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Abstract
When using deep reinforcement learning algorithm to complete Unmanned Aerial Vehicle (UAV) autonomous obstacle avoid-
ance and target tracking tasks, there are often some problems such as slow convergence speed and low success rate. Therefore,
this paper proposes a new deep reinforcement learning algorithm, namely Multiple Pools Twin Delay Deep Deterministic Policy
Gradient (MPTD3) algorithm. Firstly, the state space and action space of UAV are established as continuous models, which is
closer to engineering practice than discrete models. Then, multiple experience pools mechanism and gradient truncation are
designed to improve the convergence of the algorithm. Furthermore, the generalization ability of the algorithm is obtained by
giving UAV environmental perception ability. Experimental results verify the effectiveness of the proposed method.
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1 Introduction

UnmannedAerial Vehicle (UAV) has the characteristics of small
volume, light weight, low cost and strongmobility, so it has been
widely used in military and civil fields, such as logistics trans-
portation [1–4], disaster rescue [5–8], relay communication
[9–12] and power inspection [13, 14]. Among them, autonomous
obstacle avoidance and target tracking of UAV are the primary
problems to be focused in engineering application, which have
been deeply studied by many scholars at home and abroad.

Autonomous obstacle avoidance and target tracking of
UAV in complex environment is a typical decision-making
problem. Reinforcement learning has obvious advantages in

solving such problems, so it has attracted extensive attention
in this field. Reinforcement learning is one of the three para-
digms of machine learning. It uses the empirical data generat-
ed by the continuous interaction between the agent and the
environment to update the agent’s policy, so as to maximize
the cumulative reward. In [15], Q-learning algorithm is used
for static target tracking of UAV in discrete environment.
However, Q-learning algorithm is only suitable for solving
discrete low dimensional state space problems, without con-
sidering the continuous change of states, so it has some limi-
tations in engineering.

Deep reinforcement learning is the combination of deep
learning and reinforcement learning. It not only has the strong
representation ability of deep learning, but also has the excel-
lent decision-making ability of reinforcement learning. Deep
Q-Network (DQN) [16] is the first deep reinforcement learn-
ing algorithm. It was improved and proposed by DeepMind
team on the basis of Q-learning algorithm, and has reached the
level of human players or even surpassed human players in
many video games. Dueling Double Deep Q-Network
(D3QN) algorithm is a further improvement of DQN algo-
rithm. In [17], D3QN algorithm and convolutional neural net-
work are combined to solve the problems of autonomous ob-
stacle avoidance and target tracking of UAV in two-
dimensional environment. The artificial potential field method
is an effective path planning method. In [18], the black hole
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artificial potential field method is designed to construct the
reward function in the DQN algorithm to solve the local op-
timization problem and realize the autonomous obstacle
avoidance and target search of UAV in complex environ-
ment. Deep Recurrent Q-Network (DRQN) [19] is obtained
by adding Long Short Term Memory (LSTM) to the net-
work of DQN algorithm, which is suitable for solving par-
tially observable problems. In [20], it is used to solve the
autonomous obstacle avoidance problem of UAV in a lim-
ited environment. Although the above algorithm can be
used to solve the continuous state space, it cannot deal with
the continuous action space, so it still has some limitations.
Deep Deterministic Policy Gradient (DDPG) algorithm
[21] is an important algorithm under the framework of ac-
tor-critic, which can effectively solve the problems of con-
tinuous state space and action space. In [22–24], DDPG
algorithm is adopted for UAV decision-making. Its input
is original state of the surrounding environment and output
is deterministic action. In [25], the target recognition and
detection network and DDPG algorithm are combined to
make decision by using the position information of sur-
rounding obstacles, so as to realize the search and rescue
of UAV in complex indoor environment. In the complex
environment, some circular obstacles are difficult to cross,
and UAVs are easy to fall into local optimal solutions. In
[26], the Recurrent Deterministic Policy Gradient (RDPG)
algorithm [27] is employed, which takes the past historical
state information and action information as network input
and significantly improves the navigation and obstacle
avo i d an ce ab i l i t y o f UAV. Tw in De l ay Deep
Deterministic Policy Gradient (TD3) algorithm [28] is an
improvement of DDPG algorithm, which effectively avoids
the over estimation problem under the framework of actor-
critic and improves the overall performance of the algo-
rithm. In [29], the TD3 algorithm and meta learning are
combined to realize dynamic target tracking of UAV in
obstacle free environment. The above literatures mainly
discuss the autonomous obstacle avoidance and target
tracking of UAV in static environment or autonomous ob-
stacle avoidance in dynamic environment, but there are few
reports on the autonomous obstacle avoidance and dynamic
target tracking of UAV in complex environment.

This paper mainly studies the autonomous obstacle avoid-
ance and dynamic target tracking of UAV in complex envi-
ronment. Its contributions are reflected in three aspects.

1. Different from the discretization of state space or action
space in [15–20], this paper considers that both state and
action of UAV change continuously, which is closer to
engineering practice.

2. Based on the TD3 algorithm, a multiply experience pools
mechanism is designed to divide the experience data gen-
erated by the interaction between UAV and environment

into successful experience data and failed experience data,
so as to improve the convergence performance and track-
ing success rate of the algorithm.

3. The UAV is endowed with environmental perception
ability, and the overall observation information is obtain-
ed by integrating environmental perception information
and target state information, so as to improve the gener-
alization ability of the algorithm.

The next arrangement of the paper is as follows: Section 2
describes the autonomous obstacle avoidance and target track-
ing of UAV in detail. Section 3 establishes the continuous
dynamic model of UAV. Section 4 introduces TD3 algorithm
and proposes multiple experience pools mechanism. In
Section 5, the proposed algorithm is verified and analyzed.
Section 6 is the summary of the full paper and points out the
shortcomings.

2 Problem Description

In order to facilitate the analysis and solution of the problem,
this paper considers that the UAV is always flying at a fixed
height and regarded as a particle, so the motion mode of the
UAV can be simplified from three-dimensional space motion
to two-dimensional plane translation. In addition, the shapes
of obstacles are regarded as circles with different radius in the
environment, and the UAV is set to move in a rectangular
area. The schematic diagram of UAV autonomous obstacle
avoidance and target tracking is shown in Fig. 1.

In Fig. 1, the blue UAV represents the pursuer, namely the
agent, which tracks the target in real time and automatically
avoids obstacles in the environment. The red UAV indicates

Fig. 1 Schematic diagram of UAV autonomous obstacle avoidance and
target tracking. The blue UAV represents the pursuer, the red UAV
represents the evader, the green circle represents the obstacle, and the
cyan area represents the pursuer’s perception range
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the evader, namely the tracking target, which may be in a
static or random motion state in the environment and can also
avoid obstacles automatically. Green circles indicate obsta-
cles, the number and location of them in the environment are
uncertain. When the UAV moves in a two-dimensional envi-
ronment, its own state information includes position coordi-
nates, speed magnitude and motion angle. The control quan-
tity is the change of speed and angle. In order to ensure the
stable operation of UAV, its control quantity is within a cer-
tain threshold. In order to improve the autonomous obstacle
avoidance ability of the UAV, it can sense the surrounding
environment by relying on its equipped camera or laser radar.
The cyan area in Fig. 1 is the perception range of the UAV.
Through environmental perception, UAV can obtain partial
environmental information around itself. In addition, the pur-
suer can also obtain the state information of the evader
through Global Positioning System (GPS) or other devices.

The research goal of this paper is to enable the pursuer can
make real-time decisions by using collected information, so as
to realize its autonomous obstacle avoidance and target track-
ing in different complexity environments after training in a
simple environment.

3 Dynamic Model

Based on the deep reinforcement learning method, this paper
establishes the model of UAV autonomous obstacle avoid-
ance and target tracking. Since UAV can only perceive part
of the environmental information and cannot observe the
global state information in the environment, the pursuer is
modeled as a Partially Observable Markov Decision Process
(POMDP) in this paper. The state space, action space and
reward function in the model are defined below.

3.1 Observation Space

The state information of UAV includes two-dimensional co-
ordinates, speed magnitude and motion angle. It is assumed

that the position coordinate of the pursuer at time t is xtp; y
t
p

� �
,

the speed magnitude is vtp, and the motion angle is θtp. The

position coordinate of the evader is xte; y
t
e

� �
, the speed magni-

tude is vte, and the motion angle is θte, as shown in Fig. 2.
Considering the flight speed limit of UAV, we set the maxi-
mum flight speed of pursuer as vmax

p and the maximum flight

speed of evader as vmax
e .

In order to eliminate the influence of different dimensions,
the state information of pursuer and evader are normalized
respectively, as shown in Eq. 1.

ot1 ¼
xtp
w
; xtp∈ 0;w½ �

ot2 ¼
ytp
h
; ytp∈ 0; h½ �

ot3 ¼
θtpmod 2πð Þ

π
−1; θtp∈ 0; 2π½ �

ot4 ¼
vtp
vmax
p

; vtp∈ 0; vmax
p

h i
ot5 ¼

xte
w
; xte∈ 0;w½ �

ot6 ¼
yte
h
; yte∈ 0; h½ �

ot7 ¼
θtemod 2πð Þ

π
−1; θte∈ 0; 2π½ �

ot8 ¼
vte
vmax
e

; vte∈ 0; vmax
e

� �

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

where, ot1, o
t
2, o

t
3 and ot4 are the normalized state information

of the pursuer. ot5, o
t
6, o

t
7 and ot8 are the normalized state

information of the evader. h and w are the length and width
of the UAV motion area respectively.

The pursuer can perceive part of the surrounding environ-
ment and obtain the distance information between himself and
the obstacles. Within the sensing range, the UAV emits 9 rays
around, and each ray returns the distance information obtained
in the corresponding direction. When the ray does not detect
any obstacles, returns the maximummeasurement distance, as
shown in Fig. 3.

In Fig. 3, d1, d2, ⋯, d9 represent the distance of each ray
direction, which meets

di∈ 0; rcap
� �

; i ¼ 1; 2;⋯; 9ð Þ ð2Þ

Fig. 2 Schematic diagram of UAV state. The state information of UAV
includes position, speed and angle
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where, rcap is the maximum distance that can be measured by
the ray, that is, the maximum sensing range of the UAV.

α indicates the difference angle between the pursuer evader
connection line and the pursuer motion direction, as shown in
Eq. 3.

α ¼ arccos
xte−xtp
� �

cos θtp

� �
þ yte−ytp
� �

sin θtp

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xte−xtp
� �2

þ yte−ytp
� �2r

0BB@
1CCA

α∈ −π;π½ �

8>>>><>>>>: ð3Þ

dt indicates the relative distance between the pursuer and
the evader, as shown in Eq. 4. β indicates the relative angle
between the pursuer-evader connection direction and the hor-
izontal right direction.

dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xte−xtp
� �2

þ yte−ytp
� �2r

β ¼ arctan
yte−ytp
xte−xtp

 !
dt∈ 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ h2

ph i
β∈ −π;π½ �

8>>>>>>>><>>>>>>>>:
ð4Þ

Similarly, the above observation information is normalized
to eliminate the dimensional influence, as shown in Eq. 5.

otj ¼
di
rcap

i ¼ 1; 2;⋯9ð Þ j ¼ 9; 10;⋯; 17ð Þ

ot18 ¼
β
π

ot19 ¼
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ h2
p

ot20 ¼
α
π

8>>>>>>>>><>>>>>>>>>:
ð5Þ

where, otj is the normalized obstacle distance, ot18 is the nor-
malized relative angel, ot19 is the normalized relative distance,
and ot20 is the normalized difference angle.

Therefore, the pursuer’s observation space can be specifi-
cally expressed as

O ¼ ot1; o
t
2;⋯ot19; o

t
20

� � ð6Þ

3.2 Action Space

The motion control of the pursuer in two-dimensional space is
divided into speed and angle. In order to ensure the smooth-
ness of the pursuer’s motion, the change of the control quan-
tity is set within a certain range and continuously at each time
step.

In this paper, the maximum change of the pursuer’s speed
at each time isΔvmax, and the maximum change of the angle is
Δθmax. The action output by the pursuer at each time is a tuple,
including the changes of speed and angle. Suppose that the
action output by the pursuer at the current time is [λθ, λv](λθ,
λv ∈ [−1, 1]), the updating method of its spatial position,
speed and angle at the next time is

vtþ1
p ¼ vtp þ λvΔvmax

θtþ1
p ¼ θtp þ λθΔθmax

xtþ1
p ¼ xtp þ vtþ1

p cos θtþ1
p

� �
ytþ1
p ¼ ytp þ vtþ1

p sin θtþ1
p

� �

8>>>>><>>>>>:
ð7Þ

where, θtþ1
p , vtþ1

p , xtþ1
p ; ytþ1

p

� �
represent the angle, speed and

position coordinates of the pursuer at the next time
respectively.

Set the evader to do randommovement in the environment,
but there is still a certain movement mode. At the beginning,
the birth position and movement speed of the evader are ran-
domly initialized. The evader moves in a straight line along
the speed direction in the environment. When encountering
the environmental boundary, the speed change follows

vtþ1
ex ¼

	
−vtex; left or right boundary
vtex; otherwise

vtþ1
ey ¼

	
−vtey; upper or lower boundary
vtey; otherwise

8>><>>: ð8Þ

where, vtex and vtþ1
ex are the speed of the evader in the X-axis

direction at time t and time t + 1 respectively. vtey and v
tþ1
ey are

the speed of the evader in the Y-axis direction at time t and
time t + 1 respectively. In addition, the evader also has the
ability to perceive the environment. When it senses the exis-
tence of obstacles around it, it will take the initiative to avoid
obstacles. In order to avoid jitter, the evader will judge wheth-
er it is moving away from the obstacles according to the

Fig. 3 Schematic diagram of UAV environment perception. The UAV
sends out 9 rays, and each ray returns the distance information in
corresponding direction
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perceived information. If so, it will maintain the current move-
ment direction; otherwise, it will adopt the following strate-
gies

vtþ1
ex ¼

	
random −vmax

ex ; 0
� �

; vtex > 0
random 0; vmax

ex

� �
; otherwise

vtþ1
ey ¼

random −vmax
ey ; 0

� �
; vtey > 0

random 0; vmax
ey

� �
; otherwise

8<:

8>>>><>>>>: ð9Þ

where, vmax
ex and vmax

ey are the maximum speed in the X-axis

and Y-axis directions respectively. random 0; vmax
ex

� �
indicates

uniform sampling between 0 and vmax
ex , and the rest are the

same.

3.3 Reward Function

Reward function is the key to guide the pursuer to learn effec-
tively. Therefore, designing a reasonable reward function can
improve the convergence speed and learning stability of the
pursuer. Sparse reward is a simple reward function, which
gives rewards only when the pursuer is in the termination
state. If the pursuer completes the task, the environment gives
a positive reward, which encourages the pursuer to continu-
ously strengthen the action sequence. If the task fails, punish-
ment is imposed to remind the pursuer to avoid some wrong
behaviors. However, the sparse reward requires the pursuer to
continuously explore the environment until the positive re-
ward is obtained, which will reduce the learning efficiency
and easily converge to the local optimal solution. Even for
the complex environment, the pursuer cannot converge be-
cause it is difficult to explore the evader. Therefore, it is nec-
essary to design a continuous reward function to guide the
pursuer to approach the evader.

The reward function designed in this paper includes six
parts: termination function, distance function, angle function,
obstacle avoidance function, speed function and straight-line
function. When the pursuer collides with an obstacle or ex-
ceeds the environmental boundary, the task fails; when the
pursuer catches up with the evader and there is no collision,
the task is successful. The mathematical expression of termi-
nation function is

rT ¼ −kT; task failed
kT; task success

	
ð10Þ

where, kT is a positive real number, that is, the pursuer is
rewarded when it succeeds and punished when it fails.

The mathematical expression of the distance function is

rD ¼ kD dl−dcð Þ ð11Þ
where, dl is the European distance between the pursuer and the
evader at the last time, dc is the European distance between the

pursuer and the evader at the current time, and kD is a positive
real number. Equation 11 indicates that if the pursuer ap-
proaches the evader, it will receive a positive reward, other-
wise it will be punished, and the reward intensity is directly
proportional to the distance variation.

The mathematical expression of the angle function is

rΘ ¼ kΘ
π

π
2
−α

� �
ð12Þ

where, kΘ is a positive real number. When α < π/2, it means
that the pursuer is approaching the evader, so as to obtain the
reward given by the environment. On the contrary, when α >
π/2, it means that the pursuer is far away from the evader and
will be punished.

The mathematical expression of obstacle avoidance func-
tion is

r ¼ −kobs ∑
9

i¼1

1

di
−

1

rcap


 �
ð13Þ

robs ¼ −rclip; r≤−rclip
r; −rclip < r < 0

	
ð14Þ

where, rclip is the minimum value of obstacle avoidance re-
ward truncation, kobs is a positive real number. The Eqs. 13
and 14 indicate that when the pursuer detects multiple obsta-
cles within the perceived range or is close to the obstacles, the
environment will impose punishment, and the punishment
intensity is directly proportional to the degree of danger; when
the pursuer does not perceive any obstacles, it will not be
punished.

The mathematical expression of the straight-line function is

rline ¼ kΘ
dv−dthr
dthr


 �
ð15Þ

where, dv is the distance detected by the corresponding ray in
the speed direction, as shown in d5 in Fig. 3, and dthr is the safe
distance threshold.When dv < dthr, it means that the pursuer is
close to the obstacle and there is a collision risk, so the envi-
ronment imposes punishment; when dv ≥ dthr, it indicates that
there are no obstacles in the pursuer’s forward direction, so as
to obtain a positive reward to encourage the pursuer to move
forward.

The mathematical expression of the speed function is

rV ¼ −kV vc−vp
� �

; vc > vp
0; otherwise

	
ð16Þ

where, kV is a positive real number, vc is the critical speed.
When the pursuer’s speed is less than the critical speed, it
will be punished, so as to encourage the pursuer to track
quickly.
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Combining the above six reward functions, the final reward
function r is

r ¼ rT þ rD þ rΘ þ robs þ rline þ rV ð17Þ

4 MPTD3 Algorithm

In TD3 algorithm, the experience data of the interaction between
the pursuer and the environment will be placed in the experience
pool, and in each round of iteration, the pursuer will randomly
sample data from the experience pool to update the network.
Therefore, the quality of the data in the experience pool deter-
mines the efficiency of neural network learning. When the pur-
suer falls into the local optimum, the relevant action sequence is
continuously strengthened. At this time, the pursuer is unable to
learn effective knowledge from the experience pool, so that it is
difficult to escape from the local optimum. To solve this prob-
lem, this paper proposes Multiple Pools Twin Delay Deep
Deterministic Policy Gradient (MPTD3) algorithm, which re-
places a single experience pool with multiple experience pools
to put the experience data separately, so as to improve the con-
vergence speed of the algorithm.

4.1 TD3 Algorithm

TD3 algorithm is a deterministic deep reinforcement learning
algorithm, which can effectively solve the problems of con-
tinuous state space and action space. The algorithm includes
an actor network and two critic networks, and each network
has a corresponding target network to ensure the stability of
the training process.

In the critic network training stage, firstly, the target value
and prediction value are calculated, then the critic loss is ob-
tained, and finally the critic network is optimized by gradient
descent method. The target value is calculated as follows

y j ¼ r s j; a j
� �þ γmini¼1;2

eQ sjþ1; eπ s jþ1jeθ� �
þ εjeωi

� �
ε ¼ N 0; eσ� �

8<:
ð18Þ

where, yj is the target value, r(sj, aj) is the immediate reward, γ

is the discount coefficient, eπ s jþ1;eθ� �
is the target action in

the state sj + 1, eθ represent the parameters in the target actor
network, N 0; eσð Þ is the smooth noise satisfying the normal

distribution, eσ is the variance of the smooth noise, eQ
sjþ1; eπ s jþ1;eθ� �

þ N 0; eσð Þ
� eωij Þ is the action value in the

state sj + 1, and eωi represent the parameters in the target critic
network. When calculating the target value, the smaller output

of the two target networks is selected to prevent the over
estimation problem of the network. The critic loss is calculat-
ed as follows

Lc ¼ 1

B
∑
B

i¼1
∑
2

j¼1
yi−Q si; aijwj

� �� �2 ð19Þ

where, B is the total amount of data sampled during each
update, Q(si, ai|wj) is the action value in the state si, and wj

represent the parameters in the critic network.
In the actor network training stage, firstly, the predicted

action in the state si is calculated, then the actor loss is obtain-
ed, and finally the actor network parameters are updated by
gradient ascent method. The actor loss is calculated as follows

La ¼ 1

B
∑
B

i¼1
Q si;π si θjð Þ w1jð Þ ð20Þ

where, π(si|θ) is the predicted action in the state si,and θ rep-
resent the parameters of the actor network.

After updating the actor network and critic network, finally
update all target networks by soft update, as shown in Eq. 21.

θ ¼ τθþ 1−τð Þeθ
wi ¼ τwi þ 1−τð Þewi; i ¼ 1; 2

(
ð21Þ

where, τ is the learning rate of soft update.

4.2 Multiple Experience Pool

As previously analyzed, when the pursuer falls into the local
optimum, the learnability of data in a single experience pool is
not strong for the pursuer. Replacing it with multiple experi-
ence pools can effectively ensure the quality of the data.

MPTD3 algorithm includes three experience pools: failure
experience pool, success experience pool and temporary ex-
perience pool. The failure experience pool stores the failure
experience data of the pursuer, and its capacity is set to Mf.
The success experience pool stores the success experience
data of the pursuer or the experience data that the pursuer
can avoid obstacles for many times, and its capacity is set to
Ms. The temporary experience pool stores the temporary ex-
perience data generated by the pursuer in the current genera-
tion, and its capacity is set to Mt. When the temporary expe-
rience pool overflows, if the pursuer does not reach the termi-
nation state, it is considered that its past decisions have a
positive impact on the present, so the data overflowed from
the temporary experience pool is stored in the success experi-
ence pool. The storage location of the remaining data in the
temporary experience pool is determined by the final state. If
successful, store it in the success experience pool, otherwise
move it to the failure experience pool.

The data required for updating MPTD3 algorithm are
sampled from the failure experience pool and the success
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experience pool according to a certain proportion. In this
way, even if the pursuer falls into the local optimum, it can
still obtain the success experience data from the success
experience pool to learn, so as to help the pursuer break
away from the local optimum quickly. Assuming that the
data sampling ratio of the pursuer is β, and the total amount
of data sampled is B, so the amount of data sampled from
the success experience pool and the failure experience pool
are respectively

b1 ¼ Ds;Ds≤βB
βB; otherwise

	
b2 ¼ B−b1

8<: ð22Þ

where, b1 is the amount of data sampled from the success
experience pool, b2 is the amount of data sampled from the
failure experience pool, andDs is the total amount of data in
the success experience pool. The algorithm structure block
diagram is shown in Fig. 4.

4.3 Network Structure

The network structure of MPTD3 algorithm is the same as
TD3 algorithm. It contains two identical critic networks and
an actor network. Each network has a corresponding target
network. The input of the critic network includes the observa-
tion information obtained by the pursuer and the actions per-
formed in this state. The corresponding dimensions are 20 and
2 respectively, and they are spliced into a 22 dimensional
vector. Then it passes through two fully connected networks
for feature extraction. The number of neurons in the first fully
connected network is 400 and the second is 300. The activa-
tion function adopts Rectified Linear Unit (ReLU). Finally,
the result of feature extraction is passed through a last fully
connected network to obtain the corresponding state action

value. The output dimension is 1 without activation function.
The critic network structure is shown in Fig. 5a.

The input of the actor network is the observation informa-
tion obtained by the pursuer. Similarly, it passes through two
fully connected networks in turn, with the number of 400 and
300 neurons respectively, and both use the ReLU activation
function. After feature extraction, the result is sent to the last
fully connected network. Since the action includes speed and
angle, the output dimension is 2. And in order to make the
output of each action between [−1, 1], the activation function
adopts Hyperbolic Tangent (Tanh). The actor network struc-
ture is shown in Fig. 5b.

In order to ensure that the updating process of actor net-
work and critic network is more stable, the gradient value is
trimmed [30], that is, when the gradient value is greater than
the preset maximum gradient value, it is truncated to the max-
imum gradient value.

In this paper, MPTD3 algorithm is used to realize the
pursuer’s real-time obstacle avoidance and target tracking.
When the pursuer moves in the environment, it can not only
obtain the state information of itself and the evader, but also
use its own sensor to sense partial environment around it.
Then the obtained information is stacked together to form
the observation information o. The observation information
is sent to the pursuer’s actor network to output actions a and
guide the pursuer’s movement. At the same time, the envi-
ronment gives the pursuer immediate reward r, next obser-
vation o′ and state information done. Send the interactive
experience data (o, a, r, o', done) into the temporary ex-
perience pool, and then judge the data flow direction in the
temporary experience pool according to the current state of
the pursuer. At each time step, the pursuer will randomly
sample a batch of data from the success experience pool and
failure experience pool according to the preset proportion
for training. When the pursuer enters the termination state,

Fig. 4 Structure block diagram of
MPTD3 algorithm
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end this round and re-enter the next round of learning. The
algorithm flow is shown in algorithm 1.

5 Experiments and Analysis

This paper constructs MPTD3 algorithm based on Pytorch1.6
and CUDA10.2 frameworks in Python environment. The op-
timizer used for updating parameters of critic network and
actor network is Adma, and its learning rate lr is set to
0.0003. In order to ensure the convergence of the network,
the maximum number of iterations Ne is set to 2000, and the
maximum number of steps per iteration T is set to 500. The
maximum capacity of the success experience pool and the
failure experience pool is the same, and both are set to
1,000,000. If the pursuer does not enter the termination state
within 200 steps, it is considered that the previous decision is
valuable and the experience data needs to be saved to the
success experience pool, so the maximum capacity of the
temporary experience pool is set to 200. The maximum gra-
dient value gclip for gradient clipping is set to 0.5. All param-
eters and corresponding values are shown in Table 1.

5.1 MPTD3 Algorithm Verification

The experimental environment is a square area. In order to
verify the pursuer’s obstacle avoidance ability, there are sev-
eral obstacles in the environment. The evader makes random
movement and can avoid obstacles in the environment inde-
pendently. The goal of the pursuer is to track the evader in real
time and avoid obstacles autonomously. The current turn ends
when the pursuer collides with an obstacle; crossing borders;
maximum time step reached. When the environment is initial-
ized, the locations of pursuer and evader will also be initial-
ized randomly to enhance the randomness of the task. In this
section, TD3 and MPTD3 algorithms are used for testing, and
the test results are shown in Figs. 6, 7 and 8.

Figure 6a shows the cumulative reward curve of MPTD3
algorithm and TD3 algorithm in the training stage. It can be
seen that both algorithms can enter the convergence state after
500 iterations, but the convergence speed of MPTD3 algo-
rithm is slightly faster. Figure 6b shows the cumulative step
curve. It can also be seen that MPTD3 algorithm has faster
convergence speed. In addition, compared with TD3 algo-
rithm, MPTD3 algorithm has fewer tracking steps, so the
tracking path is shorter. Figure 7a, b show the tracking success
rate curves in the training and testing stages respectively. It is
obvious that the tracking success rate of MPTD3 algorithm is
always higher than TD3 algorithm. Then the two trained al-
gorithms are tested for 1000 rounds in the same environment.
It is noted that their tracking success rate is more than 97%,
and even MPTD3 algorithm is more than 99%. Figure 8
shows the tracking paths of the two algorithms in a simple
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environment, in which the red circle represents the pursuer,
the blue circle represents the evader, the green circle repre-
sents the obstacle, and the cyan area around the blue circle
represents the pursuer’s perception range. It can be seen that
both MPTD3 and TD3 algorithms can complete the task.

The experimental results show that MPTD3 algorithm has
faster convergence speed and higher tracking success rate than
TD3 algorithm.

5.2 MPTD3 Robustness Verification

In practical application, there is often some noise interference in
the perception information. In order to verify that MPTD3 has
anti-interference ability, the noise that satisfy normal distribu-
tion is added to the perception information of UAV. The mean
value of normal distribution is 0 and the variance is 1, so
99.73% of the noise data is within [−3, 3]. Since the perception

Fig. 5 The network structure of critic and actor inMPTD3 algorithm. The
input of the critic network is state and action, and the output is the
corresponding state action value with 1 dimension. The input of the

actor network is state and the output is action. The action is a two-
dimensional tuple, including the changes of speed and angle

Fig. 6 Cumulative reward curve and cumulative step curve of training in simple environment without noise

Fig. 7 Tracking success rate curve of training and testing in simple environment without noise
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information has been normalized to [0, 1], the noise data is
reduced by 20 times, so the noise proportion is less than 15%.
The MPTD3 algorithm is trained again, and the test results are
shown in Figs. 9 and 10.

Figure 9a is the cumulative reward curve during training,
and Fig. 9b is the cumulative step curve. Combined with these
two curves, it can be seen that the MPTD3 algorithm tends to
converge when the iteration is about 250 rounds. Compared
with the training results in Section 5.1, it is found that adding
noise to the perception information improves the convergence
speed of the algorithm. The reason is that adding noise enriches
the diversity of data and reduces the correlation between data.
Figure 10a is the tracking success rate curve during training,
and Fig. 10b is the tracking success rate curve during testing.
Compared with the experimental results in Section 5.1, it can
also be seen that the tracking success rate is improved after
adding noise, even 99.8% in the test. Through analysis, due
to the noise in the perception information, the pursuer will keep
a long distance from the obstacle to avoid collision, which is
safer and makes the tracking success rate higher.

The experimental results show that MPTD3 algorithm has
good anti-interference ability.

5.3 MPTD3 Generalization Verification

In order to verify that the trained pursuer has the ability of
environmental generalization, this section applies the previ-
ously trained pursuer to test in a new environment, where
obstacles are denser, obstacle avoidance and target tracking
are more difficult. Also test 1000 rounds, and the test results
are shown in Figs. 11 and 12.

Figure 11a shows the tracking success rate of the two algo-
rithms after 1000 rounds of testing in a complex environment,
and there is no noise interference in the pursuer’s perception
information. The tracking success rates of both MPTD3 and
TD3 algorithm are above 94% and still maintained at a high
level, especially the tracking success rate of MPTD3 algorithm
is more than 98%. Figure 12 shows the tracking paths of the
two algorithms in a complex environment. It can be seen that
both MPTD3 and TD3 algorithms can complete tasks. In

Fig. 8 Tracking path in simple environment. The blue UAV represents
the pursuer, the redUAV represents the evader, the green circle represents
the obstacle, the cyan area represents the perception range of the pursuer,

the blue track represents the motion path of the pursuer, and the red track
represents the motion path of the evader

Fig. 9 Cumulative reward curve and cumulative step curve of training in simple environment with noise
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Fig. 11 Tracking success rate curve of testing in complex environment. There is no noise in the pursuer’s perception information in (a), but there is noise
in (b)

Fig. 12 Tracking path in complex environment. There is no noise in the pursuer’s perception information

Fig. 10 Tracking success rate curve of training and testing in simple environment with noise
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addition, we also tested the trained pursuer with noise interfer-
ence in the perception information for 1000 rounds in this com-
plex environment. The tracking success rate curve is shown in
Fig. 11b, which also reaches more than 98%.

The experimental results in complex environment show
that both TD3 and MPTD3 algorithms have good environ-
ment generalization ability, and the effect of MPTD3 algo-
rithm is better. Therefore, when training the algorithm, the
pursuer can interact in a simple environment to reduce the
training difficulty and shorten the training time.

6 Conclusion

Aiming at the problem of autonomous obstacle avoidance and
target tracking of UAV in complex environment, an improved
deep reinforcement learning algorithm MPTD3 is proposed in
this paper. The experimental results show that the pursuer with
environmental perception can adapt to more complex environ-
ment by using MPTD3 and TD3 algorithms, and both show
excellent environmental generalization ability. However, com-
pared with TD3 algorithm, MPTD3 algorithm has better conver-
gence performance and higher tracking success rate due to the use
ofmultiple experience poolsmechanism and gradient clipping. In
addition, MPTD3 algorithm has good robustness and can effec-
tively overcome the noise interference in practical application.

There are still some limitations. On the one hand, the mo-
tion mode of real UAV is three-dimensional motion, which is
modeled as two-dimensional translation in this paper; on the
other hand, the proposed algorithm has not been tested in the
actual environment, which has complex obstacles. The future
work will mainly focus on building the three-dimensional

model of UAV, training agents to realize autonomous obstacle
avoidance and target tracking in the three-dimensional envi-
ronment, and then further expand to the actual environment.
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