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Abstract
Human-robot collaboration (HRC) based on speed and separation monitoring should consider the difference of risk factors in the
scene; otherwise, the sudden invasion of non-operators or routine operation of the operator may stop the robot system. In this
paper, we propose a sensing network based on the fusion ofmulti-information to obtain scene semantic information and employ it
to realize risk assessment. However, due to the influence of light on the image information sensed by RGB cameras, it is not easy
to obtain accurate scene semantic information. We apply a depth camera and a thermal imager to obtain depth and infrared
information to enhance the RGB images. We build a risk information database and use it to quantify the obtained scene semantic
information into risk factors. The dynamic change of risk factors judges whether the distance between humans and robots is safe.
The experimental results verify that the algorithm of intelligent human-robot monitoring can realize the analysis of dangerous
situations and control the robot system, thereby reducing the number of false shutdowns and improving safety.

Keywords Human-robot collaboration (HRC) . Speed and separation monitoring (SSM) . Neural network . Semantics .
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1 Introduction

With the growth of the demand for customized products,
human-robot collaboration (HRC) has become an essential
mode of production and has been widely studied [1].
Meanwhile, due to the close interaction between humans
and robots in HRCs, safety has become a problem that must
be taken into account in the process. Because traditional secu-
rity measures lack flexibility and adaptability, they cannot
solve the problem in the clustered workspace. Vision-based
security measures have the advantages of strong adaptability
and high intelligence, and have become a hotspot in the field

of robot security in recent years [2].After international coop-
erative robot-related specifications are released, much re-
search is concentrated in the field of collaborative robot
safety protection. The standard of human-robot collabora-
tion is defined in ISO/TS 15066 [3]. Collaborative opera-
tions may include one or more of the following methods:
safety-rated monitored stop, hand guiding, speed and sep-
aration monitoring, and power and force limiting. Among
them, the speed and separation monitoring (SSM) method
is flexible and less restrictive, and commits to the require-
ments of human-robot interaction, so it has been widely
considered.
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As early as 2013,Marvel [4] proposedmetrics that evaluate
speed and separation monitoring efficacy in industrial robot
environments in terms of the quantification of safety and the
effects on productivity. SSM is that the maximum safe speed
is relevant to the distance between the human and robot. At
any time under the current speed, the robot system should stop
the robot before it collides with a human. Then Andrea Maria
[5] expanded on this basis and introduced the hierarchical
adjustment of speed. To realize the continuous adjustment of
robot speed, Shin [6] proposed a method to keep the robot
running at a safe and maximum speed, which can guarantee
safety and improve efficiency to the greatest extent. Byner [7]
proposed the method of dynamic calculation of the safe dis-
tance between humans and robots. In addition further opti-
mized the algorithm of SSM. In addition to adjusting the
speed, some people [8, 9] have proposed avoiding danger by
changing the trajectory. For example, Chen [10] used a series
of virtual constraint balls as the expression of safe distance
and used the obstacle avoidance algorithm based on the arti-
ficial potential field method to make the robot avoid operation
and prevent dangerous collisions between humans and robots.
Some approaches for collaborative robot path planning are
designed to achieve adaptive obstacle avoidance in dynamic
manufacturing [11]. However, this kind of method has supe-
rior spatial uncertainty and is rarely applied in practice.

With the development of sensor technology, people realize
that perception is a significant factor that limits the algorithm’s
performance. Therefore, researchers attempt to integrate more
information into robot safety monitoring. Marvel [12] pro-
posed a task-based off-line security risk assessment platform
for cooperative robot systems. The risk assessment factors
include end tools, personnel identity, task type, and duration.
Lucci [13] put forward a new idea that combines force infor-
mation and speed with distance monitoring and proposed a
human-robot safety monitoring mode that combines speed
with distance monitoring and force control. Kim [14] intro-
duced the radar sensor into the safety monitoring of the robot.
Kumar [15] used multiple TOF sensors to improve the perfor-
mance of speed and separation monitoring. Mazhar [16] uses
the knectv2 camera to obtain three-dimensional information
and uses gesture recognition to improve the safety and inter-
activity of the compliant robot. Aliev [17] evaluated the safety
risk factors for robot systems offline and used the machine
learning method to judge the possible danger.

In the above method, a variety of sensors are in place to
obtain the human-robot distance as accurately as possible.
However, in the process of collaboration, not only the distance
between human and robot but also the semantic information in
the scene such as task type, dangerous type, and end tool will
affect the safety. The danger degree of robots in high-speed
cutting tasks is obviously higher than that in a low-speed
grasping task. At the same time, robot operators and non-op-
erators, due to the different cognitions of robot working paths

and operation modes, they should have different degrees of
danger. If it is not distinguished, it is easy to cause accidental
shutdown due to excessive deceleration during normal opera-
tion by operators or collisions when non-operators invade.
The above method does not analyze the semantic information
of the dangerous target in detail or can only carry out offline
task-based hazard analysis, which cannot be adjusted in real-
time. Therefore, we proposed a dynamic speed and separation
monitoring algorithm based on semantic information of the
scene, which could obtain information such as the number
and types of hazardous targets in the scene, and dynamically
adjust the safe distance between humans and robots. The over-
all flow of the method is shown in Fig. 1.

Neural networks have long been used in industry for fault
prognosis [18] . In recent years, it has been used for detection.
Y Sun [19] used multimodal information and neural networks
to detect dangerous targets in automatic driving scenes, which
reduced the impact of light on detection. Some people use
lidar to obtain point cloud information [20], segment the point
cloud information and obtain spatial semantic information.
However, due to the large scale of point cloud data in large
scenes, the extraction efficiency is relatively low, and the
working environment of the robot is often complex, other
objects will affect the detection of risk targets in the area close
to the space position of the robot, there is a lot of noise in the
point cloud information obtained by lidar. It is difficult to
eliminate the interference and obtain accurate semantic infor-
mation only using the depth information obtained by lidar or
depth camera. Therefore, we also add temperature infor-
mation. The heating of robot body and human body can
be highlighted in the temperature image to enhance the
risk target. We use various sensors to obtain the RGB,
depth, and temperature images of the whole scene and
propose a neural network for data fusion and semantic
information extraction. We transformed the obtained risk
information into dynamic risk factors through the risk
information database, regulating the safe distance dynam-
ically. The algorithm proposed in this paper can make the
robot dynamically perceive the danger degree of the scene
according to the semantic information of the scene, and
adopt appropriate collision avoidance strategies for differ-
ent dangerous scenes, to reduce the probability of the
robot’s false stop and collision.

Our primary contributions are:

& proposing a dynamic speed and distance monitoring algo-
rithm based on scene semantic information;

& integrating the multimodal information into the neural net-
work for detection and segmentation, and designing the
semantic perception network of multi-information fusion
(MSNet);

& establishing the database of risk information to realize the
dynamic update of risk factors.
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2 Scene Semantic Extraction Based
on Multi-Information

2.1 Data Analysis

According to the regulation of risk assessment in ISO/TS
15066, in the workspace of a robot, many factors are related
to safety, including the type of robot body, end tools, person-
nel type, position, and movement speed in the scene.
According to the above factors, we selected five targets as risk
samples. They are robot body, gripper1, gripper2, operator
and non-operator. We obtained the RGB image of the danger-
ous target in the workspace and found that the RGB image
quality is poor in the backlight environment, which is difficult
to detect normally. So we try to use a variety of sensors to get
images. After testing, it is found that the depth image and
infrared thermal imaging are less affected by illumination
and can obtain much better image information than ordinary
RGB images.

As shown in Fig. 2, we get three kinds of images after
registration and gray processing, and draw the gray

distribution histogram. The information types of the tempera-
ture image and depth image are similar, so we directly fuse the
two images on the channel, and after fusion, we call them DT
fusion images. The fusion method of the DT fusion image is
as follows: first, the depth image and temperature image are
transformed into a gray image, and then (1) is used to add
pixels to obtain the value of each pixel of the fused image.

Ai ¼ γDi þ δTi: ð1Þ

where Ai is the pixel value of the fused image; Di is the pixel
value of the depth image; Ti is the pixel value of the temper-
ature image; γand δ are the weight factors of the depth image
and the temperature image respectively.

RGB images mainly contain category information, while
depth and temperature images mainly contain edge informa-
tion. The types of information are different. Therefore, we use
two CNN networks to extract features from RGB images and
DT fusion images and find that the gray distribution is similar
in some intermediate stages of extraction. The contour infor-
mation of humans and robots in the middle feature layer of the

Fig. 1 Dynamic speed and
separation monitoring based on
scene semantic information
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DT image is obvious, and the two features show good fusibil-
ity, as shown in Fig. 2.

2.2 MSNet

Object detection is one of the basic tasks in the field of com-
puter vision. In recent years, the rise of deep learning [21] has
significantly improved object detection performance and
brought significant progress to object detection [22]. In
human-robot interaction, neural networks have also been
widely used to improve the intelligence degree of robots
[23–25]. Then the convolution [26] is used to extract the fea-
tures from the image and add the features to achieve multi-
modal information fusion. Therefore, to improve the robust-
ness and accuracy of the network under different light condi-
tions, this paper proposes a deep neural network that integrates
RGB, depth, and temperature image information to obtain
semantic image information.

Mask R-CNN [27] is a flexible and universal object in-
stance segmentation framework. It can detect the objects in
the images and output a high-quality segmentation result for
each object. In order to distinguish dangerous targets in dark
and high light ratio environments and reduce the influence of
light and background on recognition, we designedMSNET on
the basis of Mask R-CNN. As shown in Fig. 3, there is a
feature pyramid structure for the fusion of multi-information
in MSNET. The feature pyramid structure has realized feature
fusion on multi-scale. Using the characteristics of depth im-
ages and infrared thermal imaging which are insensitive to
light and have obvious edge features, the RGB image was

enhanced, and the robustness of the network in different light-
ing environments was improved.

As shown in Fig. 3, the MSNET proposed in this paper
uses the traditional two-stage network structure as the back-
bone [28]. First, it carries out feature extraction and region
generation, which are used to extract the feature layer and
generate the candidate target bounding box. Then, it uses the
candidate target bounding box and ROI Align layer to extract
features from each feature layer. The network has three
branches corresponding to the category, candidate box, and
mask. The difference is that in the initial stage of feature image
generation, two backbones extract the features of the RGB
image and DT fusion image respectively. The two features
extracted are fused by the feature pyramid structure proposed
in this paper, which reduces the interference of external light
on the image and improves the detection ability of the network
for different targets.

As shown in Fig. 4, the feature pyramid structure is a
multiscale feature fusion structure. The backbone network of
the RGB branch is used to extract features rich in category
information. The backbone network of the DT branch is used
to extract edge and position information. The two kinds of
information are superimposed on four different scale levels
through the feature pyramid structure to enhance the effective
feature information. After superimposition, the fusion feature
layer of each scale is output to enhance the feature extraction
ability of the feature pyramid. Because the sensitivity of dif-
ferent feature layers to different scale targets is different, the
output of intermediate feature layers with different scales after
fusion will have a better effect on different scale targets. The

CNN CNN

Features-RGB Features-DT

RGB DT

Gray distribution of features-RGB Gray distribution of features-DT

Gray distribution of RGB Gray distribution of DT

Fig. 2 Gray-level distribution of original image and characteristic image
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specific structure is shown in Fig. 4. The two CNN networks
extract features from the input 512*512 three-channel images.
The feature extraction network is divided into five stages.
Each stage consists of two 3 × 3 convolutions with one stride
and a 2 × 2 maximum pooling layer with two strides. Each
stage reduces the size of the feature map by one time, starting
from stage 2. The output feature maps of each stage are not the
only input to the next stage but also input to the feature fusion
pyramid after convolution. The feature maps in the pyramid
are up-sampled by linear interpolation and added with feature
maps of different sizes from the feature extraction network.
Each layer of the feature map in the feature pyramid will be
output for later detection and segmentation. This structure can
fuse the features of three kinds of images at different scales to
improve the performance of the network under different illu-
mination conditions.

3 Speed and Separation Monitoring Based
on MSNET

3.1 Standard Speed and Separation Monitoring
Algorithm

According to the definition of SSM given in ISO/TS 15066,
when the dangerous target moves beyond the safe distance,
the robot will stop to ensure human safety. The calculation
method of the safety distance is shown in (2).

Sp t0ð Þ ¼ Sh þ Sr þ Ss þ C þ Zd þ Zr ð2Þ

Where Sp is the total safe distance. Sh is the moving distance
of a human, Sris the reaction distance of the robot;and Ss is the
stopping distance of the robot. Their definitions are given by
Eqs. (3), (4), and (5). C is the pre-intrusion distance, which

 

Feature pyramid structure Detection and segmentationFig. 3 MSNET

Fig. 4 Feature pyramid structure
for the fusion of multi-
information
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indicates the distance that the dangerous target can intrude into
the monitoring range before being detected. Zd + Zr repre-
sents the position uncertainty of the robot and human. Because
we are facing a huge scene, it can be ignored here.

Sh ¼ vh Tr þ Tsð Þ ð3Þ
Sr ¼ vrT r ð4Þ

Ss ¼ v2r
2as

ð5Þ

vh is the speed of human movement, vr is the speed of the
robot, Tr is the reaction time of the robot, andas is the braking
acceleration of the robot. Ts is the braking time of the robot.

3.2 Analysis of Human-Robot Dangerous Behavior

We collect the position of the key edge points of the human
body when the operators and non-operators enter during the
movement of the robot. The key edge points of the human
body are obtained according to the mask output by the neural
network. There are six points in total, which are the highest
and lowest points of the mask, the leftmost and rightmost
points, and the two intersections of the vertical line between
the highest point and the lowest point and the mask. Because
collisions often occur at the convex edge of the human body,
this method can better get the most dangerous point of the
human body, as shown in Fig. 5. In the process of robot
movement, we counted the data of operators and non-
operators entering and leaving the monitoring range 50 times
respectively, and the sampling interval was 1 s. We find that
the position of the operator is more concentrated and less
intruded into the trajectory of the robot, However, the move-
ment of non-operators is relatively irregular, and often in-
trudes into the trajectory of the robot because they are not
familiar with it According to this characteristic, we classify
the danger of different kinds of targets and propose an intelli-
gent speed and distance monitoring algorithm. The dangerous
targets detected from the neural network are introduced into
the monitoring algorithm in the form of danger coefficients, to
realize the dynamic adjustment of the human-robot safe dis-
tance and the dynamic adjustment of the tool radius and dan-
gerous target radius.

3.3 M-SSM

The M-SSM proposed in this paper is based on the standard
SSM given in ISO/TS 15066. By using the semantic informa-
tion and the robot’s motion parameters, we can calculate the
robot’s dynamic safe area according to different danger de-
grees, and then adjust the robot’s motion speed according to
the position information of the safe area and the dangerous
target. It is always guaranteed that at the current moment, the

robot can stop before colliding with the dangerous target
through emergency braking. The following is the pseudo-
code of the algorithm, if the dangerous target keeps ap-
proaching, the speed of the robot decreases continuously,
and finally decreases to zero. When the dangerous target is
far away, the speed will gradually recover.

According to the two-dimensional dynamic speed and sep-
aration monitoring algorithm proposed by Christoph Byner
[7] based on the standard SSM, we propose a dynamic
three-dimensional model to calculate the minimum safe dis-
tance. From time t0, the robot starts to brake until the speed of
the robot drops to zero, and the end of the robot just contacts
the dangerous target. Then, the geometric relationship of the
robot motion from time t0 is shown in Fig. 6.

It can be seen from Fig. 6 that α is the angle between the
robot’s motion direction and the initial position line of the
human-robot at timet0.Ri(t0) and Hj(t0); are the positions of
the robot and the human at time t0 respectively. β is the angle
between Ss andRi(t0 + tr)Hj(t0); andθ is the angle between the
human path and Ri(t0 + tr)Hj(t0); ri is the geometric radius of
the robot end; D is the effective safe distance, andσt0 is the risk
factor at time t0. In order to simplify the motion model and
establish the above geometric relationship, according to refer-
ence [7], we need to make the following assumptions: (1) in
the system reaction timeTr, the speed of the robot is constant,
and the running direction of the robot is determined by the
position of the nearest sampling point. Because we will decel-
erate the robot after the dangerous target is detected, and the
application scene of this algorithm is large, this assumption
has little impact on the accuracy. (2) The stopping distance Ss
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of the robot is directly towards the direction of the human.
This ensures that in the worst case, the robot can also
reduce its speed to zero before colliding with a dangerous
target.

From Fig. 6, we can obtain the relationship between the
running speed vr of the robot and the safe distance Sp, as
shown in (6):

Sh þ Ssð Þcosβ þ C þ rið Þcosθð Þ2

¼ vrTrð Þ2 þ Spσt0
� �2−2Spσt0vrTrcosα ð6Þ

According to (6) and Fig. 6 the relationship between the
maximum speed of the robot and the safe distance is obtained
as Eq. (7).

Fig. 5 Distribution of key points
on the edge of human body

Fig. 6 Kinematic geometry
diagram
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0 ¼ cos2β
4a2s

v4r þ
cosβcos θ

a2s
v3r þ

cos2θv2h
a2s

þ cos2βri þ cosβcosθvhTr þ cosβcosθC
as

−T 2
r

� �
v2r þ 2DTrcosαþ 2cosβcosθvhri

as

� �
vr

þ cosβri þ cosθvhTrð Þ2 þ cos2θC2 þ 2cosβcosθCri−D2

ð7Þ

Where D ¼ Sp=σt0 .
According to ISO/TS15066, the risk factors are divided

into three categories: robot related, system related, and appli-
cation related. The five dangerous targets we selected covered
these three types of risk factors, which can reflect the risk of
the scene. According to the risk matrix [29] used by the
National Institute of Standards and Technology’s engineering
laboratory, the risk assessment of these objectives is summa-
rized in Table 1. The risk probability from low to high is:
impossible, slight, accidental, possible and frequent. The se-
verity of the danger from low to high is: slight, medium, seri-
ous, and disaster. The safety description method of collabora-
tive robot proposed by Marvel [12] is used for quantitative
evaluation, and the final risk factor is obtained.

After getting the dangerous target information at time t0,
we need tomake a real-time evaluation of the danger degree of
the scene at timet0. the evaluation algorithm is shown in (8),
(9).

σt ¼ ∑
n

i¼0
σt0
i *m

� �þ 1
� � ð8Þ

σt0
i ¼ σ1;σ2;σ3;σ4;σ5f g ð9Þ

According to Eqs. 6, 7 and 9, the danger range diagram is
drawn, and the system parameters C = 0.32m vh = 1.6m/s Tr

= 210msandas = 10m/s2.The maximum running distance is
shown in Fig. 7, where the vertical axis represents the running
speed of the robot, and the horizontal axis represents the cor-
responding safe distance. The five colors in Fig. 7 represent
five scenes with different degrees of danger, and yellow,
green, blue, purple, and red represent scenes with risk factors
for 1.0, 1.1, 1.2, 1.3, and 1.4, respectively. It can be seen from
Fig. 7 that in five different states, even at the same speed, the
size of the dangerous area is different. The greater the risk

factor for the target in the monitoring area, the greater the
safety distance.

4 Experiments

The experimental platform includes a 3.3GHz CPU, rtx2080ti
GPU, two UR5 robots, a Realsense l515 depth camera, and a
Haikang DS-2TA03-10AUF thermal imager. Two robots are
equipped with two different kinds of grippers, gripper2 is a
three finger flexible gripper, and the other is an ordinary two-
finger gripper. They correspond to different dangerous end
tools. The experimental scene is shown in Fig. 8.

4.1 Experiment on Perception Effect of Dangerous
Target

In order to verify the effect of network detection, the following
experiments are carried out. In the robot workspace, there are
five kinds of targets that affect safety. They are: robot, two-
finger mechanical gripper(gripper1), three-finger mechanical
gripper(gripper2), operators and non-operators. A total of
3000 groups of photos taken in different lighting environ-
ments are used for training. The shooting environment of the
training set includes backlight, dark light, and normal light.
The RGB map and depth map required for training are col-
lected by KinectV2, and the thermal imaging map is collected
by Haikang DS-2TA03-10AUF. The three kinds of images
have been registered, and the depth map and thermal imaging
map have been weighted and fused. The fusion method is
shown in Formula 1. The CPU used in the training is i9-
9940x, the clock speed is 3.3GHz, and the GPU is
RTX2080Ti.

First, we use RGB and depth images, RGB and tempera-
ture images, RGB, and DT fusion images as the input of the
two branches of the network for three times, and only use
RGB images for training. The original Mask-RCNN network
is trained. For the four cases of networks in the training set of
training loss, the loss value represents the degree of network
convergence, ACC represents the degree of network conver-
gence, and MIOU represents the coincidence degree between
the detected target mask and the real target, as shown in (10),
(11),and (12).

L ¼ Lcls þ Lbox þ Lmask ð10Þ

Table 1 Dangerous target and its dangerous coefficient

Target name Possibility Seriousness σt0
i

robot slight Serious 0.1

three-finger gripper probably slight 0.1

two-finger gripper By chance slight 0.05

operator By chance Serious 0.05

Non-operator Frequent Serious 0.15
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Acc ¼ TP þ TN

TP þ FN þ FPþ FN
ð11Þ

MIoU ¼ 1

N þ 1
∑
N

i¼1

TPi

TPi þ FPi þ FNi
ð12Þ

The loss value represents the convergence degree of the
network. It can be seen from Fig. 9 that due to the image light
quality and other reasons, the loss value of the Mask-RCNN
network eventually fluctuates around 0.2, while the loss value
of MSNET eventually drops below 0.05. This is because our
dataset has pictures taken under different lighting. The Mask-
RCNN network has good detection results for pictures taken
under normal lighting, but it is difficult to accurately detect
images taken under low light. Its detection effect is affected by
light, and the detection effect is unstable, resulting in a higher
final loss value. The illumination has little effect on the depth
image and the temperature image. The addition of these two

kinds of information enables the MSNET network to have a
relatively stable effect under different illumination conditions,
so the final loss value is lower.

As can be seen from Fig. 10, the detection of human body
contours by the original network in dark light is inaccurate,
and the judgment of gripper sometimes makes mistakes. After
fusing DT information, the effect is significantly improved. It
can be seen from Table 2 that the detection effect of three
targets is greatly improved by adding temperature images for
robots, operators and non-operators, with the detection accu-
racy increased by more than 3% and IOU increased by 0.07,
while the detection effect of two targets is greatly improved by
adding depth images for gripper 1 and gripper 2, with the
detection accuracy increased by more than 3% and IOU in-
creased by 0.07. This phenomenon occurs because these tar-
gets have different characteristics. The heating of the robot
body and the temperature of the human body lead to

Safe distance and running speed 
in different scenarios

)s/
m(yticoleV

Distance(m)

Fig. 7 The relationship between
safe distance and running speed in
three scenarios with different
degrees of danger

Fig. 8 Experimental scene
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significant differences between these three targets and the sur-
rounding temperature, and the spatial position of the two
claws is quite different from the surrounding environment.
Therefore, the detection effect of temperature information on
robot, operator and non-operator is significantly improved,
while the detection effect of depth information on two kinds
of grippers is greatly improved. DT image combine the char-
acteristics of the two kinds of information and have a good
effect on the detection of all targets.

4.2 Safety Monitoring Effect Experiment

The M-SSM proposed in this paper will adjust the safety
threshold through the risk factor according to the number of
dangerous targets and the types of tasks in the robot working
environment; to intelligently adjust the running state of the
robot. In order to verify the effectiveness of the dynamic risk
factor, we set up four scenarios with different risk factors, in
which the risk targets are: gripper1 + operator, gripper2 +
operator, gripper1 + non-operator,gripper2 + non-operator
(robot omitted). The risk factors are 1.1, 1.15, 1.2 and 1.25
respectively. In the first group of experiments, we carry out

the grasping task in these four scenarios respectively. In the
process of each grasping task, there will be operators or non-
operators approaching the position that the robot will reach
with a fixed trajectory. In this experiment, this position is the
middle point of the path that the robot moves in a straight line
after grasping. After the robot catches the object, the man
begins to move. Because operators are familiar with the tra-
jectory of the robot, they will eventually stop at about 10 cm
around the trajectory of the robot, while non-operators will
directly invade into the motion path. If the robot stops before
colliding with the human body, it will be regarded as success-
ful. If there is a collision or the speed does not drop to 0, it will
be regarded as a failure. The standard SSM algorithm without
risk factors and the M-SSM algorithm proposed in this paper
are used to conduct 100 experiments in four scenarios respec-
tively, and the success rate of monitoring and the completion
time of tasks are recorded.

The second group of experiments set up a scene in which
the risk factors changed dynamically. In this scene, the risk
target was: Gripper1 + Operators + Non-operators. The ex-
perimental method is to let the operator perform the same
intrusion as the previous group of experiments. After the robot

Fig. 9 Comparison of loss
changes

 

RGB

DT

Ground

truth

Mask R-CNN

MSNET

Fig. 10 Detection effect diagram
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stops, the operator exits immediately, and then the non-
operator immediately enters to perform the same intrusion as
the previous group. Only if the two times are successful can it
be recorded as successful. To verify the impact of dynamic
risk factors, we manually solidify the risk factors of the M-
SSM algorithm into the fixed value when operators enter for
experiments, and compare it with the standard SSM without
risk factors and the dynamic SSM algorithm(ours) with a real-
time change in risk factors, recording the success rate and task
completion time.

As can be seen from Table 3, the success rate of standard
SSM will decrease significantly when non-operators enter,
compared with the scenario where operators enter. This is
because operators are familiar with the movement of the robot.
They will actively stop outside the path, only occasional im-
proper operation may lead to collision, so the robot is easy to
avoid. The non-operator is not familiar with the motion of the
robot and often invades the motion path of the robot, which
makes it difficult for the robot to avoid. Compared with the
traditional algorithm, M-SSM algorithm will adjust the speed
of the robot according to the danger degree of the scene. In the
dangerous scene entered by non-operators, the speed of the
robot will be reduced to the safe speed in advance, which
makes it easier for the robot to avoid dangerous targets and
improve the safety of the robot system. Therefore, in the two
scenarios entered by non-operators, the monitoring success
rate increased by 12.3% and 11.2% respectively, and the com-
pletion time increased by 3.4 s and 4.7 s respectively.

In the workspace, the risk factors within the monitoring
range will change at any time. The following dynamic exper-
iments show the effect in this case. When operators and non-
operators enter alternately, the success rate of standard SSM
algorithm without risk factors is 81.5%; When the risk factor
was fixed at 1.1, the success rate was 91.8%; When the M-
SSM algorithm with risk factors changes, the success rate is
96.7%. It can be seen that when the risk factors change dy-
namically for different scenarios, the success rate is greatly
improved compared with the first two. This is because the risk
degree in different scenarios will affect the timing and speed
of robot adjustment. When the risk degree of the scene chang-
es during the operation of the robot, the risk coefficient should
also be adjusted in time. When the risk coefficient is fixed at
1.1, the risk coefficient does not match the scene, and the
speed of the robot is not adjusted in time, which will reduce
the success rate. Due to early deceleration, the completion
time of dynamic SSM algorithm increases slightly, but in
practical work, the number of intrusion is greatly reduced
compared with the experimental environment, so it has little
impact on the overall efficiency of the robot. In short, when
M-SSM algorithm is used, lower efficiency can be reduced in
exchange for significant improvement of robot safety Table 4.

5 Conclusion

In this paper, scene semantic information is employed in dy-
namic speed and separation monitoring for HRCs. First, a risk
information fusion perception network MSNET is designed,
which combines depth and temperature information with
RGB images. MSNET uses the feature pyramid structure to
extract the features of dangerous targets in dark or backlit

Table 3 Comparison of monitoring success rate

Scene Risk factor Success rate Average time

Gripper1+ Operator none(SSM) 0.955 25.3 s

σt=1.1(ours) 0.985 27.4

Gripper2+ Operator none(SSM) 0.938 25.6

σt=1.2(ours) 0.993 26.8

Gripper1+ Non-operator none(SSM) 0.851 25.7

σt=1.3(ours) 0.974 29.1

Gripper2+ Non-operator none(SSM) 0.867 26.2

σt=1.4(ours) 0.979 30.9

Table 4 Effect of dynamic risk factors

Scene Risk factor Success rate Average time

Gripper1
+ Operator+ Non-operator

none(SSM) 0.815 50.1 s

1.1(ours) 0.918 53.9 s

Dynamic(ours) 0.967 55.2 s

Table 2 Comparison of network effects

Method Robot Gripper1 Gripper2 Operator Non-operator

Acc mIOU Acc mIOU Acc mIOU Acc mIOU Acc mIOU

Mask-RCNN 0.932 0.769 0.836 0.601 0.824 0.598 0.943 0.713 0.933 0.692

MSNET(D) 0.947 0.787 0.844 0.663 0.851 0.629 0.956 0.762 0.948 0.745

MSNET(T) 0.964 0.843 0.837 0.608 0.828 0.603 0.977 0.795 0.982 0.759

MSNET(DT) 0.963 0.852 0.849 0.669 0.855 0.628 0.983 0.791 0.988 0.767
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work areas to accurately obtain semantic information in the
work scene. Then, the dynamic conversion of scene semantic
information to risk factors is realized through the dynamic risk
information database. Finally, the M-SSM algorithm is pro-
posed, which can dynamically adjust the state of the robot
system according to the degree of danger in the scene to avoid
collisions. Experiments have shown that safety is increased by
more than 15% with little reduction in efficiency. The algo-
rithm relies on the neural network to accurately extract the
semantic information of the scene, and the training of the
neural network requires a large amount of data, which has
high requirements for data collection and labeling. In the fu-
ture, we need to refine and classify various complex scenes
and study the reaction strategies of robots in different scenes.
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