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Abstract
We propose a new model and a corresponding iterative algorithm for Computed Tomography (CT) when the view angles
are uncertain. The uncertainty is described by an additive model discrepancy term which is included in the data fidelity term
of a total variation regularized variational model. We approximate the model discrepancy with a Gaussian distribution. Our
iterative algorithm alternates between updating the CT reconstruction and parameters of the model discrepancy. By assuming
that the uncertainties in the view angles are independent we achieve a covariance matrix structure that we can take advantage
of in a stochastic primal dual method to greatly reduce the computational work compared to classical primal dual methods.
Using simulations with 2D problems we demonstrate that our method is able to reduce the reconstruction error and improve
the visual quality, compared to methods that ignore the uncertainties in the angles.

Keywords Computed Tomography · Uncertain view angles · Model error · Model discrepancy

Mathematics Subject Classification 65F22 · 65K10

1 Introduction

In this paper we consider Computed Tomography (CT)
reconstructionwhere the view angles are only known approx-
imately. This uncertaintymayarise fromseveral sources, e.g.,
inaccuracies in the physical set-up and inexact estimates from
a calibration procedure. The goal is to reconstruct aCT image
in such a way that we take into account both measurement
noise and the uncertainty associated with the view angles.

We formulate the CT reconstruction problem with uncer-
tain view angles as estimating the unknown attenuation
coefficient image, represented by the vector x ∈ R

n , from
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a measured and noisy sinogram represented by the vector
b ∈ R

m . We use the model

b = R(θ) x + e, θ ∼ πangles(·), e ∼ πnoise(·), (1)

where the uncertainty in the view angles and the measured
sinogram are characterized by the probability distributions
πangles and πnoise, respectively.

The CT forward model (the forward projection) is repre-
sented by the matrix R(θ) ∈ R

m×n , which is the discrete
approximation of the Radon transform R explicitly param-
eterized by the view angles θ ∈ R

q . Specifically, if f is
the continuous representation of the attenuation image, the
discretization satisfies

(R(θi )x)l ≈ (R f )(θi , sl)

=
∫
R

f (sl
−→v (θi ) + t−→v ⊥(θi )) dt, (2)

where sl with l = 1, . . . , p is the position of the lth pixel
on the detector, θi with i = 1, . . . , q is the view angle,
and hence m = qp. Moreover, −→v (θ) = (cos θ, sin θ) and−→v ⊥(θ) = −→v (θ + π/2). For more details on the physical
and mathematical models of CT see, e.g., [5,17].
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We emphasize that the goal in this work is to reconstruct
the CT image x from a measured sinogram b according to
the model (1) with uncertain view angles θ and noise e. We
consider θ and e as nuisance or uninteresting parameters,
and they are only taken into account when reconstructing x
without being explicitly estimated.

While our work focuses on 2D CT reconstruction, our
methodology can also be applied to 3D CT and other appli-
cations, because there are no restrictions on the matrix in the
forward model. We emphasize the computational advantage
of having a block representation of the covariance matrix
for the model discrepancy introduced in the next section (cf.
Sect. 3).

1.1 RelatedWork

Variational methods have been proposed for CT reconstruc-
tion problems that, in addition to a data fidelity term which
incorporates the noise model, explicitly incorporate prior
information via a regularization term, see the survey [3].
Different regularization techniques can be applied, for exam-
ple, Tikhonov regularization [23,29] or total variation (TV)
regularization [26,27]. But these methods do not take para-
metric uncertainty in themodel into account. Therefore, good
performance of these methods is not guaranteed if the view
angles are uncertain.

Reconstruction methods that aim to estimate the view
angles θ in addition to the CT image x using only the mea-
sured sinogram without reference objects or instruments
are proposed in [2,10,18,22]. These methods can be cat-
egorized into two groups: estimating view angles directly
from projection data and then estimating the CT image, and
simultaneously estimating view angles and CT image. In
the former case an inaccurate angle estimation could lead
to an unsatisfactory reconstruction due to error propagation.
Algorithms for the latter case (such as theBayesian sampling-
based method [22]) can effectively avoid error propagation,
but they are limited by large computing times which makes
them unfeasible for large-scale problems.

There are also a few methods for characterizing and
reducing model errors in general inverse problems, see
[6,11,12,15,16,21]. Most of these methods are based on
Bayesian sampling-based methods which may also suffer
from large computing times, except in the special case of a
Gaussian prior for the solution where a closed-form expres-
sion exist.

1.2 Our Contribution

Wepropose a newmodel and algorithm forCT reconstruction
when the view angles are uncertain. Our model incorporates
the uncertainty of the view angles in the data fidelity term of a
variational method. This provides a CT reconstruction where

the uncertainty is accounted for and we avoid error propaga-
tion without the extra cost of simultaneously estimating the
view angles and CT image.

Compared to our preliminary work in [25] the main con-
tribution in this work is the formulation and utilization of
block-structure of the computational problem. This allows
us to utilize a stochastic primal dual hybrid gradient method
[9] to significantly reduce the computational work and allows
the method to solve large-scale problems. Moreover, we use
a numerically stable and efficient approach to factorize and
invert the covariance matrix required in our data fidelity
term.

2 Iteratively UpdatedModel Discrepancy

In this sectionwe summarize our previouswork in [25]where
we reformulate (1) by fixing the forward model with an esti-
mate θ̂ of the view angles. This is done to avoid dealingwith a
distribution of models R(θ), θ ∼ πangles(·) in the CT recon-

struction. The angles θ̂ are set to the nominal angles of the
scanner, and we obtain

b = R(θ̂) x + η + e, η ∼ πdiscrep(·), e ∼ πnoise(·), (3)

where η acquires its push-forward distribution from

η = η(θ, x) = R(θ) x − R(θ̂) x, (4)

and we call η the model discrepancy term. The advantage of
doing so is that the uncertainty in the forwardmodel ismoved
into η and the CT model R(θ̂) is fixed. If we ignore the fact
that η depends on x and consider η as independent additive
noise, then (3) becomes a standard CT reconstruction model
with the fixed view angles θ̂ .

Representing the model uncertainties as an additive mod-
el discrepancy term was first proposed in [14], where η was
assumed a Gaussian process and used for calibration from
a physical model to a computational model. In [12,13] a
similar idea was applied to Bayesian inverse problems and
referred to as the approximation error approach (AEA), in
which η denotes the model discrepancy. This approach is
used successfully in a number of different imaging appli-
cations such as fine-to-coarse mesh approximation in diffuse
optical tomography [1], unknown domain boundaries in elec-
tric impedance tomography [20], unknown scattering in both
diffuse optical tomography and quantitative photoacoustic
tomography [15,24], truncation errors in magnetic particle
imaging [4] and uncertain sound speed in photoacoustic
tomography [28].
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Inspired by AEA, we derive the likelihood for (3) by
marginalizing both η and e. Let ν = η + e, then

π(b|x) =
∫
Rm

π(b, ν|x)dν

=
∫
Rm

π(b|x, ν)π(ν|x)dν
= πν|x(b − R(θ̂) x|x). (5)

This formulation raises two main issues:

(1) The distribution πν|x can be rather complicated andmay
not have a closed-form expression, so the evaluation of
the likelihood becomes difficult.

(2) The distribution πν|x depends on the unknown x.

To deal with the former issue, we introduce a Gaussian
approximation to πν|x, i.e., we simplify the model. The latter
issue, on the other hand, is dealt with from an algorithmic
point of viewby using a computationalmethod that alternates
between updating πν|x and x.

2.1 Gaussian Approximation

The distribution πν|x may not have a closed-form expression,
so we approximate it by a simple distribution. Experiments
suggest that Gaussian approximations are useful in many
applications related to model discrepancies [1,4,6,11–13,15,
19,20,24,28]. In this work, we therefore assume η|x follows
a Gaussian distribution, i.e.,

η|x ∼ N (μη|x,Cη|x) (6)

with mean μη|x and covariance Cη|x, both depending on x.
Moreover, we assume

e ∼ N (μe,Ce), (7)

withmeanμe and covarianceCe,which are independent onx.
Following these two assumptions, we obtain the distribution
of ν|x

πν|x = N (μη|x + μe,Cη|x + Ce). (8)

Then, the likelihood (5) admits a closed-form expression. By
taking the negative logarithm we get

− logπ(b|x) ∝ 1
2‖b − R(θ̂) x − μν|x‖2C−1

ν|x

= 1
2‖Lν|x(b − R(θ̂) x − μν|x)‖22, (9)

where μν|x = μη|x +μe, Cν|x = Cη|x +Ce, and LT
ν|xLν|x =

C−1
ν|x is the Cholesky factorization of the inverse of the com-

bined covariance matrix.

2.2 Alternate Updates

Since the distribution πν|x depends on the unknown x, the
question is how the meanμν|x and the covarianceCν|x of the
combined uncertainties can be determined.

Considering a given reconstruction x̂, one can generate
samples of η|x with x = x̂ by drawing samples θ s with
s = 1, . . . , S following the distribution πangles, and evaluate
the model discrepancy term by

ηsx̂ = R(θ s) x̂ − R(θ̂) x̂, s = 1, . . . , S. (10)

Then, the sample mean and sample covariance can be calcu-
lated by

μ
sample
η|x=x̂ = 1

S

S∑
s=1

ηsx̂ (11)

and

Csample
η|x=x̂ = 1

S − 1

S∑
s=1

(ηsx̂ − μ
sample
η|x=x̂ )(ηsx̂ − μ

sample
η|x=x̂ )T . (12)

In (9), we can then use the sample mean and the sample
covariance to approximate μη|x and Cη|x, respectively.

Good estimation of the model discrepancy term strong-
ly relies on a reconstruction that resembles the ground truth.
VariationalmethodswithTV regularization have showngood
performance in large-scale CT reconstruction [27]. Adding a
TV regularization term to the negative log-likelihood in (9)
we obtain the variational model

min
x≥0

1
2‖Lν|x(b − R(θ̂) x − μν|x)‖22 + λTV(x), (13)

where λ > 0 denotes the regularization parameter, and the
TV term is defined as

TV(x) = ‖∇x‖2,1 ≡
n∑

i=1

‖[∇x]i‖2 , (14)

in which [∇x]i denotes the discrete gradient of x at the
i th pixel, computed via a forward difference scheme with
reflexive boundary conditions. The non-negativity constraint
represents the fact that the attenuation coefficients x can-
not be negative. Since Lν|x depends on the unknown x, the
objective function in (13) is non-convex, which means that a
solution relies on the initialization as well as the numerical
algorithm.
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According to (13), the reconstruction x also depends on
μν|x and Cν|x. To further strengthen the relation between x
and (μν|x,Cν|x)we introduce an alternately updating scheme
MD-TV shown in Algorithm 1.

Algorithm 1: Iteratively Updated Model Discrepancy
with TV (MD-TV)

Input: b, λ, θ̂ , πangles, μe, Ce. Initialize L0
ν|x, μ0

ν|x.
Output: x
1: for k = 1, 2, . . . , K
2: xk = argmin

x≥0

1
2‖Lk−1

ν|x (b − R(θ̂) x − μk−1
ν|x )‖22

+ λTV(x)
3: for s = 1, 2, . . . , S
4: ηsxk = R(θ s) xk − R(θ̂) xk with θ s ∼ πangles(·)
5: end
6: μ

sample
η|x=xk = 1

S

∑S
s=1 ηsxk

7: Csample
η|x=xk =

1
S−1

∑S
s=1(η

s
xk − μ

sample
η|x=xk )(η

s
xk − μ

sample
η|x=xk )

T

8: μk
ν|x = μe + μ

sample
η|x=xk

9: Lk
ν|x = chol

(
(Ce + Csample

η|x=xk )
−1

)
10: end

Here,L = chol(C−1) gives theCholesky factor of the inverse
covariance C−1, i.e., LTL = C−1. Note that although the
minimization problem for obtaining x is convex now, it does
not guarantee that the overall algorithm converges.

3 Block-Wise Representation

In each iteration of Algorithm 1 we require S forward pro-
jections to generate samples (10) of η|x in step 4, which can
dominate the cost of each iteration for large S. Moreover,
even for small S the algorithm can be of limited use in solv-
ing large-scale CT problems in its “naive” form due to the
amount of work in solving the TV optimization problem in
step 2 and inverting and factorizing the covariance matrix
Ce + Csample

η|x=x̂ ∈ R
m×m in step 9.

In our previous work [25], the latter issue was partly
addressed by a block-diagonal representation of the covari-
ance matrix. This greatly reduces the computational burden
of the inversion and factorization and it reduces the cost of
multiplication with the factorized matrix when solving the
TV optimization problem. In this work, we further extend
these ideas by reformulating the entire variational model
using the blockdiagonal representation.Our new formulation
can thus benefit from algorithms that utilize this structure as
well as parallelization in the block-wise sampling, inversion
and factorization of the covariance matrix.

3.1 Block Covariance Matrix Representation

The covariance matrix Cη|x=x̂ is block-diagonal when the
view angles are independent. The sampled matrix in (12)
may not be block diagonal due to the finite sampling.

Our experience is that the norm of the off-diagonal blocks
decreases as the number of samples S increases. Therefore,
we replace the sample covariance matrix Csample

η|x=x̂ ∈ R
m×m

by a block diagonal matrix C̃sample
η|x=x̂ given by

C̃sample
η|x=x̂ =

⎡
⎢⎢⎣
Csample

η|x=x̂,1
. . .

Csample
η|x=x̂,q

⎤
⎥⎥⎦ , (15)

where Csample
η|x=x̂,i ∈ R

p×p are the block diagonal parts of

Csample
η|x=x̂ . Then, assuming the Gaussian measurement noise

is independent identically distributed, i.e.,Ce = σ 2I, we can
compute the Cholesky factor of the inverse covariancematrix
(Ce + C̃sample

η|x=x̂ )−1 block-wise as follows

L̃sample
ν|x=x̂ =

⎡
⎢⎢⎢⎢⎣

chol
(
(σ2Ip + C̃sample

η|x=x̂,1)
−1)

. . .

chol
(
(σ2Ip + C̃sample

η|x=x̂,q )−1)

⎤
⎥⎥⎥⎥⎦ . (16)

These aspects are illustrated in Fig. 1, which shows that the
block-diagonal representation captures the structure of the
actual covariance matrix with fewer samples compared to
the full version.

Furthermore, to achieve a computationally efficient and
numerically stable inversion and factorization, we note that
we can interchange the inversion and factorization and utilize
that the covariancematrix can bewritten as a low-rank update
of a scaled identity matrix,

C̃sample
ν|x=x̂ = σ 2Im +

S∑
s=1

wswT
s , (17)

where ws = ηsx̂−μ
sample
η|x=x̂√

S−1
. Therefore, the computation of the

inverse Cholesky factors that constitute the blocks in L̃sample
ν|x=x̂

merely consists of low-rank updates of σ−2Im . Updating
an inverse Cholesky factor is discussed in, e.g., [8]; this
approach is numericallymore stable than using the Sherman-
Morrison formula for updating the inverse covariancematrix.
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Fig. 1 These plots show the small top-left submatrix of the entirematri-
ces. Each plot shows the absolute value of the matrix elements, and
to visualize the zero-nonzero structure we use a logarithmic colormap.
Left: the full sampled covariancematrixCsample

η|x=x̂ and theCholesky factor

Lsample
η|x=x̂ of its inverse with S = 100 samples.Middle: the block-diagonal

representation C̃sample
η|x=x̂ according to (15) and theCholesky factor L̃sample

η | x=x̂
of its inverse with S = 100 samples. Right: full sampled covariance
matrix and Cholesky factor of its inverse with S = 10000 samples.
We see that the block-diagonal representation captures the structure of
the actual covariance matrix with fewer samples compared to the full
version

3.2 Block-Wise Variational Model

Given the block-wise approximation of the covariance
matrix, the variational model in (13) can be formulated as

min
x≥0

1

2

∥∥∥∥∥∥∥

⎡
⎢⎣
L̃ν|x,1

. . .

L̃ν|x,q

⎤
⎥⎦

⎛
⎜⎝

⎡
⎢⎣
b1
...

bq

⎤
⎥⎦ −

⎡
⎢⎣
R(θ̂1)

...

R(θ̂q)

⎤
⎥⎦ x −

⎡
⎢⎣

μν|x,1
...

μν|x,2

⎤
⎥⎦

⎞
⎟⎠

∥∥∥∥∥∥∥

2

2

+ λTV(x),

(18)

where we use the short-hand notation μν|x,i and L̃ν|x,i for
the blocks of the sample mean (11) and Cholesky factor of
the inverse sample covariance matrix (16).

We can conveniently utilize the block structure to arrive
at a variational model using q data-fitting terms, i.e.,

min
x≥0

1

2

q∑
i=1

‖L̃ν|x,i (bi −R(θ̂i ) x − μν|x,i )‖22 + λTV(x). (19)

This formulation allows us to take the block structure into
account via a stochastic optimization algorithm, namely, the
stochastic primal dual hybrid gradient (SPDHG) method [9].
This greatly reduces the number of outer iterations and thus
the overall computational work, compared to classical pri-
mal dual methods. The SPDHG algorithm solves the generic
optimization problem

min
x

q+1∑
i=1

fi (Aix) + g(x), (20)
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where for (19) we specifically have

f1,...,q(·) = 1
2‖ · +L̃ν|x,i (bi − μν|x,i )‖22, (21)

fq+1(·) = λ ‖ · ‖2,1, (22)

A1,...,q = −L̃ν|x,iR(θ̂i ), (23)

Aq+1 = ∇, (24)

g(·) =
{
0 if xi ≥ 0,

∞ if xi < 0.
(25)

The procedure for solving the generic problem (20) is shown
in Algorithm 2, where we specially use the proximal opera-
tors:

proxτ
g(x) = max(x, 0), (26)

proxω
f ∗
i
(y) = 1

1+ω

(
y + ωL̃ν|x,i (bi − μν|x,i )

)
,

i = 1, . . . , q, (27)

proxω
f ∗
q+1

(y) = 1

λ

y
max(1, ‖y‖2) . (28)

Algorithm 2: SPDHG

Input: Initial x, step parameters ωi , τ .
Output: x
1: y = 0, z = z̄ = AT y = 0
2: for k = 1, . . .
3: x = proxτ

g(x − τ z̄)
4: Select i ∈ 1, . . . , q with probability Pi
5: y+

i = proxωi
f ∗
i
(yi + ωiAix)

6: �z = AT
i (y+

i − yi )
7: z = z + �z, y = y+
8: z̄ = z + 1

Pi
�z

9: end

A key choice here is the selection of the probabilities Pi in
step 4. First note that if Pi = 1 then we obtain the standard
the primal dual hybrid gradient (PDHG) aka. the Chambolle-
Pock algorithm [7]. However, if Pi < 1 only a few blocks
are updated in the dual variable before x is updated, which
reduced the computational work in each iteration. To ensure
that the algorithm puts equal weight on both regularization
and the data-fitting blocks, we choose

Pi =
{

1
2q if i = 1, . . . , q,

1
2 if i = q + 1.

(29)

The step sizes are selected according to

ωi = γ
ρ

‖Ai‖2 I, τi = γ −1 ρPi
‖Ai‖2 I, τ = min τi , (30)

where ρ < 1 and γ > 0. In our implementation we choose
γ = 1 and ρ = 0.999, i.e., we put equal balance between
primal and dual variable and as large a step size as possible.

4 Numerical Experiments

We present simulated numerical experiments in 2D to show
the performance of our method and compare it to our pre-
vious non-block version in [25]. The simulations are carried
out inMATLAB andwe use the ASTRAToolbox [30] for the
matrix-free forward and back projections, i.e., formultiplica-
tion with R(θ) and R(θ)T . The block formulation involves
multiplication with the block matrices R(θi ) ∈ R

p×n and
their transpose for i = 1, . . . q.

We assume that the view angles are independent and dis-
tributed according to πangles = N (θequid, δ2I), where θequid

are equidistant view angles in [0◦ to 360◦). We generate the
noisy data according to

b = R(θ̄)x̄ + e, (31)

where x̄ represents MATLAB’s Shepp-Logan phantom and
e ∼ N (0, σ 2I) with σ = 0.005 ‖R(θ̄)x̄‖2/√m. Moreover,
θ̄ is a realization of N (θequid, δ2I).

As in [25] we compare our results with a TV reconstruc-
tion that does not take the uncertainty into account, and a TV
reconstruction that uses the true view angles θ̄ . That is, we
compare

Table 1 The physical and discretization parameters in the simulated
CT experiments

Parameter Value

Scan geometry Fan-beam

Reconstruction domain size 50 cm × 50 cm

Source to center distance 50 cm

Source to detector distance 100 cm

Detector length 130 cm

Small example

Image pixels n = 452

Detector pixels p = 90

Number of view angles q = 90

View angle standard deviation δ = 1.2◦

Medium example

Image pixels n = 1352

Detector pixels p = 270

Number of projection angles q = 270

View angle standard deviation δ = 0.4◦
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Fig. 2 We compare relative error (y-axis) with regularization parameter choice (top) for all 3 methods, show convergence history of our algorithm
(middle) and compare number of samples of the model discrepancy for our method (bottom)
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Fig. 3 We compare reconstruction quality of the solutions for all 3
methods with the optimal regularization parameter choice. All images
are shown with the same greyscale. Top row N = 45, bottom row

N = 135. We see that our method (MD-TV) improves reconstruction
quality visually compared to a standard TV reconstruction, and is visu-
ally similar to the TV reconstruction using the true view angles

xTV = argmin
x≥0

1

2

q∑
i=1

‖Le,i (bi − R(θ̂i ) x − μe,i )‖22

+ λTV(x), (32)

xMD-TV = argmin
x≥0

1

2

q∑
i=1

‖L̃ν|x,i (bi − R(θ̂i ) x − μν|x,i )‖22

+ λTV(x), (33)

xTV-opt = argmin
x≥0

1

2

q∑
i=1

‖Le,i (bi − R(θ̄i ) x − μe,i )‖22

+ λTV(x), (34)

where θ̂ = θequid and MD-TV is our method.
In all cases, when solving for x we have a choice between

using SPDHG (Algorithm 2) and PDHG. We use K = 10
outer iterations and S = 100 samples unless stated other-
wise. According to our numerical tests, after K = 10 outer
iterations the reconstruction error levels off, see Fig. 2 (mid-
dle plots). The stopping criterion in Algorithm 2 when using

SPDHG is

‖xk+1 − xk‖2
‖xk‖2 ≤ 10−6

q
, (35)

and when using PDHG we use the stopping criterion

‖xk+1 − xk‖2
‖xk‖2 ≤ 10−6. (36)

We found empirically that dividing by q in (35) for SPDHG
provides similar reconstructions as using (36) for PDHG.

InTable 1,we summarize the parameters for our simulated
experiments. We consider the same two examples from [25].
We compare the quality of a solution x using the relative error
‖x − x̄‖2/‖x̄‖2 and visual quality.

4.1 Reconstructions

In the top row of Fig. 2 we show the relative error versus
the regularization parameter λ for the two examples and
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Fig. 4 We compare the convergence history of Algorithm 1 using either PDHG or SPDHG on our block-structure problem (19). Every “corner” in
these plots indicates the beginning of a new outer iteration. We see that SPDHG greatly decreases the number of epochs required for this problem

all three methods. First note that for the ranges shown our
method (MD-TV) always has a lower relative error compared
to theTVreconstruction (TV) from (32). Furthermore,we see
that the optimal choice of regularization parameter for MD-
TV is similar to the one from the TV reconstruction using
the true view angles (TV-opt) from (34). This indicates that
the uncertainty due to the view angles is better handled by
incorporating it in the data fidelity, rather than increasing the
amount of TV regularization.

In the middle row of Fig. 2 we show the convergence his-
tory ofMD-TV for the K = 10 outer iterations. The SPDHG
algorithmuses onemultiplicationwithR(θ̂) and its transpose
every 2q iterations in expectation. Hence, to show conver-
gence and compare the amount of work we use the unit of an
epoch defined as thework involved in onemultiplicationwith

R(θ̂) or its transpose, since the computation is dominated by
the forward and back projections.

The SPDHG algorithm computes q times as many gradi-
ents (multiplication with ∇) as the PDHG algorithm. This
leads to a small increase in computational cost that is not
accounted for when only comparing epochs. However, eval-
uation of each finite difference approximation [∇x]i in (14)
requires summing only the neighboring pixels in the CT
reconstruction, compared to summing all pixels along each
line for the forward and back projections. Hence—except for
very underdetermined problems—computation of the gradi-
ent is significantly less expensive than computing the forward
projection. In our numerical tests using MATLAB, we found
that a direct computation of the gradient is 1000 times faster
than computing a forward projection with the optimized
CPU-ASTRA library. The convergence plot includes the
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work associated with sampling the model discrepancy which
requires S + 1 multiplications of R(θ).

In the bottom row of Fig. 2 we show the convergence
history of MD-TV for different number of samples S. We
note that relative error of the final solution does not improve
when using more than about S = 100 samples, so we use
that for our other experiments.

Finally, in Fig. 3 we show the reconstructions obtained
from the regularization parameter that yielded the lowest rel-
ative error using all 3 methods.

4.2 Convergence

In Fig. 4, we compare the convergence history of our algo-
rithm using SPDHG which takes the block structure into
account with our previous algorithm using PDHG, which
does not. Every “corner” in these plots indicates the begin-
ning of a newouter iteration, andwe see a significant decrease
in the number of epochs required in each outer iteration. We
see for example that in the small example the SPDHG algo-
rithm reaches convergence in the first outer iteration using
69 epochs compared to PDHG with 2174 epochs.

5 Conclusion

We proposed a new model and iterative algorithm for CT
reconstruction when the view angles are uncertain. The
uncertainty is described by a model discrepancy term and
included in the data fidelity term of a TV regularized varia-
tional model. To establish the newmodel, we have overcome
two key difficulties: (i) the probability distribution for the
combined measurement noise and model discrepancy may
not have a closed-form expression leading to difficulties for
deriving a data fidelity term and (ii) the combined noise and
discrepancy depend on the unknown CT reconstruction. We
handle these issues by approximating the model discrepancy
by a Gaussian, leading to a closed-form expression for the
data-fidelity, and we alternately update the reconstruction
and the parameters of the model discrepancy. 2D numerical
experiments show that this approach improves the recon-
struction quality in terms of relative error and visual quality
compared to a standard TV reconstruction. Furthermore, our
model admits a block structure, which we take advantage of
to greatly reduce the overall computational work.
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