−
∫ t K

k

t K
k−1

L[aK (t, x), v(t, ψ K
k (t, x)), v(t, ψ K

k (t, x))] dt dx

for aK defined as before. Following [13], we can replace
ψ K

k (t, ·) by the identity in the limit K → ∞. We argue
analogously as in the case of the lim inf–inequality to show
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aK → a in L∞((0, 1) × �). Thus, we obtain

lim sup
k→∞

K
K∑

k=1

∫

�

aK
k W(DφK

k ) + γ |DmφK
k |2 dx

∫ 1

0

∫

�

L[a(t, x), v(t, x), v(t, x)] dx dt .

Finally, the estimate

lim sup
k→∞

K
∫

�

| f K
k−1− f K

k ◦ φK
k |2 dx ≤

∫ 1

0

∫

�

z2(t, x) dx dt

follows via another application of Jensen’s inequality as in
[13]. ��
This theorem implies the convergence and existence of
geodesic paths for the (time continuous) deep feature space
metamorphosis model in the following sense:

Theorem 3 (Convergence of discrete geodesics) Suppose
that the assumptions (W1)–(W3) and (A1)–(A3) hold true.
Let f A, fB ∈ F be fixed. For K ∈ N sufficiently large
let f K be a minimizer of EK subject to f K (0) = f A and
f K (1) = fB . Then, a subsequence of { f K }K∈N weakly con-
verges in L2([0, 1] × F) to a minimizer of the continuous
path energy E as K → ∞. Finally, the associated sequence
of discrete path energies converges to the minimal continuous
path energy.

Proof The proof is analogous to the proof of [13, Theo-
rem 5.5]. ��

5 Fully Discrete Model in Feature Space

In this section, we present the fully discrete deep feature
space metamorphosis model on the image domain � =
[0, 1]2. We use bold face letters to differentiate discrete fea-
ture maps, images, and deformations (also considered as
vectors) from their continuous counterparts. For for M, N ≥
3, we define the computational domain and its boundary as
follows:

�MN =
{

0

M − 1
, . . . ,

M − 1

M − 1

}
×

{
0

N − 1
, . . . ,

N − 1

N − 1

}
,

∂�MN = �MN \
{

1

M − 1
, . . . ,

M − 2

M − 1

}
×

{
1

N − 1
, . . . ,

N − 2

N − 1

}
.

We define the discrete L p-norm of a discrete feature map f
as

‖f‖p
L p(�MN ) = 1

M N

∑

(i, j)∈�MN

‖f(i, j)‖p
2 ,

and the set of admissible deformations is given by

AMN =
{
φ : �MN → �MN :

φ = 1 on ∂�MN , det(∇MN φ) > 0
}

.

Furthermore, the discrete Jacobian operator ∇MN of φ at
(i, j) ∈ �MN is defined as the forward finite difference oper-
ator with Neumann boundary conditions. To further stabilize
the computation, the Jacobian operator applied to the fea-
tures is approximated using a Sobel filter. The discrete image
space and the discrete feature space are given by IMN = {u :
�MN → R

3} andFMN = {f : �MN → R
3+C }, respectively.

A numerically reasonable approximation of the spatial
warping operator T, which approximates the pullback of a
feature channel f ◦ φ at a point (k, l) ∈ �MN , is given by

T[f,φ](k, l)

=
∑

(i, j)∈�MN

s(φ1(k, l) − i)s(φ2(k, l) − j)f(i, j) ,

where s is the third order B-spline interpolation kernel. Then,
the fully discrete mismatch functional DMN that approxi-
mates

∫
�

| f̃ ◦ φ − f |2 dx reads as

DMN [f, f̃,φ]

= 1

2(3 + C)

3+C∑

c=1

∥∥∥T[f̃c,φ] − fc
∥∥∥
2

L2(�MN )
.

Likewise, the lower order anisotropic regularization func-
tional

∫
�

aW(Dφ) dx is discretized as follows:

RMN [φ, a] = ‖aW(∇MN φ)‖L1(�MN ) .

For simplicity, we neglect the Hm-seminorm of the defor-
mations. In the spatially continuous context of the above
convergence proof the compactness induced by the Hm-
seminorm turned out to be indispensable. In the case of
the spatial discretization, the grid-dependent regularity is
ensured by the use of cubic B-splines.

In summary, the fully discrete path energy in the deep
metamorphosis model for a (K +1)-tuple (fk)K

k=0 of discrete
feature maps, a K -tuple (φk)

K
k=1 of discrete deformations,

and a K -tuple (ak)
K
k=1 of discrete anisotropies reads as

EK
MN [(fk)K

k=0, (φk)
K
k=1, (ak)

K
k=1]

= K
K∑

k=1

RMN [φk, ak] + 1

δ
DMN [fk−1, fk,φk] .

Finally, a discrete geodesic path (fk)K
k=0 in feature space

on a specific multiscale level of a feature hierarchy is a
minimizer of EK

MN subject to given discrete boundary data
f0 = fA and fK = fB . Here, fA = (ηuA,FMN (uA)) and fB =
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Table 1 Multiscale decomposition of the VGG network used for the
discrete feature extraction operator FMN

M × N Layer C

512 × 512 conv1,2 64

256 × 256 conv2,2 128

128 × 128 conv3,4 256

64 × 64 conv4,4 512

32 × 32 conv5,4 512

(ηuB,FMN (uB)), where FMN : IMN → {f : �MN → R
C }

denotes the fully discrete feature extraction operator.

Simple RGBModel As a first model, we consider the simple
image intensity-based feature space with C = 0, in which
the feature space FMN coincides with the space of RGB
images IMN . Since a direct computation of the deforma-
tions on the full grid is numerically instable, we incorporate a
multilevel scheme. Initially, we start on the coarsest compu-
tational domain of size Minit × Ninit with Minit = 2−(L−1)M
and Ninit = 2−(L−1)N for a given L > 0 and compute a
time discrete geodesic sequence for suitably resized input
images uA,uB . Then, in subsequent prolongation steps, the
width and the height of the computational domain are succes-
sively doubled and the initial deformations and images are
obtained via a bilinear interpolation of the preceding coarse
scale solutions.

Deep Feature Space In the second model, image fea-
tures are extracted using the prominent VGG network with
19 layers as presented in [28] to incorporate semantic infor-
mation in image morphing. The VGG network is particularly
designed for localization and classification of objects in nat-
ural images and thus the feature decomposition of images is
well-suited for semantic matching. The building blocks of
this network are convolutional layers with subsequent ReLU
nonlinear activation functions and max pooling layers. Here,
the max pooling layers canonically yield a multiscale seman-
tic decomposition of images.

For a givengrid�MN , the discrete featuremapsof thefixed
discrete input images uA and uB are FMN [uA] and FMN [uB],
where the operator FMN is the response of the VGG network
up to the layer as shown in Table 1. The discrete images uA

and uB are downsampled to match the corresponding grid
size M N via a bilinear interpolation. In contrast to the sim-
ple RGB model, only the deformations are prolongated via
a bilinear interpolation in the multilevel approach since suc-
cessive features on different multilevels are not necessarily
related. To stabilize the optimization, the features on each
multilevel are first optimized using the prolongated defor-
mations.

Table 2 The parameter values for all examples

Parameter RGB Deep

K 15

δ 1

L 5

β 1√
2

J 250

σ 0.5

ρ 2

ξ1 1000

ξ2 10−6

μ 0.025 0.002

λ 0.1 0.002

η 10−6

5.1 Numerical Optimization

In what follows, we present the numerical optimization
scheme to compute geodesics for the fully discrete deep
feature metamorphosis model. Here, we use a variant of
the inertial proximal alternating linearized minimization
algorithm (iPALM, [24]). Several numerical experiments
indicate that a direct gradient based minimization of the
data mismatch term DMN with respect to the deformations
is challenging due to the sensitivity of the warping oper-
ator to small perturbations of the deformations. Thus, to
enhance the stability of the algorithm the warping opera-
tor is linearized w.r.t. the deformation at φ̃ ∈ AMN , which
is chosen as the deformation of the previous iteration step in
the algorithm. To further improve the stability of the algo-
rithm, the linearization is based on the gradient�c(f, f̃, φ̃) =
1
2 (∇MNT[f̃c, φ̃] + ∇MN fc), which yields the modified mis-
match energy

D̃MN [f, f̃,φ, φ̃] = 1

2(3 + C)

3+C∑

c=1

∥∥∥∥T[f̃c, φ̃]

+
〈
�c(f, f̃, φ̃),φ − φ̃

〉
− fc

∥∥∥∥
2

L2(�MN )

.

The mismatch energy can be efficiently minimized incor-
porating a proximal mapping, which is defined for a func-
tion f : �MN → (−∞,∞] for τ > 0 as follows:

proxfτ (i) := argmin
j :�MN →(−∞,∞]

τ

2
‖i − j‖2L2(�MN )

+ f( j) .

The proximal operator with respect to the deformation φ for
a fixed τ > 0 is given by
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Fig. 1 Time discrete geodesic sequences of self-portraits by van Gogh
for the RGB feature (first row) and deep feature model (fifth row) along
with a zoom of the ear region with magnification factor 4 (second/sixth
row) and the associated sequences of anisotropy weights (third/seventh

row) and color-coded displacement fields φk − 1 (fourth/eighth row).
Note that the intensity-based approach leads to blending artifacts indi-
cated by the arrows, which are resolved in the deep metamorphosis
model
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Fig. 2 Time discrete geodesic sequences of animal photos for the RGB
feature (first row) and deep feature model (fifth row) along with a zoom
of the mouth region with magnification factor 4 (second/sixth row) and
the associated sequences of anisotropy weights (third/seventh row) and

color-coded displacement fields φk − 1 (fourth/eighth row). Note that
the novel deep feature-based model has significantly less blending arti-
facts as indicated by the arrows
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Fig. 3 Pairs of time discrete geodesic paths using the deep feature model and corresponding color-coded displacement fields for paintings of US
presidents (first/second row) as well as for paintings of Catherine the Great (third/forth row)

Fig. 4 Visualization of the anisotropy in RGB model for a significant
smaller value ξ1 = 200 compared to Fig. 1: anisotropy weights (left)
and color-coded displacement fields (right) for k = 12

prox
K
δ
D̃MN

τ [φ]

=
(
1 + K

τδ(3 + C)

3+C∑

c=1

�c(f, f̃, φ̃)�c(f, f̃, φ̃)�
)−1

(
φ − K

τδ(3 + C)

3+C∑

c=1

(
�c(f, f̃, φ̃)T[f̃c, φ̃]

− �c(f, f̃, φ̃)�c(f, f̃, φ̃)�φ̃ − �c(f, f̃, φ̃)fc
))

,

where the function values on ∂�MN remain unchanged.

for j = 1 to J do
for k = 1 to K do
/* update anisotropy */

a[j+1]
k = a[P[f [j]k ]];

/* update deformation */

φ
[j+1]
k =

prox
K

δ
D̃MN

L[φ[j]
k ]

[
φ̃

[j]
k − K

L[φ[j]
k ]

∇φk
RMN [φ̃[j]

k ,a[j+1]
k ]

]
;

if k < K then
/* update features */

f [j+1]
k =
f̃ [j]k − 1

L[f [j]
k ]

∇fk
EK

MN [f̂ [j]k ,

(φ[j+1]
1 , . . . ,φ

[j+1]
k ,φ

[j]
k+1, . . . ,φ

[j]
K ),

(a[j+1]
1 , . . . ,a[j+1]

k ,a[j]
k+1, . . . ,a

[j]
K )];

end
end

end
Algorithm 1: Algorithm for minimizing EK

MN on
one multilevel.

Algorithm 1 summarizes the iteration steps for the mini-
mization of the fully discrete path energy EK

MN , where for a
specific optimization variable f the extrapolation with β > 0
of the kth path element in the j th iteration step reads as fol-
lows:
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Fig. 5 Variation of the parameter δ for RGB model (first to third row) and deep feature model (fourth to sixth row)

f̃ [ j]
k = f [ j]

k + β(f [ j]
k − f [ j−1]

k ),

f̂ [ j]
k = (f [ j+1]

0 , . . . , f [ j+1]
k−1 , f̃ [ j]

k , f [ j]
k+1, . . . , f

[ j]
K ) .

Here, we use the notation L[f] for the Lipschitz constant of
the function f , which is determined by backtracking.

6 Numerical Results

In this section, numerical results for both the RGB and the
deep feature model are shown. All parameters used in the
computation are specified in Table 2.

Figure 1 depicts the geodesic sequences for two self-
portraits by van Gogh1 (M × N = 496 × 496) for k ∈
{0, 3, 6, 9, 12, 15} obtained with the RGB model (first row)
and the deep feature model (fifth row). The superiority of
the deep model compared to the simple RGBmodel is exem-
plarily visualized by the zoom (magnification factor 4) of the
ear region depicted in the second and sixth row. The remain-
ing rows contain the corresponding sequences of anisotropy
operators (third/seventh row) and color-coded displacement
fields (fourth/eighth row), where the hue refers to the direc-
tion of the displacements and the intensity is proportional to

1 Public domain, https://commons.wikimedia.org/wiki/File:
Vincent_Willem_van_Gogh_102.jpg; https://commons.wikimedia.
org/wiki/File:SelbstPortrait_VG2.jpg.

its norm as indicated by the leftmost color wheel. Figure 2
presents analogous results for two photos of animals2 for
M × N = 512×512 with a zoom on the mouth region. Note
that the deep model is capable of accurately deforming the
carnassial teeth.

Figure 3 shows results of the deep feature model for two
paintings of US presidents3 and two portraits of Catherine
the Great.4 In both cases, the input images have a resolution
of M × N = 512 × 512.

Finally, we examine the effects of parameter changes of
ξ1 and δ. Figure 4 visualizes the anisotropy weight and the
deformation field in the RGB model for a ξ1 value foster-
ing a significantly stronger anisotropy implying much more

2 First photo detail by Domenico Salvagnin (CC BY 2.0), https://
commons.wikimedia.org/wiki/File:Yawn!!!_(331702223).jpg; second
photo detail by Eric Kilby (CC BY-SA 2.0), https://commons.
wikimedia.org/wiki/File:Panthera_tigris_-Franklin_Park_Zoo,
_Massachusetts,_USA-8a_(2).jpg.
3 First painting by Gilbert Stuart (public domain),
https://commons.wikimedia.org/wiki/File:Gilbert_Stuart_Williamst
own_Portrait_of_George_Washington.jpg; second painting by Rem-
brandt Peale (public domain), https://commons.wikimedia.org/wiki/
File:Thomas_Jefferson_by_Rembrandt_Peale,_1800.jpg.
4 Public domain, both portraits by J. B. Lampi https://
commons.wikimedia.org/wiki/File:Catherine_II_by_J.B.
Lampi_(Deutsches_Historisches_Museum).jpg; https://commons.
wikimedia.org/wiki/File:Catherine_II_by_J.B.Lampi_(1780s,
_Kunsthistorisches_Museum).jpg.
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pronounced jumps in the deformation field (compare with
Fig. 1). In addition, Fig. 5 illustrates the dependency of the
resulting morphing sequences on δ for the RGB model (first
to third row) and the deep model (fourth to sixth row). As
a result, smaller values of δ lead to less blending. Further-
more, the generated geodesic paths using deep features are
more robust to changes of δ than the RGBmodel, which can,
for instance, be seen in the cheek or in the eye regions.

In all numerical experiments, the displacement fields
apparently evolve over time and the involved anisotropy pro-
motes large deformation gradients in the proximity of image
interfaces. These are indicated by the sharp interfaces in the
color coding of the deformations. Both models fail to match
image regions with no obvious correspondence of the input
images, which can be seen on the cloth regions of the self-
portraits, the presidents and the empress examples, as well
as on parts of the body region and the background in the
animal example, where blending artifacts occur. The deep
feature model clearly outperforms the simple RGB model
in regions where the semantic similarity is not reflected by
the RGB color features such as the cheek and the ear in the
van Gogh example as well as the teeth of the animals. More-
over, to compute a visually appealing time discrete geodesic
sequence, a fourth color channel representing a manual seg-
mentation of image regions and a color adaptation of the van
Gogh self-portraits was required in [4]. This is obsolete in the
proposed deep feature-based model due to the incorporation
of semantic information.
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