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Abstract
We consider the evolution model proposed in Bertalmío (Front Comput Neurosci 8:71, 2014), Bertalmío et al. (IEEE Trans
Image Process 16(4):1058–1072, 2007) to describe illusory contrast perception phenomena induced by surrounding orienta-
tions. Firstly, we highlight its analogies and differences with the widely usedWilson–Cowan equations (Wilson and Cowan in
BioPhys J 12(1):1–24, 1972), mainly in terms of efficient representation properties. Then, in order to explicitly encode local
directional information, we exploit the model of the primary visual cortex (V1) proposed in Citti and Sarti (J Math Imaging
Vis 24(3):307–326, 2006) and largely used over the last years for several image processing problems (Duits and Franken
in Q Appl Math 68(2):255–292, 2010; Prandi and Gauthier in A semidiscrete version of the Petitot model as a plausible
model for anthropomorphic image reconstruction and pattern recognition. SpringerBriefs in Mathematics, Springer, Cham,
2017; Franceschiello et al. in J Math Imaging Vis 60(1):94–108, 2018). The resulting model is thus defined in the space of
positions and orientation, and it is capable of describing assimilation and contrast visual bias at the same time. We report
several numerical tests showing the ability of the model to reproduce, in particular, orientation-dependent phenomena such
as grating induction and a modified version of the Poggendorff illusion. For this latter example, we empirically show the
existence of a set of threshold parameters differentiating from inpainting to perception-type reconstructions and describing
long-range connectivity between different hypercolumns in V1.
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1 Introduction

Recent studies on vision research have shown that many,
if not most, popular vision models can be described by a
cascade of linear and nonlinear (L+NL) operations [38].
This is the case for several reference models describing
visual perception—e.g. theOrientedDifference ofGaussians
(ODOG) [13] or the Brightness Induction Wavelet Model
(BIWaM) [41]—and, analogously, for models describing
neural activities [20]. These L+NL models are suitable
in many cases for describing retinal and thalamic activity,
but they have been shown to have low predictive power
for modelling the neural activity in the primary visual cor-
tex (V1), explaining less than 40% of the variance of the
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data [20]. On the other hand, there exist several models in
vision research which cannot be expressed as a combina-
tion of (L+NL) operations. Prominent examples are models
describing neural dynamics via Wilson–Cowan equations
[18,45,55]. Although these models have been extensively
studied by the neuroscience community to describe corti-
cal low-level dynamics, see, for example, [24], their use in
the context of psychophysics to describe, for example, visual
illusions has been considered only very recently [8].

In [6,10,11], the authors show how a slight, yet effec-
tive, modification of the Wilson–Cowan equation that does
not consider orientation admits a variational formulation
through an associated energy functional which can be linked
to histogram equalisation, visual adaptation and the efficient
representation principle, an important school of thought in
vision science [40]. This principle, introduced by Attneave
[2] and Barlow [4], is based on viewing neural systems
through the lens of information theory and states that neural
responses aim to overcome neurobiological constraints and
to optimise the limited biological resources by self-adapting
to the statistics of the images that the individual typically
encounters, so that the visual information can be encoded
in the most efficient way. Natural images (and, more gener-
ally, images in urban environments) are in fact not random
arrays of values, since they present a significant statistical
structure. With respect to such statistics, nearby points tend
to have similar values; as a result, there is significant cor-
relation among pixels, with a redundancy of 90% or more
[1], and it would be highly inefficient and detrimental for the
visual system to simply encode each pixel independently.
Another very important reason to remove redundant statisti-
cal information from the representation is that the statistical
rules impose constraints on the image values that are pro-
duced, preventing the encoded signal from utilising the full
capacity of the visual channel, which is another inefficient
or even wasteful use of biological resources. By removing
what is redundant or predictable from the statistics of the
visual stimulus, the visual system can concentrate on what’s
actually informative [44]. Remarkably, the efficient represen-
tation principle has correctly predicted a number of neural
processing aspects and phenomena and is the only framework
able to predict the functional properties of neurons from a
very simple principle. In [1], Atick makes the point that one
of the two different types of redundancy or inefficiency in the
visual system is the one that happens if some neural response
levels are used more frequently than others: for this type of
redundancy, the optimal code is the one that performs his-
togram equalisation, which can be obtained by means of the
modification of the WC model described above.

Contribution The first contribution of this paper is to
formally prove, in a completely general setting, that Wilson–
Cowan equations are non-variational, i.e. they cannot be

written as the gradient flow of an L2 energy functional. For
this reason, their solutions do not provide a representation as
efficient as the solutions to the local histogram equalisation
model.

As a second contribution, we introduce an explicit orien-
tation dependence both into the WC equations and into this
modification via a lifting procedure inspired by the neuro-
physiological modelling of V1 [23,27,43], which has also
been applied to several image processing problems [15,57].
The lifting procedure, illustrated in Fig. 1, consists in associ-
ating with each point of the retinal plane x ∈ R

2, the tangent
direction θ of the contour at point x , thus “lifting” the retinal
plane R

2 to the feature space R
2 × P

1 of positions and ori-
entations. This mathematical construction mimics the neural
representations of the image features that the visual cortex
performs, as it is well known from the studies in vision neu-
roscience by Hubel and Wiesel [35].

We then report some numerical evidence showing how
the proposed model is able to better reproduce several
visual perceptionbiases thanboth its orientation-independent
version and some reference (L+NL) models. In partic-
ular, after reporting some numerical results for classical
non-orientation-dependent illusions, we test our model on
orientation-dependent grating induction (GI) phenomena
(generalising the ones presented in [13, Figure 3], see also
[39]) and showadirect dependence of the output image on the
local orientation, which cannot be described by orientation-
independent models.

We then test the proposed model on a modified version of
the Poggendorff illusion, a geometrical optical effect where
a misalignment of two collinear segments is induced by the
presence of a surface [52,53], see Fig. 10a. For this modified
version, our model is able to integrate the contrast feature
better than state-of-the-art models such as those based on fil-
tering techniques [13,41], on natural images statistics [34]
and cortical-based ones [29,30]. Moreover, we also show
that such feature is not correctly integrated by the classical
WC equations even when orientation is explicitly taken into
account in the modelling.

Finally, we report an empirical study concerning the sen-
sitivity of the model to parameters showing the existence of
threshold values able to change the nature of the completion
properties of the model, for example, to make it switch from
inpainting-type (geometrical completion) to perception-type
(perceptual completion).

A preliminary version of this work, including some of the
tests presented here, appeared in [9].

2 Variational and EvolutionMethods in
Vision Research

The use of variational methods for solving ill-posed imag-
ing problems is nowadays very classical within the imaging
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Fig. 1 Pipeline for cortical-inspired image processing: each x ∈ R
2

is lifted in the space of positions and orientations R
2 × P

1 according
to the correspondent tangent direction of the curve at point x . In the

lifted space, many operations can be performed, such as the completion
of the given broken curve. Then, the information retrieved within the
lifted space can be projected back to the R

2 plane

community. For a given degraded image f and a (possi-
bly nonlinear) degradation operator T modelling noise, blur
and/or under-sampling in the data, the solution of the problem

find u s.t. f = T (u) (1)

often lacks fundamental properties such as existence, unique-
ness and stability, requiring alternative strategies to be used
in order to reformulate the problem in a well-posed way.

In the context of variational regularisation approaches, for
instance, one looks for an approximation u� of the real solu-
tion u by solving a suitable optimisation problem, so that

u� ∈ argmin E(u), (2)

where E is a (possibly non-convex) energy functional which
typically combines prior information available both on the
image and on the physical nature of the signal (in terms, for
instance, of its noise statistics), see, for example, [21] for a
review.

In convex and smooth scenarios, a common alternative
consists in considering the steepest descent of E defined in
terms of the Fréchet derivative ∇E calculated w.r.t. to some
norm, which reduces the problem to the form

∂

∂t
u = −∇E(u), u|t=0 = f , (3)

under appropriate conditions on the boundary of the image
domain. Then, solutions u� to (2) correspond to station-
ary solutions of (3). We remark that while the connection
between variational problems and parabolic PDEs is always
guaranteed by taking the gradient descent of the correspond-
ing energy functional as above, the reverse is not always
possible, as it requires some additional structure of the func-
tional space considered that may lack in several cases. We
will comment on this issue in the next section, where we
will provide some examples in this respect focusing at some
neurophysiologically inspired models for vision.

In such context, evolution equations have been originally
used as a tool to describe the physical transmission, diffusion
and interaction phenomena of stimuli in the visual cortex,
see, for example, [24]. Similarly, variational methods have

been studied by the vision community to describe efficient
neural coding properties, see, for example, [40,51], i.e. all
the mechanisms used by the human visual system to optimise
the visual experience via the reduction in redundant spatio-
temporal biases linked to the perceived stimulus.

In the context of vision, a first study on the efficient
representation aspects of some neurophysiological model
analogous to the one considered in this work has been
recently performed by the authors in [8] where several visual
illusions are studied.

2.1 Wilson–Cowan-TypeModels for Neuronal
Activation

A prominent example of evolution models describing neu-
ronal dynamics is the Wilson–Cowan (WC) equations [18,
55] that we present here in a general context.

Consider a neuronal population parametrised by a set Ω ,
endowed with a measure dξ supported on the whole Ω . In
the following sections, we will be interested in the two cases:
Ω = R

2 and Ω = R
2 ×P

1, both endowed with the corre-
sponding Lebesgue measure. Denoting by a(ξ, t) ∈ R the
state of a population of neurons with coordinates ξ ∈ Ω at
time t > 0, the Wilson–Cowan model reads

∂

∂t
a(ξ, t) = −βa(ξ, t)

+ ν

∫
Ω

ω(ξ‖ξ ′)σ (a(ξ ′, t)) dξ ′ + h(ξ, t).

(WC)

Here, β > 0 and ν ∈ R are fixed parameters, ω(ξ‖ξ ′) is a
kernel that models interactions at two different locations ξ

and ξ ′, the function h represents an external stimulus, and
σ : R → R is a nonlinear sigmoid saturation function.

In the following, we further assume that the interaction
kernel ω is non-negative and normalised:

∫
Ω

ω(ξ‖ξ ′) dξ ′ = 1, for a.e. ξ ∈ Ω. (4)
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Moreover, as a sigmoid σ , we consider the following odd
function:

σ(ρ) := min{1,max{αρ,−1}}, α > 1, (5)

which has been previously considered, for example, in [10].
Observe that, depending on the sign of ν, model (WC) is able
to describe both excitatory (ν > 0) and inhibitory local inter-
actions (ν < 0), see, for example, [17, Section 3]. Due to the
oddness of σ , this latter case can be equivalently expressed
by keeping ν > 0 and replacing σ with its “mirrored” version
σ̂ (ρ) = σ(−ρ), ρ ∈ R, see Fig. 2.

Equation (WC) has been studied intensively over the last
decades to describe several neuronal mechanisms in V1,
see, for example, [3,24,28,45,50]. However, one interesting
aspect which, up to our knowledge, has not been previously
investigated, is whether (WC) complies with any efficient
representation principle, or, in more mathematical terms,
whether suchmodel can be interpreted as the gradient descent
in the form (3) of some energy functional defined on L2(Ω).

As a first result, we show in the following that the model
(WC) does not satisfy a variational principle. As a conse-
quence, it does not implement an efficient neural coding
mechanism. A preliminary study has been performed by the
authors in [8], in a completely discrete setting.Here,wemake
these considerationsmore rigorous by the following theorem.

Theorem 1 Assume that there exist two subsets of positive
measure U1, U2 ⊂ Ω , U1 ∩ U2 = ∅ such that ω(ξ‖ξ ′) > 0
for any ξ ∈ U1 and ξ ′ ∈ U2. Then, for σ chosen as above, the
Wilson–Cowan equation (WC) does not admit a variational
formulation, that is, it cannot be expressed as the gradient
descent in the Fréchet sense of any densely defined energy E .

Proof We proceed by contradiction and assume that there
exists a densely defined energy E on L2(Ω) such that (WC)
can be expressed in the form (3).

Let χi : Ω → {0, 1} be the characteristic function of Ui ,
i = 1, 2. Since up to reducing it we can always assume Ui

to have finite measure, we have that χi ∈ L2(Ω). Then, we
define J : R

2 → R by

J (v) := E(v1χ1 + v2χ2), v = (v1, v2) ∈ R
2 . (6)

By definition, we have

∂i J (v) = 〈∇E(v1χ1 + v2χ2), χi 〉, i = 1, 2. (7)

Here, ∇E denotes the Fréchet derivative of E , and 〈·, ·〉
denotes the scalar product in L2(Ω). Thus, by (3) and (WC),
there holds

∂i J (v) = βvi − 〈h, χi 〉

− ν

∫
Ω

∫
Ω

ω(ξ‖ξ ′)χi (ξ)σ

⎛
⎝ 2∑

k=1

vkχk(ξ ′)

⎞
⎠ dξ dξ ′.

(8)

We now aim to differentiate again the above w.r.t. the j th
variable, j = 1, 2. Observe that since σ is Lipschitz continu-
ous, it is differentiable almost everywhere and, thanks to the
fact that U1 ∩ U2 = ∅, for a.e. v ∈ R

2 we have

σ ′ (v1χ1(ξ
′) + v2χ2(ξ

′)
) = σ ′(v j ) ∀ξ ′ ∈ U j . (9)

This shows that for a.e. v ∈ R
2 it holds

∂ j i J (v) = βδi j − νσ ′ (v j
)

ci j , (10)

where δi j is the Kronecker delta symbol and ci j is defined as

ci j :=
∫

U j ×Ui

ω(ξ‖ξ ′) dξ dξ ′. (11)

Observe that, by (4), the assumption onU1 andU2 and the fact
that they have finite measure, it holds that 0 ≤ ci j < +∞ for
any i, j ∈ {1, 2}. Moreover, since ω(ξ‖ξ ′) > 0 for ξ ∈ U1

and ξ ′ ∈ U2, we have that c21 > 0.
We now claim that J ∈ C2(A × A), where A = {t ∈ R :

|t | �= 1/α} is the set of differentiability of σ . To this purpose,
we compute

σ ′(t) =
{

α if |t | < 1/α,

0 if |t | > 1/α,
∀t ∈ A. (12)

Then, by (10), for any v ∈ A × A and i, j ∈ {1, 2} it holds

∂ j i J (v) =
{

βδi j − ναci j if |v j | < 1/α,

βδi j if |v j | > 1/α.
(13)

As a consequence, ∂ j i J is continuous on A × A, proving the
claim.

To conclude the proof, we show that ∂21 J �≡ ∂12 J , which
contradicts the C2 differentiability of J by the Schwarz the-
orem and thus shows that the r.h.s. of (WC) cannot be the
Fréchet derivative of an energy. Indeed, it suffices to consider
v ∈ A × A with v1 > 1/α and v2 < 1/α, which by (13)
implies

∂12 J (v) − ∂21 J (v) = ναc21 �= 0 (14)

This completes the proof of the statement. ��
Remark 1 The above argument can be easily extended to any
Lipschitz continuous sigmoid σ with non-constant deriva-
tive.
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(a) (b)

Fig. 2 Symmetric behaviour of excitatory and inhibitory sigmoid functions in the form (5) with α = 5

Remark 2 The variational nature of physical models describ-
ing neural interaction has been investigated in other contexts.
For instance, in [33], the authors consider neural models
eventually arising from asymmetric interaction kernels. We
also refer to [32] for the identification of a Lyapunov func-
tional for a Wilson–Cowan-like equation.

To overcome the non-existence of an underlying energy
for (WC) and deal with a model complying with the efficient
representation principle, we will consider in the following
a variation in (WC), which has been introduced in [10] for
Local Histogram Equalisation (LHE) of images in the par-
ticular case where Ω is a square domain in R

2. Keeping now
Ω general and using the same notation as above, this model
can be written as

∂

∂t
a(ξ, t) = −βa(ξ, t)

+ ν

∫
Ω

ω(ξ‖ξ ′)σ (a(ξ, t) − a(ξ ′, t)) dξ ′ + h(ξ, t).

(LHE)

We note that the only difference between (LHE) and (WC)
is the different input of the sigmoid σ appearing inside the
integral. While in (WC) this is equal to the stimulus inten-
sity at location ξ ′, in (LHE) this is equal to the difference
between the population at the point under consideration and
the neighbouring ones.

Following the same line of proof as in [10] and letting
Σ : R → R be any (even) primitive function of σ , it is easy to
show that independently on the choice ofΩ , equation (LHE)
is the gradient descent in the sense of (3) of the following
energy functional

E(a) = β − 1

2

∫
Ω

|a(ξ)|2 dξ + 1

2

∫
Ω

|a(ξ) − h(ξ)|2 dξ

+ν

2

∫
Ω

∫
Ω

ω(ξ‖ξ ′)Σ(a(ξ) − a(ξ ′)) dξ ′ dξ. (15)

The functional E is the sum of three different terms: the first
two can be thought of as data fitting terms whose minimi-
sation forces the solution of (15) to stay close to the given
stimulus and, possibly, to global average brightness intensity
levels; the third one is an interaction term whose minimisa-
tion corresponds to maximise the local contrast (see [10] for
more details). In the following section, we will make precise
some specific choices of h, which will clarify the different
ingredients of model (15) in more detail.

2.1.1 Orientation-Independent Modelling

We now focus on the application of (LHE) to describe con-
trast perception phenomena independent on local orientation
information. To do that, we recall in the following the specific
instance of the (LHE) model introduced in [10]. We model
the visual plane as a rectangular domain Q ⊂ R

2 and con-
sider grey-scale visual stimuli to be functions f : Q → [0, 1],
such that f (x) encodes the brightness intensity at x . For a
given initial stimulus f0, we then denote by μ its local aver-
age intensity computed as the convolution μ = g� f0 of f0
with some filter g ∈ L1(Q) with

∫
Q g(x) dx = 1.

In [10], the filter g was chosen to be uniform, while in [6]
it was changed to a simple Gaussian in order to reproduce
visual induction effects; another possibility for g would be
to use a sum of Gaussians, which has been shown to better
approximate lateral inhibition effects happening at the retinal
level [56]. We also take the activation in (LHE) to be a :=
f −1/2, corresponding to the way our visual system encodes
contrast (i.e. as the difference with respect to the average,
which we take to be 1

2 ). For the external stimulus h, we take
a weighted sum of the initial stimulus a|t=0 = f0 − 1/2
and its filtering via g; in the visual system, this corresponds
to a combination of magnocellular (spatially averaged) and
parvocellular (fine detail) pathway information. Namely, for
λ > 0, we consider:

h = (g�a)|t=0 + λa|t=0 = μ + λ f0 − 1 + λ

2
. (16)
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Westress that the input h is time independent. Such simpli-
fication follows from considering in our modelling the very
short time framewhere the stimulus is presented and retained
by the visual system, a time length that is typically known
as iconic memory. For visual illusions such as the ones pre-
sented in Sect. 3, this time frame typically spans less than
200 ms [48], which corresponds to the fixation time between
rapid eye movements, and therefore, the temporal changes in
h can be neglected.

By plugging the above ingredients in Eq. (LHE), and
letting β = 1 + λ, we obtain the following (orientation-
independent) LHE evolution model:

∂

∂t
f (x, t) = −(1 + λ) f (x, t)

+ ν

∫
Q

ω(x, y)σ
(

f (x, t) − f (y, t)
)
dy + (μ(x) + λ f0(x)) .

(LHE-2D)

Remark 3 Re-arranging the (LHE-2D) equation as

∂

∂t
f (x, t) = μ(x) − f (x, t)

+ ν

∫
Q

ω(x, y)σ
(

f (x, t) − f (y, t)
)
dy

+ λ ( f0(x) − f (x, t)) , (17)

we can better see the effect of each of its terms: the one
multiplied by the parameter ν enhances local contrast, the
one multiplied by λ penalises the departure from the original
function f0, and the term μ(x)− f (x, t) pushes the solution
towards the localmean.Note that ifμ(x) is the constant value
1/2, it can be considered as a global average, and the solution
is then consistent with the so-called grey world principle that
states that in a sufficiently varied scene the average perceived
color is a mid-grey, i.e. a mean value of 1

2 for each color
channel [7,10].

As far as the interaction kernel ω is concerned, in [36] the
authors consider a kernelωwhich is a convex combination of
two bi-dimensional Gaussians with different standard devia-
tions.While this variation in themodel (LHE-2D) is effective
in describing assimilation effects, the lack of dependence on
the local orientation makes such modelling intrinsically not
adapted to explain orientation-induced contrast and colour
perception effects such as the ones described in [13,41,46].
Reference models capable of explaining these effects are
mostly based on oriented difference of Gaussian linear fil-
tering coupled with some nonlinear processing, such as the
ODOG and the BIWaM models described in [12,13,41],
respectively. However, despite their good effectiveness in the
reproduction of several visual perception phenomena, these
models are not based on any neuronal evolution modelling
nor on any efficient representation (i.e. variational) principle.

2.1.2 Orientation-Dependent Modelling

We now focus on orientation-dependent models. For a given
visual stimulus f , we let L f : Q × [0, π) → R be the corre-
sponding cortical activation in V1, where L f (x, θ) encodes
the response of the neuron with spatial preference x and ori-
entation preference θ to the stimulus f . Such activation is
obtained via convolution with the receptive fields of V1 neu-
rons, as explained in “Appendix A”, see also [23,27,42,43].
Then, similar to above, the model (LHE) for a cortical
activation a(x, θ) depending on the local V1 coordinate
ξ = (x, θ) is obtained as follows: We define F := a + 1/2
to be the visual stimulus and take as external stimulus
h = Lμ + λL f0 − (1 + λ)/2 [compare with (16)]. This,
combined with the choice β = 1 + λ, yields the equation

∂

∂t
F(x, θ, t) = −(1 + λ)F(x, θ, t)

+ ν

∫ π

0

∫
Q

ω(x, θ‖y, φ)σ

(
F(x, θ, t) − F(y, φ, t)

)
dy dφ

+ (Lμ(x, θ) + λL f0(x, θ)) . (LHE-3D)

Here the kernel ω depends both on positions x, y ∈ R
2 and

orientations θ, φ ∈ [0, π). A typical choice for this kernel
would be the anisotropic heat kernel naturally associated
with the V1 connectivity, as considered in [45]. However,
for numerical reasons, the results presented in the following
are obtained by considering simply 3D Gaussians.

We remark once again that the model above describes the
dynamic behaviour of neuronal activations in the 3D space
of positions and orientation. As explained in “Appendix A”,
once a stationary solution is found, the two-dimensional per-
ceived image can be efficiently found by

f (x) = 1

π

∫ π

0
F(x, θ) dθ. (18)

Remark 4 In the following,wewill consider the interaction to
be excitatory (i.e. ν > 0) for both (LHE-2D) and (LHE-3D)
models. Indeed, the integral term in both models is positive
at x if, for example, f (x, t) > f (y, t). Thus, in order to
enhance the contrast between x and its surround we need to
have ν > 0.

We now discuss on the numerical aspects required to
implement model (LHE-3D).

2.2 DiscretisationVia Gradient Descent

We discretise the initial (square) image f0 as an N × N
matrix. For simplicity, we assume here periodic boundary
conditions. We additionally consider K ∈ N orientations,
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parametrised by

k ∈ {1, . . . , K } �→ θk := (k − 1)π

K
. (19)

The discretised lift operator, still denoted by L , transforms
N × N matrices into N × N × K arrays. Its action on an
N × N matrix f is defined for n, m ∈ {1, . . . , N } and k ∈
{1, . . . , K } by

(L f )n,m,k = F−1
(
(F f ) � (RθkFΨ cake)

)
n,m

, (20)

where � is the Hadamard (i.e. element-wise) product of
matrices, F denotes the discrete Fourier transform, Rθk is
the rotation of angle θk and Ψ cake is the cake mother wavelet
(“Appendix A”).

We let F0 = L f0, and G0 = Lμ, where the local average
intensityμ is given by a Gaussian filtering of f0. The explicit
time discretisation of the gradient descent (LHE-3D) is, for
�t � 1 and � ∈ N,

F�+1 − F�

�t
= −(1 + λ)F� + G0 + λF0 + νRF� , (21)

where RF� is the discretisation of the integral term in
(LHE-3D). That is, for a given 3DGaussianmatrix W encod-
ing the weight ω and an N × N × K matrix F , we let, for
any n, m ∈ {1, . . . , N } and k ∈ {1, . . . , K },

(RF )n,m,k

:=
N∑

n′,m′=1

K∑
k′=1

Wn−n′,m−m′,k−k′σ(Fn,m,k − Fn′,m′,k′).

(22)

We refer to [10, Section IV.A] for the description of an effi-
cient numerical approach used to compute the above quantity
in the 2D case that can be translated verbatim to the 3D case
under consideration.

After a suitable number of iterations �̄ of the above
algorithm (measured by the stopping criterion ‖F�+1 −
F�‖2/‖F�‖2 ≤ τ , for a fixed tolerance τ � 1), the out-
put image is then found via (18) as

f̄n,m =
K∑

k=1

F �̄
n,m,k . (23)

3 Experiments

In this section, we present the results obtained by applying
the cortical-inspired model presented in the previous section

to some well-known phenomena where contrast perception
may be affected by local orientations.

We compare the results obtained by our orientation-
dependent 3D model (LHE-3D) with the corresponding 2D
model (LHE-2D) already considered in [6,36] for histogram
equalisation and contrast enhancement. We further compare
the performance of these models with two standard refer-
encemodels based on oriented Gaussian filtering: the ODOG
[13] and the BIWaM model [41]. In the former, the output is
computed via a convolution of the input image with oriented
difference of Gaussian filters in six orientations and seven
spatial frequencies. The filtering outputs within the same ori-
entation are then summed in a nonlinear fashion privileging
higher frequencies. The BIWaM model is a variation of the
ODOG model, the difference being the dependence on the
local surround orientation of the contrast sensitivity func-
tion.1

Prediction of the perceptual outcome In this study, our
objective is to understand the capability of these models to
replicate the visual illusions under consideration. That is, we
are interested in whether the output produced by the models
qualitatively agrees with the human perception of the phe-
nomena in some specific and clearly visible region of the
image called target. Examples of target are the grey central
rectangles of Fig. 3a (left). We stress that our study is purely
qualitative; it has to be intended as a proof of concept showing
how the discussed models can be effectively used to repli-
cate the perceptual effects according to our notion above.
To do so, we use line profiles, which qualitatively predict
the presence of a perceived illusory phenomenon by assess-
ing a change of intensity grey levels in the target of each
illusion. We do not address here the match of our numer-
ical outcomes with empirical data since those depend on
several further experimental conditions (image size, lumi-
nance of the presented stimulus, duration of the stimulus,
etc.) for which a correspondence with the model parameters
is not clear. A dedicated study on experiments motivated by
psychophysics, addressing the validation of our models and,
possibly, allowing for the creation of ground-truth references
for a quantitative assessment is outside of the scope of this
paper.

Parameters All the images considered in the following
numerical experiments have size 200 × 200 pixels. The lift-
ing procedure to the space of positions and orientations is
obtained by discretising [0, π ] into K = 30 orientations.
The parameter ν is set ν = 1/2. The relevant cake wavelets
are then computed following [5], setting the frequency band
bw = 4 for all experiments. In (LHE-3D), we compute the

1 For our comparisons, we used the ODOG and BIWaM codes freely
available at https://github.com/TUBvision/betz2015_noise.
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(a) White’s illusion.

(b) Simultaneous Brightness Contrast illusion.

(c) Luminance illusion.

Fig. 3 Model output for non-orientation-dependent examples. First column: original image. Second column: output of (LHE-2D) model. Third
column: output of (LHE-3D) model. Parameters for (LHE-3D): σμ = 3, σω = 8, λ = 0.5

local mean average μ by a 2D Gaussian filtering with stan-
dard deviation σμ and the integral term by a 3D Gaussian
filtering with standard deviation σω. The gradient descent
algorithm stops when the relative stopping criterion defined
in Sect. 2.2 is verified with a tolerance τ = 10−2.

3.1 Non-orientation-Dependent Examples

In this section, we test (LHE-2D) and (LHE-3D) on some
classical non-orientation-dependent illusions. In particular,
we focus on the three following examples:

1. White’s illusion [54], presented in Fig. 3a. Here, the left
grey rectangle appears darker than the right one, although
their brightness intensity is identical.

2. The simultaneous brightness contrast illusion [19,22],
presented in Fig. 3b. It consists in the lighter appearance
of the left grey square than the right one.

3. The luminance illusion [37] presented in Fig. 3c. It con-
sists of four identical dots over a background whose
brightness is smoothly increasing from left to right: the
dots on the left are perceived being lighter than the ones
on the right.

We refer the reader to [8] where more non-orientation-
dependent examples are studied.
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(a) White’s illusion, middle line profile. (b) Brightness illusion, middle line profile.

(c) Luminance illusion, top circles cross line profile.

Fig. 4 Line profiles of outputs in Fig. 3

Discussion As Figs. 3 and 4 show, both (LHE-2D) and
(LHE-3D) predict the three described illusions. Figure 4 con-
tains the line profiles relative to the results of Fig. 3. In Fig. 4a,
we plot the central horizontal line of the images in Fig. 3a,
which crosses both grey patches. As the plots show, both
models correctly predict the left target to be perceived darker
than the right one. Figure 4b contains the plot of the central
horizontal line profile of the images in Fig. 3b, which crosses
the two grey squares: both (LHE-2D) and (LHE-3D) cor-
rectly predict the left square to be lighter than the right one.
Finally, in Fig. 4c we plot horizontal profiles crossing top left
and right targets (grey circles) of the images in Fig. 3c. For
each target, both models replicate the brighter perception of
the left target with respect to the right one.

Notice that also the BIWaM and ODOGmethods can cor-
rectly reproduce these illusions (see [13,41] for numerical
results).

θ = π/2.(a)Relative orientation (b)Relative orientation θ = π/3.

Fig. 5 Grating inductions with different orientations of the background
grating w.r.t. to the central bar

3.2 Grating Induction with Oriented Background

Grating induction (GI) is a contrast effect which has been
first described in [39] and later studied, among others, in
[13]. As the name suggests, the phenomenon describes the
induction of a regular alternation of intensity changes on a
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(a) ODOG. (b) BIWaM. (c) (LHE-2D). (d) (LHE-3D).

Fig. 6 Model outputs for input in Fig. 5a. Parameters for d): σμ = 10, σω = 5, λ = 0.5

(a) ODOG. (b) BIWaM. (c) (LHE-2D). (d) (LHE-3D).

Fig. 7 Model outputs for input in Fig. 5b. Parameters for (d): σμ = 10, σω = 5, λ = 0.5.

constant image region due to the presence of an inducing
background.

In this section, we describe our results on a variation in
GI where a relative orientation θ describes how much the
background is oriented with respect to a constant grey bar in
the middle of the image, see Fig. 5. In such situations, when
the background has a different orientation from the central
grey bar (i.e. θ > 0), an alternation of dark grey/light grey
patterns within the central bar is produced and perceived by
the observer. This phenomenon is contrast dependent, as the
intensity of the induced grey patterns (dark grey/light grey)
is in opposition with the background grating. Moreover, it is
also orientation dependent, since the perceived intensity of
the phenomenon varies depending on the background orien-
tation, and, in particular, it is maximal when the background
bars are orthogonal to the central one.

Discussion We observe that, in accordance with visual
perception, model (LHE-3D) predicts the appearance of a
counter-phase grating in the central grey bar, see Figs. 6d
and 7d. The same result is obtained by the ODOG model,
see Figs. 6a and 7a. Figures 8 and 9 show higher intensity
profile when the background gratings are orthogonal to the
central line, with respect to the case of background angle
equal to π/3, see orange and green dashed line. On the other

hand, BIWaM and (LHE-2D) models do not appear suitable
to describe this phenomenon. See for comparison the red and
blue dashed lines in Figs. 8 and 9.

We will now consider a similar example, focusing more
precisely on the illusory completion of collinear lines of the
background in correspondence of the central grey bar.

3.3 Poggendorff Illusion

The Poggendorff illusion (Fig. 10b) consists in the perceived
misalignment of two segments of a same continuous line
due to the presence of a superposed surface. The perceived
perceptual bias of the phenomenon has been investigated
and studied via neurophysiological experiments, see, for
example, [52,53]. Recently, in [29,30], a sub-Riemannian
framework where orientations are computed via Gabor filter-
ing has been used to study the geometrical versus perceptual
completion effects induced by the illusion, successfullymim-
icking human perception. Here, we consider a modified
version of the Poggendorff illusion, where the background
is constituted by a grating pattern, see Fig. 10a, in order to
account for both contrast and orientation features.

Note that this example is actually similar to the one con-
sidered in the previous section, the only difference being the
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(a) ODOG and BIWaM. (b) (LHE-2D) VS (LHE-3D) models.

Fig. 8 Middle line profiles of outputs in Fig. 6 (Color figure online)

(a) ODOG and BIWaM. (b) (LHE-2D) VS(LHE-3D) models.

Fig. 9 Middle line profiles of outputs in Fig. 7 (Color figure online)

width of the central grey bar, which is the responsible of the
perceived misalignment.

Discussion The result obtained by applying (LHE-3D) to
Fig. 10a is presented in Figs. 10c and 11d. As for the results
on the grating induction presented in Sect. 3.2, we observe
an induced counter-phase grating in the central grey bar.

However, the objective of this experiment goes further, the
question being whether it is possible to compute numerically
an image output reproducing the perceived misalignment
between some fixed black stripe in the bottom part of Fig. 10a
and its collinear prosecution in the upper part. Note that the
perceived alignment differs from the actual geometrical one:
for a fixed black stripe in the bottom part, the alignment of the
corresponding collinear top stripe is in fact perceived slightly
flushed left, see Fig. 10b, where single stripes have been iso-
lated for better visualisation. The problem here is therefore
not an inpainting problem, which is classical in the imaging

community, but, rather, to reconstruct the perceptual output
from the given input in Fig. 10a.

We now look at the results in Fig. 10c and mark by a con-
tinuous green line a fixed black stripe in the bottompart of the
image. In order to find the corresponding perceived collinear
stripe in the upper part, we follow how the model propa-
gates the marked stripe across the central surface (dashed
green line). We notice that the prosecution computed via the
(LHE-3D) model does not correspond to its actual collinear
prosecution, but, rather, it is in agreement with our per-
ception. Comparisons with reference models are presented
in Fig. 11, and the corresponding middle line profiles are
shown in Fig. 12. We observe that the results obtained via
the proposed (LHE-3D) model cannot be reproduced by the
BIWaM nor the (LHE-2D) models, which, moreover, induce
a non-counter-phase grating in the central grey bar which is
different from the expected perceptual result. On the other
hand, the result obtained by the ODOG model is consistent
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(a) A variation of the Poggendorff illusion with grating.
The presence of the grey central surface induces a mis-
alignment of the background lines. Fig. 10a.

(c)The perceptual completion computed by using model
(LHE-3D).

(b) The classical Poggendorff illusion, extracted from

(d)The extracted perceived alignment computed.

Fig. 10 Poggendorff illusion: input, detail extraction and result obtained by (LHE-3D). Parameters: σμ = 3, σω = 10, λ = 0.5

(a) ODOG. (b) BIWaM. (c) (LHE-2D). (d) (LHE-3D).

Fig. 11 Model outputs for the Poggendorff illusion in Fig. 10a via reference models, (LHE-2D), and (LHE-3D)

with ours, but presents amuch less evident alternating grating
within the central grey bar. In particular, the induced oblique
bands are not visibly connected across the whole grey bar,
i.e. their induced contrast is very poor and, consequently, the
induced edges are not as sharp as the ones reconstructed via
our model, see Fig. 12 for the middle line profile.

We further remark that a numerical implementation of the
standard (WC)model, whose result is presented in Fig. 13, is
not able to reproduce the desired perceptual completion. The
model (LHE-3D) reproduces the visual illusion presented in
this example better than (WC): this is consistent with the
variational nature of the model discussed before.

Threshold for inpainting versus perceptual completion in
Poggendorff grating Interestingly, the capability of model
(LHE-3D) to reproduce the visual perception bias on the
Poggendorff grating example is very much dependent on the
choice of the parameter σω which accounts for the width of
the interaction kernel.

As pointed out by the seminal works of Hubel, Wiesel and
Bosking [16,35,49], it is possible to identify at least twomain
types of connectivity in the visual cortex: the intra-cortical
connectivity, able to select the preferred orientations among
cells belonging to the same hypercolumn and the long-range
connectivity, connecting simple cells belonging to different
hypercolumns (Fig. 14).

123



Journal of Mathematical Imaging and Vision (2021) 63:263–281 275

(a) ODOG and BIWaM. (b) (LHE-2D) VS (LHE-3D) models.

Fig. 12 Middle line profiles of outputs in Fig. 11

Fig. 13 Model output of the standard (WC) model for the input in
Fig. 10a. See [8] for other results via the (WC) models and details on
the implementation

Fig. 14 Examples of long-range (a) and intra-cortical (b) connectivity
from [16]. Intra-cortical connectivity connects isotropically neurons
belonging to the same hypercolumn, while the long range connects
those belonging to different hypercolumns, but sensitive to the same
orientation. Image Copyright 1997 Society for Neuroscience

Perceptual phenomena such as those presented in this
work arise due to both these two connectivities, modelled
in (LHE-3D) by the parameter σω (i.e. the standard varia-
tion in the Gaussian ω), therefore accounting for smaller or
bigger local interactions. This parameter can thus be modu-
lated to vary the width of the connectivity between different
hypercolumns so that when σω is small with respect to the
overall size of the processed image, the geometrical comple-
tion (inpainting) is reproduced. On the other hand, when σω

is large, perceptual-oriented phenomena such as illusory con-
tours or geometrical optical illusions can be modelled. The
change between these two types of interactions observed as
the parameter σω grows is shown in Fig. 15.

This example highlights also the flexibility of our models
to adapt to image processing problems and, at the same time
but for different choices of parameters, to the modelling of
the neural activity in V1.

4 Conclusions

In this paper, we considered a neurophysiological evolution
model to study the visual perception bias induced by contrast
and, possibly, local orientation dependence. The proposed
model has been originally introduced in [10] in the context
of image processing for local histogram equalisation (LHE,)
and it is a variation of the celebrated Wilson and Cowan
equations, formulated in [55] to describe the evolution of a
population of neurons in V1.

Firstly, in Sec. 2 we investigated on the efficient represen-
tation properties of the original WC model. In mathematical
terms, this consists in interpreting the corresponding dynam-
ics as the gradient descent of suitable energy functionals.
We rigorously prove that for the WC model there is no
energy minimised by the WC dynamics (Theorem 1), while
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(a) σω = 5 (b) σω = 6 (c) σω = 7 (d) σω = 10

Fig. 15 Sensitivity to parameter σw for (LHE-3D) model. The comple-
tion inside the middle grey bar changes from geometrical (inpainting
type) to illusory (perception type). The transition can be observed when

varying σω = 5 to σω = 6, while the illusory phenomenon holds for
σω bigger than 6. The other parameters are fixed across experiments:
σμ = 2, λ = 0.8

(a) Image 1(A) in [46] (b) (LHE-2D) reconstruction (c) (LHE-3D) reconstruction

(d) Image 1(B) in [46] (e) (LHE-2D) reconstruction (f) (LHE-3D) reconstruction

Fig. 16 Reconstruction of Shapley and Gordon illusions, see [47, Fig-
ures 1(A), 1(B)]. First row: image 1(A) in [47]. From left to right:
original image, reconstruction via the (LHE2D) model, reconstruction
via the (LHE3D) model. Second row: image 1(B) in [47]. From left

to right: original image, reconstruction via the (LHE2D) model, recon-
struction via the (LHE3D) model. Parameters for (LHE3D): σμ = 10,
σω = 50, λ = 0.5

an energy functional minimised by the stationary solutions
of the LHE variant exists [see formula (15)].

Secondly, by mimicking the structure of V1, we extended
the mathematical formulation of the LHE model to a third
dimension in order to describe local orientation preferences.
This new model, denoted by (LHE-3D), can be efficiently
implemented via convolution with appropriate kernels and
solved numerically via standard explicit schemes. The infor-

mation on the local orientation allows to describe contrast
phenomena as well as orientation-dependent illusions.

In Sec. 3, we tested this extension of LHE on some
orientation-independent brightness illusions, showing that it
is able to reproduce the perceptual results as well as stan-
dard linear + nonlinear filtering (such as the ODOG and
the BIWaM models [13,41]). Then, we performed some fur-
ther tests on orientation-dependent illusions (such as grating
induction and the Poggendorff illusion), observing that only
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(a) Figures 16a, 16b, 16c: Horizontal middle line profile. (b) Figures 16a, 16b, 16c: Vertical middle line profile.

(c) Figures 16d, 16e, 16f: Horizontal middle line profile. (d) Figures 16d, 16e, 16f: Vertical middle line profile.

Fig. 17 Line profiles of the images in Fig. 16

the proposed orientation-dependent extension of the LHE
model is capable of replicating the perceived visual bias. In
agreement with the theoretical sub-optimality of the standard
WC model with respect to the efficient representation prin-
ciple pointed out before, it turns out that, among the neural
field models tested, the (LHE-3D) model is the one capable
of replicating the bigger number of illusions.

Finally, we reported a preliminary empirical discussion
on the sensitivity of model (LHE-3D) to parameters describ-
ing different connectivity properties between hypercolumns
in V1. Our experiment revealed the existence of a thresh-
old parameter in correspondence of which the completion
properties of model (LHE-3D) switch from inpainting type
to perceptual type. A more accurate theoretical study based,
for example, on bifurcation and stability analysis of the equi-
libria of the model, is left for future research.

Further investigations should also address amore accurate
modelling reflecting the actual structure of V1. In particu-
lar, this concerns the lift operation where the cake wavelet
filters can be replaced by Gabor filters as in [30], as well
as the interaction weight ω which could be taken to be the
anisotropic heat kernel of [23]. Furthermore, more features

of the image (e.g. scale, frequency, color, etc) should also be
considered in future work. According to a preliminary anal-
ysis that we performed in this direction, (LHE-3D) seems to
be promising when it comes to account for scale. In Fig. 16a,
we present a variant of the luminance illusion where only
one foreground round patch appears in the image at a big-
ger scale, while in Fig. 16d we present a variant where the
target brightness has a gradient counterposed with respect to
the background. The results obtained by applying (LHE-2D)
and (LHE-3D) to Fig. 16a, d are then reported. We observe
that both models correctly reproduce a change of sign in the
contrast of the foreground patch, enhancing a 3D effect of the
central grey patch. Moreover, (LHE-3D) seems to correctly
predict the appearance of an illusory contour in the boundary
of the central round patch, as showcased by the line profiles
in Fig. 17b, d.

Extensive numerical experiments should also be per-
formed to assess the compatibility of the model outputs
with the psychophysical tests measuring the perceptual bias
induced by these and other phenomena such as the ones
discussed in [8]. This would provide insights about the
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robustness of the model in reproducing the visual pathway
behaviour.
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AOrientation-Dependent Model of V1

Let us denote by R > 0 the size of the visual plane, and let
DR ⊂ R

2 be the disk DR := {x21 + x22 ≤ R2}. Fix R > 0
such that Q ⊂ DR . In order to exploit the properties of the
roto-translation group SE(2) on images, we now consider
them to be elements of the set:

I =
{

f ∈ L2(R2, [0, 1]) such that supp f ⊂ DR

}
. (24)

We remark that fixing R > 0 is necessary, since contrast
perception is strongly dependent on the scale of the features
under consideration w.r.t. the visual plane.

Orientation dependence of the visual stimulus is encoded
via cortical inspired techniques, following, for example, [14,
23,27,42,43]. The main idea at the base of these works goes
back to the 1959 paper [35] by Hubel and Wiesel (Nobel
prize in 1981) who discovered the so-called hypercolumn
functional architecture of the visual cortex V1.

Each neuron ξ in V1 is assumed to be associated with
a receptive field (RF) ψξ ∈ L2(R2) such that its response
under a visual stimulus f ∈ I is given by

F(ξ) = 〈ψξ , f 〉L2(R2) =
∫
R
2
ψξ (z) f (z) dz. (25)

Since each neuron is sensible to a preferred position and
orientation in the visual plane, we let ξ = (x, θ) ∈ M =
R
2 × P

1. Here, P
1 is the projective line that we represent

as [0, π ]/ ∼, with 0 ∼ π . Moreover, in order to respect the
shift-twist symmetry [17, Section 4], we will assume that the
RF of different neurons are “deducible” one from the other
via a linear transformation. Let us explain this in detail.

The double covering of M is given by the Euclidean
motion group SE(2) = R

2
�S

1 that we consider endowed
with its natural semi-direct product structure. That is, for
(x, θ), (y, ϕ) ∈ SE(2), we let

(x, θ)�(y, ϕ) = (x + Rθ y, θ + ϕ), (26)

where Rθ =
(
cos θ − sin θ

sin θ cos θ

)
. (27)

In particular, the above operation induces an action of SE(2)
on M, which is thus an homogeneous space. Observe that
SE(2) is unimodular and that its Haar measure (the left and
right-invariant measure up to scalar multiples) is dxdθ .

We now denote by U(L2(R2)) ⊂ L(L2(R2)) the space
of linear unitary operators on L2(R2) and let Π :SE(2) →
U(L2(R2)) be the quasi-regular representation of SE(2).
That is,Π(x, θ) ∈ U(L2(R2)) is the unitary operator encod-
ing the action of the roto-translation (x, θ) ∈ SE(2) on
square-integrable functions on R

2. The action of Π(x, θ)

on ψ ∈ L2(R2) is

[Π(x, θ)ψ](y) = ψ((x, θ)−1y) = ψ(R−θ (y − x)), ∀y ∈ R
2.

Moreover, we let Λ: SE(2) → U(L2(SE(2))) be the
left-regular representation, which acts on functions F ∈
L2(SE(2)) as

[Λ(x, θ)F](y, ϕ) = F((x, θ)−1�(y, ϕ)), ∀(y, ϕ) ∈ SE(2).

(28)

Letting L: L2(R2) → L2(M) be the operator that
transforms visual stimuli into cortical activations, one can
formalise the shift-twist symmetry by requiring

L ◦ Π(x, θ) = Λ(x, θ) ◦ L, ∀(x, θ) ∈ SE(2). (29)

Under mild continuity assumption on L , it has been shown
in [43] that L is then a continuous wavelet transform. That
is, there exists a mother wavelet Ψ ∈ L2(R2) satisfying
Π(x, θ)Ψ = Π(x, θ +π)Ψ for all (x, θ) ∈ SE(2) such that

L f (x, θ) = 〈Π(x, θ)Ψ , f 〉, ∀ f ∈ L2(R2), (x, θ) ∈ M.

(30)

Observe that the operation Π(x, θ)Ψ above is well defined
for (x, θ) ∈ M thanks to the assumption on Ψ . By (25), the
above representation of L is equivalent to the fact that the RF
associated with the neuron (x, θ) ∈ M is the roto-translation
of the mother wavelet, i.e. ψ(x,θ) = Π(x, θ)Ψ .
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Remark 5 Letting Ψ ∗(x) := Ψ (−x), the above formula can
be rewritten as

L f (x, θ) =
∫
R
2
Ψ (R−θ (y − x)) f (y) dy

= [
f ∗ (Ψ ∗ ◦ R−θ )

]
(x), ∀(x, θ) ∈ SE(2). (31)

where f ∗ g denotes the standard convolution on L2(R2).

Neurophysiological evidence shows that a good fit for the
RFs is given byGabor filters, whose Fourier transform is sim-
ply the product of a Gaussian with an oriented plane wave
[25]. However, these filters are quite challenging to invert
and are parametrised on a bigger space thanM, which takes
into account also the frequency of the plane wave and not
only its orientation. For this reason, in this work we chose
to consider as wavelets the cake wavelets introduced in [26],
see also [5]. These are obtained via a mother wavelet Ψ cake

whose support in the Fourier domain is concentrated on a
fixed slice, which depends on the number of orientations one
aims to consider in the numerical implementation. To recover
integrability properties, the Fourier transform of this mother
wavelet is then smoothly cut off via a low-pass filtering, see
[5, Section 2.3] for details. Observe, however, that in order
to lift toM and not to SE(2), we consider a non-oriented ver-
sion of themotherwavelet, given by ψ̃cake(ω)+ψ̃cake(eiπω),
in the notations of [5].

An important feature of cake wavelets is that, in order to
recover the original image, it suffices to consider the projec-
tion operator defined by

P : L2(M) → L2(R2), (32)

P F(x) :=
∫
P1

F(x, θ) dθ, F ∈ L2(M) (33)

Indeed, by construction of cake wavelets, Fubini’s theorem
shows that (P ◦ L) f = f for all f ∈ I.
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