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Abstract

Particle swarm optimization (PSO) is widely used to solve various optimization problems, such as robotics visual perception
and intelligent control under uncertainties, due to its simple rules and easy implementation. However, the PSO has premature
convergence in the optimization process, which will lead to inaccurate problems such as uncertainties of the control system.
To improve PSOs performance, a self-regulating particle swarm optimization with mutation mechanism (SRM-PSO) is
proposed in this paper. SRM-PSO combines the mutation mechanism, self-regulation and self-perception strategy. The
mutation mechanism is introduced to generate trial particle moving in different directions to maintain population diversity.
Self-regulation and self-perception enable particles to be updated in different ways for fast exploration and intelligent
exploitation. To validate the effectiveness of the SRM-PSO, experiments are conducted in the CEC2017 test suite. The test
results indicate that SRM-PSO outperforms two related variants, and five representative PSO variants. Further, SRM-PSO
is applied to several real-world optimization problems, which demonstrates its potential and competitiveness.

Keywords Particle swarm optimization - Self-regulating inertia weight - Self-perception on search direction -
Mutation mechanism - Premature convergence
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Optimization problems have been commonly existed in
real life, such as power systems [1], image processing [2],
control systems [3], parameters tuning [4], text mining [5],
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grouping problems [6] and so on. Since many optimization
problems become increasingly complex, it is difficult to
solve them by conventional methods. Therefore, a lot
of intelligent algorithms have emerged to solve complex
optimization problems in recent decades. For example,
genetic algorithm (GA) [7], differential evolution (DE)
algorithm [8], artificial bee colony (ABC) algorithm [9],
grey wolf optimizer (GWO) [10], across neighborhood
search (ANS) algorithm [11], particle swarm optimization
(PSO) [12] et al.

Among the above intelligent algorithms, particle swarm
optimization (PSO) [12] is a population-based intelligent
optimization algorithm inspired by the collective behavior
of bird flocking to finding food. Owing to its easy
implementation and fast convergence rate, PSO has been
widely applied. However, standard PSO suffers from the
loss of population diversity and premature convergence.
Therefore, methods to further improve the performance
of PSO have been proposed continuously. The important
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variants of PSO can be broadly classified into the following
four types:

(1) Parameter setting: The suitable selection and adjust-
ment of parameters, such as inertia weight, accelera-
tion coefficients, significantly influence the optimization
results. There are many modes to adjust the inertia
weight, such as fixed [13], linearly decreasing [14], lin-
early increasing [15], random [16], exponential [17].
Meanwhile, Han et al. [18] proposed that linear decreas-
ing inertia weight was the simplest and most effective
method. In addition, the adjustment of acceleration coef-
ficients could also improve the performance of PSO [19].
Clerc and Kennedy [20] introduced constriction coef-
ficient to control the dynamical characteristics of the
population and achieved effective improvement in some
problems.

(2) Neighborhood topology: To enhance the exploration
capability of PSO, fully connected and wheel topology [21]
have been proposed successively. Mendes and Kennedy
[22] proposed fully informed particle swarm (FIPS) and
studied the topology of squares, rings, clusters and pyra-
mids. The results showed that FIPS with different topolo-
gies could perform well on different problems. Liu et
al. [23] systematically investigated the effects of various
topologies, and then provided guidance for the topology
selection of particle swarm optimization algorithm.

(3)Learning strategy: It is an important variant to intro-
duce different learning strategies to make particle swarm
optimization converge to the global optimum effectively.
Liang et al. [24] introduced a novel comprehensive learn-
ing strategy that updated the velocity of a given particle
with the personal best information of all other particles.
HCLPSO algorithm [25] proposed heterogeneous sub-
populations based on CLPSO. Lin et al. [26] combined
global learning component and a ring topology into the
gene learning PSO to enhance performance.

(4) Hybridized version: The hybrid version is intended
to mitigate the weaknesses of the intelligent algorithm
by combining the useful features of different intelligent
algorithms. Zhang et al. [27] integrated prey-predator
relationship (catch, escape, breeding) into PSO to obtain
better performance. To calculate expensive numerical
problems, a hybrid scheme of firefly and particle swarm
was proposed in [28]. Hybridizing PSO with evolutionary
algorithm provided an effective approach to mitigate
premature convergence [29].

Among the four variants above, PSO based on learning
strategies and hybridized versions are more attractive
to researchers because of their better convergence
properties. Due to the effectiveness of learning strategies,
self-regulation and self-perception strategy was proposed
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according to the best human learning principle in [30].
Self-regulation refers to adjusting strategies through ones
current status. Moreover, learning strategy with self-
regulation provides better generalization performance
over other algorithms [31]. According to self-regulation,
the population is divided into two parts: the current
best particle and the rest. Different parts use different
strategies to update inertia weight. The self-perception
of the global best position is used by the rest of the
particles for a better search. In addition, these particles
extract experience from other particles to a certain extent
to guide a better search direction. However, the self-
perception will gradually weaken in the later stage due
to the convergence of particles, which will lead to the
loss of diversity and weaken the searching ability of
the algorithm. For this problem, mutation mechanism
[32] is considered to overcome the diversity loss. The
mutation mechanism had been demonstrated to maintain
population diversity [33]. Therefore, combining mutation
mechanism with self-regulation and self-perception can
further improve the performance of PSO for better
optimization.

Motivated by the above analysis, in this paper, a
new particle swarm optimization algorithm named SRM-
PSO is proposed to preserve the diversity of population
and enhance the search ability. SRM-PSO combines the
mutation mechanism, self-regulation and self-perception
strategies together. The mutation mechanism works by
producing trial particles in the iteration to replace
certain particles in the population. The trial particle
can motivate particles out of local optima to search
the global optimum effectively. The purpose of self-
regulation and self-perception strategy is to improve
the optimization ability and convergence accuracy. The
CEC2017 test suite [34] and real-world optimization
problem are employed to test the performance of
SRM-PSO. Meanwhile, the representative algorithms are
selected for comparison. The main contributions of this
paper are as follows.

(1) Effective combination of two improved strategies.

The proposed new improved algorithm, namely,
SRM-PSO, contains two parts: mutation mechanism,
self-regulation and self-perception strategy. The mutation
mechanism can preserve the diversity of the population
to overcome the diversity loss of self-perception strategy.
The self-regulation and self-perception strategy improve
the exploration and exploitation capabilities, and com-
pensate for the diminishing rate of convergence due to
the mutation. The two improved strategies can be effec-
tively combined with each other and further promote the
performance of PSO.
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(2) Strong competitiveness in various comparative algorithms.
The experimental comparisons with two related variants,
five representative PSO variants, including SRPSO,
MPSO, CPSO, SLPSO, HFPSO, PSOG and CHCLPSO,
indicate that the SRM-PSO performs better than the
representative popular PSO variants in various functions.

(3) Applicability to real-world optimization problems.

The proposed SRM-PSO are applied to real-world opti-
mization problem, which demonstrates the feasibility
and effectiveness of SRM-PSO in practical problems.
The rest of this paper is organized as follows. Section 2
introduces briefly the relevant work, including the basic
principle of particle swarm optimization and some variants,
as well as the relevant knowledge of self-regulating PSO.
Section 3 describes detailedly the various components of
the proposed algorithm. Section 4 presents the exper-
imental setup and performance results, compares the
results of each algorithm by the CEC2017 test suite,
and provides a detailed analysis of SRM-PSO. The con-
vergence rate analysis of SRM-PSO is also included in
this section. This section also applies SRM-PSO to real-
world optimization problem [35] and analyzes the results.
Section 5 summarizes the conclusions of this study.

2 Related Works

This section first outlines the fundamentals of the PSO
algorithm and later introduces related PSO variants and
several mutation mechanisms applied to PSO algorithm.
Further, the essential theory behind the Self-Regulating PSO
is described.

2.1 Standard PSO and Some Variants

PSO is a population-based stochastic optimization algo-
rithm that motivated by the behavior of bird flocking
[12]. The principle of PSO algorithm is to generate ran-
dom particles at the beginning. These particles influence
the search direction and speed by sharing information
about their own position and cooperating with other parti-
cles. Each population has N particles, and every particles
are assumed to be massless and volumeless in the D-
dimensional search space. Each particle i has the random
position Xid = (Xl.l, Xiz, e, Xl.D) and random velocity
Vl.d = (Vil, Vl.z, R Vl.D ) at the initial stage. The position
of each particle is a potential solution to the unanswered
question. Each particle updates its velocity and position
respectively according to the following two equations:

Vi + 1) = oVl +an (Plo - x{ )

+ a2 (G0 - X{ ) M

X +1) =X+ Vi + 1) )
where ¢ and 7 + 1 represents the current and next iteration,
respectively. Pl.d denotes the Pp. of particle i, and G“
denotes the Gp.5; of the entire swarm. w is the inertia
weight. ¢; and ¢ are acceleration coefficients. 71 and r;
are the uniformly distributed random numbers within the
range [0, 1]. The neighborhood structure of Eq. (1) is the
global topology, in which each particle is connected to every
other particle in the swarm, hence the best solution currently
found by any particle can be accessed at any time.

In PSO’s velocity update Eq. (1), the inertia weight
o balances the global exploration and local exploitation
capabilities. The larger  tends to exploratory search, so that
particles can search faster and more widely in the whole
solution space. Conversely, the smaller w tends to be an
exploitive search, enabling the swarm to search precisely in
the space of potential solutions. Hence, appropriate inertia
weight is needed to guide the search process. In [14], the
inertia weight @ was defined as a linear decreasing function
of the iteration. In addition, acceleration coefficients ¢; and
¢ determine the influence of Pp.g; and Gy, and reflecting
the information exchange and experience sharing among
all particles. When the cognitive constant c; is higher than
the social constant ¢, it will cause the particles to wander
excessively. Therefore, Clerc and Kennedy [20] improved
PSO by introducing the contraction coefficient to control
dynamic characteristics of the particle swarm, including its
exploration and exploitation tendencies as follows:

Vie+1) = x (V0 +ear (P - X 0)
e (G0) - X7 0))) 3

2
x |2—C —+/C%—4C|
where x denotes contraction coefficient, and C = ¢ + ¢3.

Particle swarm updates particle velocity and position by
learning from all particles’ Ppes; and Gpess. If Ppes; and
Gpes: guide the particles to different directions, the particles
will produce fluctuations in the search process. On the other
hand, if Pp.s; and Gpes guide the particles in the same
directions, the particles will follow the same evolutionary
direction. In this case, particles will follow the Gpes:
into the local optima if Gpes is away from the global
optimum, causing ~premature”. “Premature” will make the
diversity and velocity of swarm to decrease quickly and stop
searching early. To avoid falling into local optima due to
premature, the introduction of mutation mechanism is the
most classical method.

Mutation mechanism is derived from evolutionary
computation technique, and one of its principles is to bring
the mutation operator into the population by randomly
changing the position of particles in the population [33].

“
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The mutation operator can prevent the loss of population
diversity and enable the particle to escape from the local
optima, so as to make a more sufficient exploration
in the search space. Higashi and Iba [36] proposed
a mutation operator to extract a random number from
Gaussian distribution. By using this extracted random
number, particles are selected to mutate during evolution.
The positions of particles are mutated according to the
following equation:

mutate(x?) = x? (1 + gaussian(o)) (5)

where gaussian(o) is the random number extracted from a
Gaussian distribution with a standard deviation of o. The
range of o value was restricted by the author to ensure
that all dimensions have the same shape of the distribution.
Sarangi et al. [37] introduced a new Cauchy mutation into
the modified particle swarm optimization, enabling particles
to increase the probability of escape from the local optima.
Tang et al. [38] used an adaptive mutation operator to
adjust the adaptive mutation size according to the current
search space size. This mutation mechanism is to mutate the
current Gpeg, and its mutation equation is as follows:

Gi(t+1)=Gj(t)+[bj(t) —a;(®)]*rand () (6)

a;j(t) = Min(x;;(t)), b;(t) = Max(x;; (1)) @)

where G is the j'" vector of the global best particle, a ()
and b; () are the minimum and maximum values of the j! k
dimensional search space, respectively. rand() is a random
number within the range [0, 1]. r and ¢ 4 1 represents the
current and next iteration, respectively.

Nevertheless, the variants mentioned above only miti-
gated but not solved the disadvantage of the particle falling
into local optima. Meanwhile, these variants do not exhibit
well application to the complex and high dimensional prob-
lems. In this point of view, this paper adopts the mutation
mechanism proposed by Khan et al. [32]. This mutation
mechanism randomly selects a particle from good subpop-
ulation to produce a trial particle through mutation mecha-
nism, so as to jump out of local optima. It makes the particle
swarm preferably maintain the diversity of the population in
the iteration.

2.2 Self Regulating PSO

As previously mentioned, the addition of mutation mech-
anism can avoid the loss of population diversity and pre-
mature convergence. However, the principle of mutation is
to randomise the particles, which means that convergence
may slow down. Therefore, the appropriate improvement
of the particle swarm optimization is required to combine
the mutation operator. Among the four PSO variants men-
tioned in the introduction, learning strategies have strong

@ Springer

effectiveness in improving PSO [24]. The literature of
machine learning shows that the learning algorithm employ-
ing self-regulation possesses better generalization perfor-
mance than other algorithms. Therefore, according to the
best human learning principle, Tanweer et al. [30] proposed
a Self Regulating Particle Swarm Optimization (SRPSO).
Self-regulation can help decision maker to make an effi-
cient adjustment to the expected target according to their
current status, and provide favorable conditions for better
exploration and exploitation. The PSO schematic based on
human learning principle is shown in Fig. 1. By monitoring
the results obtained by PSO, the decision maker provides
self-regulation and self-perception strategy for particles
updating. Consequently, self-regulation and self-perception
strategy can provide better solutions in most of the optimiza-
tion problems, thereby can be applied to practical problems.
For example, based on SRPSO, Tanweer et al. [39] added
the directional update strategy to make the elite particles
get directional update, and added the rotational invariant
strategy to explore the rotation variance property of the
search space. In [40], a dynamic mentoring scheme was
combined with self-regulation scheme, yielding an effective
optimization algorithm for real-world applications. Dash
et al. [41] proposed a mutation-based self-regulating and
self-perception PSO for realistic object tracking problem.

Self regulating particle swarm optimization consists of
two strategies. The first strategy is self-regulating inertia
weight. In each iteration, the current best particle accelerates
its own velocity by an increased inertia weight, and this
acceleration process does not interact with other particles.
The current best particle will resume normal search strategy
when it loses the global best position. The second strategy
is the self-perception of search direction. The current best
particle only follows its own direction as the best direction,
and is unaffected by its own and others experience. The rest
of the particles use their perception of global best to find
the appropriate direction to follow. While these particles
learn from their own experience, they also learn from the
experience of others to a certain extent, so as to obtain a
better direction.

Both strategies were adopted, hence the general velocity
update equation in SRPSO is:

VA @+ 1) = oVl 1) + e (B0 = X 0)
+ carapso (G () = X{ ) ®)

where o is the inertia weight, and the current best particle
and others employ different inertia weigh strategies. p;. and
Pso respectively denote the perception for self-cognition and
social-cognition, and the they are defined as:

0, Dbest particle
Pse = { P ©)

1, other particles
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Performance Monitoring
-
and description in the algorithm iteration is shown in Fig. 3. The
) pseudo code of SRM-PSO is presented in Algorithm 1.
Do = {0, best particle (10)
S0 — .
v, other particles Algorithm 1 Pseudo code for SRM-PSO.

where y is binary depending on the threshold that defines
the confidence.

3 Methodologies

As a swarm intelligence algorithm, PSO suffers from some
weaknesses, such as poor convergence, easy to be trapped
in the local optima, and the reduction of population diver-
sity in the search process. To improve the performance of
PSO, we propose a self-regulating particle swarm opti-
mization with mutation mechanism in this paper, called
SRM-PSO.

3.1 SRM-PSO

SRM-PSO is improved by combining two parts: (1)
Mutation mechanism; (2) Self-regulating inertia weight and
self-perception strategy.

The mutation mechanism is to mutate a randomly
selected particle to produce a trial particle for substitution
in each iteration. This mechanism can make the population
avoid falling into the local optima and jump out to explore
the global optimum in the search process. Meanwhile,
the mutation mechanism can maintain the diversity of the
population during iteration.

Self-regulating inertial weight and self-perception strat-
egy are inspired by the best human learning principle. The
current best particle and other particles have different iner-
tia weight to select. The current best particle adopts the
linear increasing inertia weight, which makes it reach the
region with possible solution faster. The linear decreas-
ing inertia weight is employed in other particles to ensure
fast exploration in the early stage and accurate exploita-
tion in the later stage. The self-perception strategy allows
particles except current best particle to partially draw on
social-cognition, rather than fully believing in it. Hence,
this allows the particles to achieve better exploration and
exploitation capabilities, and to some extent avoid falling
into local optima.

The details of these two parts will be explained in the
following Sections 3.2 and 3.3, respectively. The flowchart
of SRM-PSO proposed in this paper is shown in Fig. 2. The

: Initialization

: Calculate the fitness value for each particle

: Find the Py, of each particle

. while ¢ < 1,4 do
Calculate the threshold value U of the fitness function of the

population using Eq. (11)

6: Divide the population into two subpopulations according to the
threshold U

7: Randomly select P* from the good subpopulation

8: Randomly generate Y; from the current search space using
Eq. (12)

9: Generate the trial particle X* using Eq. (13)

10: if fit(X™*) < fit(worst particle) then

O T

11: The trial particle replaces the worst particle
12: end if

13: Find the G, of whole swarm

14: for the best particle do

15: Calculate the inertia weight using Eq. (14)
16: Update the velocity using Eq. (15)

17: end for

18: for the other particles do

19: for j = 1:dimension do

20: Generate the uniform random number a
21: if (@ > 1) then

22: Select the directions from global best
23: else

24: Reject the directions

25: end if

26: end for

27: Update the velocity using Eq. (15)

28: end for

29: Update the position of each particle using Eq. (2)
30: end while

3.2 Mutation Mechanism

The first part of the algorithm improvement is the mutation
mechanism. It can preserve the diversity of the population
and avoid premature convergence. The mutation mechanism
is operated by randomly selecting a particle P* from a good
subpopulation to generate a trial particle, then the survival
of the fittest will be carried out between the trial particle and
the worst particle in the current population. This mechanism
can stimulate the particles to move in different directions
during the search process to ensure that the particles jump
out of the local optimal positions, which is more conducive
to the exploration of the global optimal position.

The mutation mechanism needs to be guided by informa-
tion applied to individual particles in the current population,

@ Springer
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Initialization, find P,,, and G,,,, of the population

Calculate U, divide into two subpopulations (good & bad)

!

Randomly select P* and generate Y,

I

X'=(1+b)P" -bY,

Mutation Mechanism

Linear decreasing inertia weight

l

]

i Self-regulating inertia weight
| Update the velocity and position

Self-perception i
i
1
1

Self-Regulating and Self-Perception

_______________________ _l_______________________

Update P,,,, and G,,,,,

- a
Y
End
U: threshold of the population fitness function

fit(): fitness function of particle
t: the current number of iterations

Fig.2 Flowchart of the SRM-PSO

hence the threshold U of a population fitness function value

is defined as follows:

SN | fitG)

= 1D
N

where fit(i) represents the fitness of particle i. N is the

number of particles in the population, and K is a constant

U=K x

@ Springer

X" trial particle
i: particles’ id from 1 to population size
t,.c: MAximum iterations

between 0 and 1. According to this threshold U, the
current population are divided into two sub-populations.
In particular, the particles whose fitness value are smaller
than this threshold constitute the good subpopulation, and
the remaining particles constitute the bad subpopulation.
A particle P* is randomly selected from the good
subpopulation for the design of the trial particle.
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Fig.3 Motion of particles in

iteration of SRM-PSO
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Trial particle y h
replace the worst particle l, ‘1
Worst Particle / \ y
oo 9
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. Lok Qe

g\M Global Optimum

AN

Local Optima

Random good particle P*
mutation mechanism

i Current best particle
\ self-regulating o
Other particles

linear decreasing

self-perception

First, randomly generate a particle Y; from the search
space:

Yj=rand(lj,u;), j=12, ....,D (12)

where [; and u ; are the lower and upper boundary of the jth
dimensional search space, respectively.

Then, the trial particle X* = [X],X3,...,X})] is
generated by Eq. (13).
X* = (1+b) P* —bY; (13)

where b is a constant in the range (0, 1).

When the trial particle is generated, its fitness value is
compared with the particle with the worst fitness value in
the current population. If the trial particle is better than
the worst particle, then the trial particle will replace the
worst particle. Otherwise, the worst particle will remain
unchanged and continue to the next iteration. The mutation
mechanism produces alternative trial particles to preserve
the diversity of the population. Furthermore, trial particles
can guide particles to search for potential solutions more
effectively.

3.3 Self-Regulation and Self-Perception

The second part of the proposed SRM-PSO is the self-
regulating inertia weight and self-perception strategy. As
mentioned in Introduction, learning algorithm with self-
regulation and self-perception has better generalization per-
formance than other algorithms. Therefore, different iner-
tial weight strategy is applied to the current best particle
and other particles respectively. The self-regulating inertia
weight strategy is defined as follow:

i + tx(?" wr) best particle
w= (e . (14)
w; ; other particles

where w; and w ¢ denote the initial and final inertia weight,
respectively. ¢ and f,,, represent the current iteration
number and the maximum iteration number. For the current
best particle, the corresponding linear increasing inertia
weight is employed for updating. In this case, the current
best particle follows the principle that it believes its own
direction and speeds up the search for the global optimum
in that direction. For other particles, they are updated
according to the linear decreasing inertia weight. From the
experiments of Harrison et al. [42], the value of inertia
weight would be more appropriate within [0.4, 0.9]. Hence,
w; and wy are set to 0.9 and 0.4, respectively, to strengthen
early exploration and late exploitation.

Moreover, the velocity update strategy of the current best
particle is different from that of other particles. Inspired
by human collaborative learning strategy, we adopt a new
learning strategy for other particles, in which particles would
use their perception of global search directions to obtain
information for social development. This new strategy is
called self-perception strategy. The velocity update formula
of general self-regulating particle swarm optimization algo-
rithm is given by Eq. (15):

VA @+ 1) = oVl 0+ eirpse (B0 = X2 0)
+ carapeo (610 = X () (15)

where ps. and p;, are self-cognition and social-cognition.

Since self-perception can have a significant impact on
the direction of particle search, for the current best particle,
it completely believes in itself, speeds up the search, and
cancels self-cognition and social-cognition. Therefore, the
self-cognition and social-cognition of current best particle
are both set as 0 in Eq. (15), and its velocity update equation
is obtained as follow:

VAt +1)=wVI (t), (best particle) (16)

@ Springer
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For other patrticles, their self-cognition and social-cognition
are both set as 1. Social-cognition can lead to better con-
vergence, but if a population uses full social-cognition, it
may be trapped in local optima in some particular iteration
and lead to premature convergence. To improve the insuffi-
ciency that may be caused by complete social-cognition, the
social-cognition py, is defined as follow:

1, ifa> A\
Pso = { 0, otherwise a7

where a is the uniformly distributed random numbers within
the range [0, 1], and X is a defined threshold value. The value
of the threshold X is an important problem. When the A is
too small, it approaches full social-cognition; And when the
A is too large, social-cognition becomes very low. At this
point, particles will almost only fly in their own direction,
but will not be attracted by the global optimum, which
may lead to failure of convergence or poor convergence
effect. In Tanweer’s study [30], experiments showed that
the A set as 0.5 is the most suitable value, allowing other
particles to speed up updates through self-cognition and
partial social-cognition. Meanwhile, the addition of self-
perception strategy reduces the probability of particles being
attracted to the local optima.

4 Experiments Results and Analysis

In this section, the setup of experimental conditions is intro-
duced first. Secondly, the parameter configurations of related
algorithms are explained. The characteristics of SRM-PSO
and experimental results are detailedly compared and ana-
lyzed later, and the application of real-world optimization
problems is also tested and reported.

4.1 Experimental Setup

To test the performance of the proposed SRM-PSO, the
CEC2017 test suite with 30 benchmark functions [34] is
employed. Compared to previous releases, the CEC2017
test suite has developed questions with new features,
such as new basic questions, composing test problems by
extracting features dimension-wise from several problems,
graded level of linkages, rotated trap problems, and so on.
Moreover, the exact equations of the test functions are not
allowed to be used. The summary of the CEC2017 test suite
is presented in Table 1.

As shown in Table 1, the CEC2017 test suite contains
four categories, including three unimodal functions (f; —
f3), seven simple multimodal functions (f1 — fi0), ten
hybrid functions ( fi1 — f20), and ten composition functions
(f21 — f30)- All test functions are minimization problems,

@ Springer

and the final result is the error between the algorithm result
and the global optimal solution. F* is the global optimum
of each function within a given bound, and there is no need
to perform search outside of the given bounds for these
problems. In the CEC2017 test suite, the search range of
each function is set as [-100,100], and the maximum number
of function evaluations (Max_FES) is 10,000 x D. The
dimension (D) is set as 30 in this study. Each algorithm is
running 51 times, and the mean errors are calculated after
the running. The experiments have been conducted on a PC
with Intel Core i7-7700 2.80 GHz CPU, 8 GB RAM and
Matlab R2018b Compiler.

4.2 Parameter Configuration

To test the performance of SRM-PSO, two categories of
algorithms are selected to compare. The first category is to
test the superiority of PSO that combine the mutation mech-
anism with self-regulation and self-perception, including
PSO, MPSO and SRPSO. The second category is five rela-
tively popular PSO variants. All the comparison algorithms
are described as follows. CPSO [43] introduces the notion
of charge, thereby modifying the rule for particle acceler-
ations. SLPSO [44] assigns four different search strategies
to different particles based on their fitness. HFPSO [28]
hybridizes the particle swarm and firefly algorithm, and
is able to exploit the strongpoints of both. PSOG [45]
is combined with first and second order gradient direc-
tions to optimize the algorithm. CHCLPSO [46] adjusts
the parameters of heterogeneous comprehensive learning
particle swarm optimizer through chaotic mapping.

All the parameters of the comparison algorithm are opti-
mized and obtained from previous original papers. The param-
eter settings of related PSO variants are presented in Table 2.

In the mutation mechanism part of SRM-PSO, there is
an Eq. (11) for defining the threshold U of the population
fitness function value.

SN | fit)
N

where K is a user defined constant within the range [0,1].
The division of the good sub-population and the bad sub-
population depends on the value of threshold U. A large
U will make the good sub-population contains too many
particles, affecting the merits and demerits of particle
P*. A small U will cause no particle to reach that P*
cannot be generated. To select an appropriate K value,
the performance of SRM-PSO under different K values
are tested and compared. The f3, fi0, f17, f23 functions
in CEC2017 test suite are employed. The test results are
presented in Table 3, including the mean, median and
standard deviation error.

U=K x (18)
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Table 1 Summary of the CEC2017 test functions

No. Functions Ff = Fi(x")
Unimodal Functions 1 Shifted and Rotated Bent Cigar Function 100
2 Shifted and Rotated Sum of Different Power Function 200
3 Shifted and Rotated Zakharov Function 300
Simple Multimodal Functions 4 Shifted and Rotated Rosenbrocks Function 400
5 Shifted and Rotated Rastrigins Function 500
6 Shifted and Rotated Expanded Scaffers F6 Function 600
7 Shifted and Rotated Lunacek Bi_Rastrigin Function 700
8 Shifted and Rotated Non-Continuous Rastrigins Function 800
9 Shifted and Rotated Levy Function 900
10 Shifted and Rotated Schwefels Function 1000
Hybrid Functions 11 Hybrid Function 1 (N=3) 1100
12 Hybrid Function 2 (N=3) 1200
13 Hybrid Function 3 (N=3) 1300
14 Hybrid Function 4 (N=4) 1400
15 Hybrid Function 5 (N=4) 1500
16 Hybrid Function 6 (N=4) 1600
17 Hybrid Function 6 (N=5) 1700
18 Hybrid Function 6 (N=5) 1800
19 Hybrid Function 6 (N=5) 1900
20 Hybrid Function 6 (N=6) 2000
Composition Functions 21 Composition Function 1 (N=3) 2100
22 Composition Function 2 (N=3) 2200
23 Composition Function 3 (N=4) 2300
24 Composition Function 4 (N=4) 2400
25 Composition Function 5 (N=5) 2500
26 Composition Function 6 (N=5) 2600
27 Composition Function 7 (N=6) 2700
28 Composition Function 8 (N=6) 2800
29 Composition Function 9 (N=3) 2900
30 Composition Function 10 (N=3) 3000

Search Range: [-100, 100]°

The test algorithms in Table 3 contain standard PSO
and SRM-PSO with different K values. The best results
obtained for each function are highlighted in bold. Com-
pared with standard PSO, SRM-PSO effectively enhances
the convergence accuracy of PSO, whereas K=0.8 has pro-
vided best mean errors in four of the selected functions as
compared to its other values. Based on these test results,
the parameter K value is set at 0.8. To more intuitively

reflect the convergence characteristics of SRM-PSO, the
iteration diagram of standard PSO and SRM-PSO on func-
tion f1p is made. The iteration diagram is presented in
Fig. 4. The horizontal axis is the number of iterations, and
the vertical axis is the logarithm of the average error. It can
be observed from the figure that SRM-PSO is closer to the
global optimum and converges faster. Meanwhile, similar
phenomena can be observed in most other functions.

Table 2 Parameter settings of

related PSO variants Algorithm

Parameter settings

MPSO
SRPSO
SRM-PSO

Ps =50, w =rand/Ps,c; = 1 +rand, ¢ = e —rand, b = 0.5
Ps =50, wpes; = 1.05 — 1.6, wprpers = 1.05 — 0.5, ¢c; = ¢ = 1.49445, 1 = 0.5
Ps =50, wpesr = 0.9 — 1.4, worhers =09 —0.4,¢c; =cp =1.49445, . = 0.5, =0.5
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Table 3 Parameter analysis on selected 30-D CEC2017 Benchmark
Functions

Function Algorithm Mean STD.
Standard PSO 2164E404  7.059E+03
; SRM-PSO (K=0.6)  1.136E+00  3.404E+00
’ SRM-PSO (K=0.8)  5.089E-01 9.858E-01
SRM-PSO (K=1.0)  5.144E-01 1.108E+00
Standard PSO 6.920E+03  3.719E+02
; SRM-PSO (K=0.6)  2.552E403  6.361E+02
10 SRM-PSO (K=0.8)  2.337E+03  4.457E+02
SRM-PSO (K=1.0)  2.408E+03  4.892E+02
Standard PSO 6.122E+02  1.247E+02
; SRM-PSO (K=0.6)  1.ISOE+02  7.285E+01
7 SRM-PSO (K=0.8)  1.096E+02  5.873E+01
SRM-PSO (K=1.0)  1397E+02  8.463E+01
Standard PSO 6.143E+02  3.990E+01
; SRM-PSO (K=0.6)  3.920E+02  1.029E+01
3 SRM-PSO (K=0.8)  3.800E+02  9.927E+00
SRM-PSO (K=1.0)  3.983E+02  1.806E+01

4.3 Comparison Test
4.3.1 Diversity Analysis

In proposed SRM-PSO, a mutation mechanism is employed
to maintain population diversity. Therefore, the “diversity-
iterations” performance are shown in Fig. 5 for illustration.
The diversity of the population is evaluated by the mean
Euclidian distance between each particle and the mean
position of the particles [26] according to Eq. (19) in

9.2 T
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97 —O6— SRM-PSO ]

Mean log(error)
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~
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Fig.4 Convergence of SRM-PSO vs standard PSO
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this study. Figure 5(a) indicates that, in unimodal function
f3, the diversity of SRPSO decreases the fastest. With
the mutation operator and dynamic parameters, MPSO
can preserves more diversity than SRPSO. By combining
the mutation mechanism with self-regulating and self-
perception strategy, the resultant SRM-PSO can maintain
much more diversity than the MPSO and SRPSO in the
iteration process. In hybrid multimodal function fj9, the
diversity of SRPSO is lower than that of MPSO and SRM-
PSO in the middle and late stages of the iteration, and
continues to decrease. Although MPSO keeps a lower
diversity than SRPSO at the beginning, it has maintained
a higher diversity than SRPSO afterwards. Because SRM-
PSO inherits the mutation mechanism employed in MPSO
to generate particles, the occasional diversity increase of
SRM-PSO during the optimization process can be seen in
Fig. 5(b).

; . L ow [1op v \?
dwerstty:MZi:l szzl(xi,j_xi,j) (19)

4.3.2 Comparison Test with Related PSO Variants

The SRM-PSO combines the mutation mechanism and the
self-regulating and self-perception strategy. Therefore, com-
parison among SRM-PSO, MPSO and SRPSO is necessary.
In this section, SRM-PSO, MPSO and SRPSO are tested
and compared on the CEC2017 test suite. The mean errors
and standard deviations are presented in Table 4. The sym-
bols “>" and “<” indicate that SRM-PSO “performs better
than” and “performs worse than” the comparative algo-
rithm, respectively. The row of “w/[” represents for the
total number of SRM-PSO “wins over/loses to” the cur-
rent comparison algorithm in the mean error result. The row
of “Best” denotes the total number of the corresponding
algorithm with the best mean error in the 30 function tests.

The results in Table 4 indicate that in the unimodal
functions (f1 — f3) test, SRM-PSO achieves the first place
in f1 and f>, while SRPSO gets first in f3. Compared
with MPSO, SRM-PSO performs better in f; and f>,
but worse in f3. Compared with SRPSO, SRM-PSO also
performs better in f] and f> and worse in f3. Consequently,
SRM-PSO is superior to MPSO and SRPSO in unimodal
functions.

In the simple multimodal functions (fs — fio) test,
SRPSO performs better than MPSO and SRM-PSO in f;.
SRM-PSO performs better than MPSO and SRPSO to a
large extent on the six functions of f5 — fio.

In the hybrid functions (fi1 — f20) test, SRM-PSO
outperforms MPSO and SRPSO in seven function tests, and
MPSO performs better than SRPSO and SRM-PSO in the
other three functions.
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Fig.5 Diversity curve of the population

In the composition functions (f21 — f30) test, MPSO,
SRPSO and SRM-PSO obtain first place in one function,
one function and eight functions, respectively.

In all thirty functions, MPSO, SRPSO and SRM-PSO
show the preferable performance in four functions, three
functions and twenty-three functions, respectively. Com-
pared with MPSO, SRM-PSO performs greatly better in
twenty-five functions and worse in five functions. Com-
pared with SRPSO, SRM-PSO performs greatly better in
twenty-seven functions and worse in three functions. Mean-
while, according to the results of Table 5, SRM-PSO ranks
first and obtains the best rating, while SRPSO and MPSO
are ranked in descending order. It can be seen from the
above test results that PSO combined with mutation mech-
anism, self-regulating and self-perception strategy (SRM-
PSO) is greatly superior to MPSO and SRPSO.

To intuitively reflect the effectiveness of the SRM-PSO
algorithm, the convergence of related PSO variants in the
three test functions are shown in Fig. 6. As shown in Fig. 6,
MPSO maintains a steady but slow convergence due to
mutation mechanism. SRPSO has a faster convergence than
MPSO on account of its strategy. From the convergence
curve, the mutation mechanism, self-regulation and self-
perception strategy are effectively combined. The self-regu-
lation and self-perception strategy improves the exploration
and exploitation capabilities, and compensates the diminish-
ing rate of convergence due to the mutation, then improve
the performance of particle swarm optimization.

Further, related PSO variants are tested and compared in
50-dimensional (50-D) and 100-dimensional (100-D) prob-
lems. The test comparison results are shown in Table 6.
In 50-D problem test, MPSO and SRPSO perform well
respectively in four functions, whereas SRM-PSO displays

—*—MPSO
80% —&—SRPSO
—©— SRM-PSO

Diversity

(b) fi9 Function evaluation

preferable in twenty-two functions. In 100-D problem test,
MPSO and SRPSO perform well in three functions and six
functions respectively, whereas SRM-PSO displays favor-
able in twenty-one functions. It can be seen from the results
that SRM-PSO is greatly better than MPSO and SRPSO.
It also further verifies the effectiveness and superiority of
the proposed SRM-PSO that combining the mutation mech-
anism with self-regulating and self-perception strategy. Mean-
while, the comparative results in different dimensions also
shows the scalability of the SRM-PSO.

4.3.3 Comparison Test with PSO Variants

This section compares five different PSO variants to verify
properties of the proposed SRM-PSO. All algorithms are
tested by the CEC2017 test suite, and the results are pre-
sented in Table 7.

The Table 7 indicates that for the three unimodal func-
tions ( f1 — f3), CHCLPSO and PSOG yield the preferable
performance in fj and f> respectively, whereas SRM-PSO
obtains the favorable performance in f3. Compared with
CHCLPSO, SRM-PSO is superior in two functions and
inferior in one. Therefore, SRM-PSO is superior to other
comparative variants except PSOG.

For seven simple multimodal functions ( f4 — fi0), SRM-
PSO, CHCLPSO and HFPSO achieve first place in four func-
tions, two functions and one functions, respectively. Com-
pared with CPSO, HFPSO and PSOG, SRM-PSO exhibits
the favorable performance. For SLPSO, the performance
of SRM-PSO has a greater advantage. The performance of
CHCLPSO is slightly worse than the proposed SRM-PSO.

In the ten hybrid functions (f11 — f20) test, SRM-PSO,
CHCLPSO and HFPSO obtain the favorable performance

@ Springer
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Table 4 Comparison test results of related PSO variants in 30-D CEC2017 functions

Function MPSO SRPSO SRM-PSO

Mean STD. Mean STD. Mean STD.
fi 4.708E+03(>) 5.616E+03 1.407E+04(>) 4.461E+03 3.242E+03 3.750E+03
b 1.109E+24(>) 3.776E+21 2.046E+14(>) 3.939E+22 1.780E+09 7.551E+08
f3 4.747E-02(<) 6.114E-02 4.958E-05(<) 2.544E-03 5.089E-01 9.858E-01
fa 9.482E+01(>) 3.269E+01 5.400E+01(<) 3.159E+01 8.422E+01 1.082E+01
fs 1.612E+02(>) 3.893E+01 1.291E+02(>) 2.836E+01 4.019E+01 1.093E+01
fe 2.161E+01(>) 9.361E+00 2.391E+01(>) 8.024E+00 2.222E-04 2.532E-03
fr 1.894E+02(>) 4.065E+01 1.319E+02(>) 2.380E+01 7.980E+01 1.229E+01
f3 1.331E+02(>) 3.035E+01 9.826E+01(>) 1.984E+01 4.061E+01 1.032E+01
fo 2.274E+03(>) 1.140E+03 1.408E+03(>) 7.092E+02 2.887E+00 2.681E+00
fio 4.209E+03(>) 6.575E+02 2.986E+03(>) 6.277E+02 2.337E+03 4.457E+02
fi1 1.370E+02(>) 3.936E+01 1.021E+02(>) 2.972E+01 4.116E+01 2.985E+01
f12 3.411E+05(>) 1.517E+05 1.380E+05(>) 6.865E+04 4.726E+04 3.358E+04
f13 1.447E+04(>) 1.533E+04 1.937E+05(>) 1.573E+04 1.215E+04 2.064E+04
f1a 9.092E+03(<) 9.049E+03 2.021E+04(>) 8.395E+03 9.698E+03 8.746E+03
fis 1.689E+04(>) 8.165E+03 1.603E+04(>) 8.075E+03 7.621E+03 9.151E+03
fie 1.127E+03(>) 3.384E+02 8.917E+02(>) 2.312E+02 4.027E+02 2.091E+02
fi7 5.595E+02(>) 2.346E+02 3.405E+02(>) 1.682E+02 1.096E+02 5.873E+01
fi8 8.690E+04(<) 8.898E+04 3.382E+05(>) 8.843E+04 1.903E+05 1.435E+05
f19 6.844E+03(<) 6.029E+03 1.152E+04(>) 5.732E+03 1.068E+04 1.329E+04
0 5.251E+02(>) 1.871E+02 3.379E+02(>) 1.019E+02 1.293E+02 7.950E+01
i 3.300E+02(>) 3.659E+01 3.189E+02(>) 2.821E+01 2.424E+02 1.445E+01
2 9.082E+02(>) 1.389E+03 2A457TE+03(>) 1.627E+03 1.850E+02 4.226E+02
3 5.939E+02(>) 1.004E+02 5.880E+02(>) 7.172E+01 3.890E+02 9.927E+00
fra 6.218E+02(>) 8.807E+01 6.688E+02(>) 6.403E+01 4.616E+02 1.081E+01
P 3.925E+02(>) 1.876E+01 3.933E+02(>) 1.532E+01 3.873E+02 3.233E-01
fre 1.773E+03(>) 1.758E+03 2.123E+03(>) 1.567E+03 1.194E+03 5.123E+02
7 5.950E+02(>) 3.872E+01 5.813E+02(>) 5.432E+01 5.011E+02 9.469E+00
fr8 3.566E+02(<) 5.192E+01 4.969E+02(>) 5.737E+01 3.824E+02 5.587E+01
fr9 8.214E+02(>) 2.246E+02 8.164E+02(>) 2.029E+02 4.974E+02 7.252E+01
f30 6.631E+03(>) 2.873E+03 5.586E+03(<) 3.163E+03 6.408E+03 3.587E+03
w/l 25/5 27/3
Best 4 3 23

in four functions, three functions and two functions, respec-
tively. PSOG only gets the first place in fj;. Generally
speaking, the proposed SRM-PSO performs better than
CPSO, SLPSO, PSOG and CHCLPSO, equally well with
HFPSO.

For the composition functions (f21 — f30), SRM-PSO
exhibits the preferable performance in four functions.

Table 5 Ranks of related PSO variants in 30-D CEC2017 functions

Algorithm MPSO SRPSO SRM-PSO
Avg. rank 2.473 2.200 1.327
Final rank 3 2 1

@ Springer

The CHCLPSO achieves the preferable performance in
five functions. SLPSO only ranks first in one function.
Consequently, the proposed SRM-PSO performs slightly
worse than CHCLPSO, but greatly better than the remaining
four variants in the composition functions test.

In all thirty functions, CHCLPSO, SLPSO, HFPSO and
PSOG exhibit the favorable performance in eleven func-
tions, one function, three functions and two functions,
respectively. Moreover, SRM-PSO obtain first place in
remaining thirteen functions. The results of Table 8 shows
that CHCLPSO has certain competitiveness. However, the
SRM-PSO finally ranks the best, in first place. In conclusion,
the performance of SRM-PSO is better than the involved
five PSO variants. Therefore, the introducing mutation
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Fig.6 The convergence curves of related PSO variants

mechanism can effectively maintain the diversity of the popu-
lation, and it can search more effectively with the combina-
tion of self-regulation and self-perception strategy.

4.3.4 Rate of Convergence

To show the convergence process more visually, the con-
vergence curves of the top three algorithms (SRM-PSO,
CHCLPSO, and SLPSO) in 30-D CEC2017 functions are
shown in Fig. 7. The six representative functions are
selected, namely, unimodal function f3, simple multimodal
function f7, two hybrid function fi¢, f>0 and two composi-
tion functions f>3, f27, respectively.

In unimodal function f3, it can be seen from Fig. 7(a)
that CHCLPSO and SLPSO converge faster in the early
stage, but is surpassed by SRM-PSO in the later stage. Due
to the existence of mutation mechanism and self-perception
strategy, SRM-PSO converges slowly in the early stage.
From the middle stage, the self-regulating inertia weight
increases the convergence speed of SRM-PSO, surpassing
the other comparison algorithms, and finally achieves the
lowest mean error.

For simple multimodal function f7, Fig. 7(b) shows that,
SRM-PSO and CHCLPSO maintain a steady convergence
rate in the early stage. SLPSO converges quickly in the
beginning due to its special search strategies, and then falls
into the local optima. SRM-PSO accelerates the conver-
gence rate in the middle stage and finally obtains better
results than other algorithms.

For hybrid function, it can be seen from Fig. 7(c) that
three algorithms maintain a similar trend in the early conver-
gence process of fi¢. From the middle stage, the proposed
SRM-PSO performs a faster convergence rate and obtained
better results than CHCLPSO and SLPSO. Figure 7(d) indi-
cates that, for f9, SRM-PSO shows a steady and more
faster convergence rate than the other two algorithms.

For composition functions f3, Fig. 7(e) shows that the
convergence rates of CHCLPSO and SRM-PSO are similar

Function evaluation x10°

(b) Convergence curves of f7

Function evaluation x10°

(¢) Convergence curves of f14

before the middle iteration. After the midterm, CHCLPSO
converges slowly and the final result is slightly worse than
SRM-PSO. SLPSO converges quickly and then stopped early.
In f>7, the convergence trends of SRM-PSO, CHCLPSO
and SLPSO are almost the same, and finally SRM-PSO
yields the lowest mean error.

In general, the convergence rate of SRM-PSO in various
functions is slow but steady in the early stage, which indi-
cates the proposed SRM-PSO can search for more potential
solutions. The convergence speed of SRM-PSO will be
gradually accelerated with the search progress, and the
SRM-PSO could result in a high accuracy result. Mean-
while, SRM-PSO can be applied to various functions and
shows high accuracy performances.

4.3.5 Sensitivity Analysis

As mentioned in Section 2.1, several classical mutation
mechanisms are introduced, including Gaussian mutation
(GMPSO, [36]), Cauchy mutation (CMPSO, [37]), and
adaptive mutation (AMPSO, [38]). Therefore, several PSOs
with the aforementioned mutation mechanisms are tested
and compared by CEC2017 test suite in this section. The
results are given in Table 9. In all thirty functions, CMPSO,
AMPSO and SRM-PSO exhibit the favorable performance
in one, four and twenty-five functions, respectively. This
result also indicates that the SRM-PSO is greatly better than
GMPSO, CMPSO and AMPSO.

We further conducted a sensitivity analysis experiment
on the number of mutations in the particles of proposed
SRM-PSO. The six representative functions are selected
for test, namely, unimodal function f3, simple multimodal
function f7, two hybrid function fig, f20 and two
composition functions f21, f2¢ in the 30-D CEC2017
functions. The experimental comparison results of different
numbers of mutant particles are shown in Table 10.

The test results in Table 10 show that the mean error
increases with the increase of the number of mutated

@ Springer
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Table 8 Ranks of six PSO

variants in 30-D CEC2017 Algorithm CPSO SLPSO HFPSO PSOG CHCLPSO SRM-PSO
functions
Avg. rank 5.037 3.337 4273 4.117 2.348 1.889
Final rank 6 3 5 4 2 1

particles. The lowest mean error occurs when there is
only one particle mutation. Meanwhile, similar phenomena
can be observed in other functions. Hence, SRM-PSO can
achieve satisfactory results by mutating only one particle.

4.4 Real-World Optimization Problems

In this section, the feasibility of the proposed SRM-PSO
algorithm in real-world optimization problems is investi-

4.4.1 Parameter Estimation for Frequency-Modulated (Fm)
Sound Waves

In this problem [47], the aim is to determine the optimal
parameters of six decision variables namely ai, b1, az, b,
az, bz for FM synthesizer. This problem is a highly complex
multimodal in nature. Mathematical model of this problem
is provided as:

100
gated. Four common engineering problem are employed for  pginimize f( )}) — Z O @) = yo ())? (20)
testing, namely (F)) parameter estimation for Frequency- =0
Modulated (FM) sound waves, (F,) Lennard-Jones Poten- >
. where X = {ai, by, a2, by, a3, b3}, the parameters are
tial Problem and (F3) spread spectrum radar polly phase defined in the range [-6.4. 6.35]. The y(r) and yo(7) is:
code design. Meanwhile, simple and effective PSO variants et £¢ 104 0.1 Y YU 18-
are employed for comparison. Finally, the performance and y(t) = aysin (b1t0 + assin (byt6 + azsin (b310))) 21
competitiveness of SRM-PSO in the comparison algorithm
are analyzed. yo(t) = sin (5¢t0 — 1.5sin (4.816 + 2sin (4.9t6))) 22)
T T 10 T
1) “encrsol| s o eictrsol | o eictrsol |
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Table 9 Comparison test

results of different mutation Function GMPSO CMPSO AMPSO SRM-PSO
mechanisms in 30-D CEC2017
functions Number of Best Mean Error

fi—fa 0 0 1 2

fa— fio 0 0 0 7

S = fa0 0 1 3 6

f21 = f30 0 0 0 10

w/l 30/0 29/1 25/5

Best 0 1 4 25

where the value of 6 is constant and equal to 27/100. The
obtained numerical results are listed in Table 10. The results
are achieved by conducting 30 runs and utilizing 60,000
function evaluations.

4.4.2 Lennard-Jones Potential Problem

This is a potential energy minimization problem that
involves the minimization of molecular potential energy
associated with pure Lennard-Jones (LJ) cluster [47]. More-
over, it is a multi-modal optimization problem comprised of
an exponential number of local minima. The mathematical
model of the Leonard-Jones pair potential for N atoms is:

pi=x. .5} i=1, ..., N (23)

N-1 N
AOED DD Cretlon) 24)
i=1 j=i+1

1
where r;j=[|p; — p;| with gradient:

N
Vi =-12 3 (5 =) (B -p) @9
i=1i#j
Lennard-Jones potential has minimum value at a particular
distance between the two points. In this test, L-J potential

is a ten atom problem, i.e., 30 dimension. The maximum
function evaluation is set as 150,000.

4.4.3 Spread Spectrum Radar Polly Phase Code Design

Pulse compression is the most widely used technology in
radar system. Polyphase codes are competitive for the lower
side-lobes in signal compression and easier implementation
of digital processing techniques. The polyphase code design
problem can be modeled as a continuous minimum and
maximum nonlinear non-convex optimization problem [35].
It is a continuous minimum maximum global optimization
problem with a large number of local optimal solutions. Its
mathematical model is defined as:

Global min f(x) = max{®(X), ..., Pon(X)} (26)

where X = {(x, x2, ..
2D — l,and ®(X) is:

.,Xp) € Rpl0 < x; < 2x},m =

D J
Dy (X) = D cos ( » xk> 27
j=1 k=[2i—j—1|+1
D J
Dy (X) =05+ > cos > x (28)
Jj=i+1 k=|2i—j|+1
q)m+i (X)Z_CDZ (X),lzl, 27 cee, M (29)

where x; represents symmetric phase differences. The
ultimate purpose of this problem is to minimize the biggest
sample autocorrelation function ® among the modules. To
determine the solution, 30 trials are performed with 200,000
function evaluations.

Table 10 The mutation particle number analysis on selected 30-D CEC2017 function

The mutation particle number (1)

Function

n=1 n=2 n=5 n=10

Mean STD. Mean STD. Mean STD. Mean STD.
f3 5.089E-01 9.858E-01 7.038E-01 1.178E+00 9.641E-01 1.956E+00 1.240E+00 3.094E+00
fr 7.980E+01 1.229E+01 8.233E+01 1.342E+01 8.153E+01 1.441E+01 8.163E+01 1.346E+01
fie 4.027E+02 2.091E+02 4.700E+02 2.159E+02 4.875E+02 2.544E+02 4.809E+02 2.172E+02
0 1.293E+02 7.950E+01 1.331E+02 8.032E+01 1.394E+02 7.152E+01 1.435E+02 7.496E+01
i 2.424E+02 1.445E+01 2.456E+02 1.449E+01 2.458E+02 1.517E+01 2.455E+02 1.506E+01
fre 1.194E+03 5.123E+02 1.248E+03 5.581E+02 1.260E+03 5.508E+02 1.274E+03 5.632E+02

@ Springer
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Table 11 Comparison results on four real-world optimization problems

Algorithm SRM-PSO MPSO[32] SRPSO[30] FIPS[22] CLPSO[24] SLPSO[44] CPSO[43]
Mean 8.789E+00 2.041E+01 1.093E+01 3.118E+01 2.269E+01 1.640E+01 1.655E+01
Fy STD. 5.784E+00 4.697E+00 6.520E+00 2.330E+00 2.341E+00 5.200E+00 4.829E+00
Median 1.111E+01 2.185E+01 1.144E+01 3.074E+01 2.354E+01 1.874E+01 1.606E+01
Mean -2.266E+01 -1.982E+01 -1.389E+01 -2.282E+00 -4.661E+00 -1.960E+01 -4.937E+00
F STD. 1.134E+00 4.297E+00 2.979E+00 9.743E-01 7.173E-01 8.450E-01 9.976E-01
Median -2.313E+01 -2.206E+01 -1.306E+01 -2.033E+00 -4.676E+00 -1.830E+01 -4.765E+00
Mean 8.494E-01 1.580E+00 1.128E+00 2.901E+00 2.095E+00 8.359E-01 1.938E+00
F3 STD. 1.735E-01 6.529E-01 5.195E-01 3.566E-01 1.722E-01 1.407E-01 8.048E-01
Median 8.445E-01 1.392E+00 8.607E-01 2.949E+00 2.102E+00 8.410E-01 1.515E+00
Mean 5.772E-08 1.747E-06 4.239E-07 8.145E-07 6.290E-06 5.119E-08 6.699E-05
Fy STD. 2.614E-07 8.171E-06 2.214E-06 3.206E-06 1.691E-05 2.642E-07 3.653E-04
Median 4.863E-14 2.767E-08 1.243E-12 5.876E-09 2.514E-07 2.186E-11 2.183E-10

4.4.4 Inverse Kinematics Calculation of 7-DOF Manipulator

The inverse kinematics of the manipulator is to obtain the
required joint angles through a mathematical model when
the Cartesian space position of the target is known. The 7-
DOF manipulator improves the flexibility of the robot and
increases the difficulty of inverse kinematics calculations.
The kinematic model of the manipulator is expressed by the
D-H matrix [48]:

Tepa =0T AT 3T ST ST ST IT=]T (30)
nxoxaxpx
7 _ |ty Oy Ay Py
T = 3D
0 n; o; a; p;
00 0 1

The transformation matrix (7)T contains variables such
as joint angles (61, 62, 63, 64, 05, 86, 67), hence the fitness

Table 12 Literature summary of PSO variants for robotics problems

value calculated by inverse kinematics is to minimize the
following function:

fitness =/ — po) + (Py — py)? + Pz — p2)?* (32)

where (px, Py, D7) is the desired target position. The maxi-
mum function evaluation is set as 40,000.

4.4.5 Test Results of the Four Real-World Problems

The test results over 30 independent runs are presented in
Table 11, which contains the values of mean fitness (Mean),
standard deviation (STD.) and median fitness (Median).
For the FM parameter estimation, the proposed SRM-
PSO achieves the first place in the mean value and
median value. FIPS achieves lowest standard deviation and
exhibits robust performance, but its search accuracy is worse
than SRM-PSO. In the Lennard-Jones potential problem,

Reference  Algorithm Test problem Result
[49] Inertia Weight PSO 7-DOF serial robot manipulator inverse Global-local best inertia weight PSO can
kinematics problem be efficiently used for inverse kinematics
solution
[50] A novel multi-swarm hybrid FOA-PSO  Target searching in unknown environments  The proposed approach performs well
in multi-target searching multi-swarm
robots and large environments
[51] A quantum behaved particle swarm 7-DOF serial robot manipulator inverse QPSO can obtains satisfactory inverse
algorithm kinematics problem solution quality with short computation
time, fewer iterations, and the number
of particles
[52] An improved PSO algorithm Path planning of mobile robot An improved PSO algorithm effectively
combining the continuous high-degree
Bezier curve for smooth path planning
[48] A random descending velocity inertia 7-DOF serial robot manipulator inverse The result obtained is improved thousands

weight PSO

kinematics problem

of times with very small movements
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SRM-PSO yields the most favorable performance among
the comparison algorithms in terms of mean and median
value. CLPSO has the minimum standard deviation and
shows robustness. For the spread spectrum radar polly phase
problem, SLPSO achieves the favorable performance in
three numerical values. SRM-PSO exhibits its competitive
searching accuracy in solving this problem and successfully
achieves the second place. SRM-PSO is only slightly
inferior to SLPSO, and outperforms other comparison
variants. In the inverse kinematics calculation, SLPSO is
slightly better than SRM-PSO in mean fitness, while SRM-
PSO shows preferable results in the other two numerical
values. Although the results of SRM-PSO in four practical
problems are not all best, it can achieve high accuracy
and satisfactory robustness. Therefore, it can be concluded
that the application of SRM-PSO in practical optimization
problems is feasible and efficient.

Due to the complexity of robotics problems, classical
methods are usually complicated or unsolvable, while
the improved particle swarm optimization algorithms can
produce effective results in a short time. The development
of these intelligent optimization algorithms has provided
great help to the solution of problems in the field of robotics
(Table 12).

5 Discussion and Conclusions

In this paper, a new PSO variant, SRM-PSO, is proposed
by combining the mutation mechanism, self-regulating iner-
tia weight and self-perception strategy. The strategies are
to improve the inaccuracy performance caused by the pre-
mature convergence of PSO in real-world problems, such
as, estimating for the uncertainties of the robotic control
system. The mutation mechanism can maintain the diver-
sity of the population during the search, and overcome
the local optima. The self-regulating inertia weight and
self-perception strategies can enhance the exploration and
exploitation capabilities of the population. To test the effec-
tiveness and superiority of the SRM-PSO, the CEC2017
test suite with 30 benchmark functions are adopted. In par-
ticular, two levels of comparisons are conducted orderly,
including related PSO variants comparison, and the lat-
est PSO variants comparison. Compared with related PSO
variants, the tested results show the effectiveness of the
combination of mutation mechanism, self-regulating inertia
weight and self-perception strategies. Compared with five
popular PSO variants, the test results also show that the
SRM-PSO is better. From the convergence curves of the six
representative functions, although the convergence rate of
SRM-PSO is relatively slow in the early stage, it can main-
tain a steady convergence rate and achieve a favorable result
in the end. At last, this paper adopts SRM-PSO to test actual

problems in the real world and compares with six variants.
The comparison results verify the feasibility and superiority
of SRM-PSO in practical optimization problems.

For future studies, more intelligent mutation operators,
self-regulation and self-perception deserve further research.
Various parameter collocations can adaptively adjust each
part of the proposed algorithm to improve the performances
(such as efficiency, accuracy, and etc.) in challenging image
recognition and robotic control system.
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