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Abstract
The rapid and orderly evacuation of passengers at the railway hub station in case of emergencies is an important issue for
railway safety and efficiency. In this paper, a robot-guided passenger evacuation method is proposed to help passengers
search evacuation paths and avoid potential risks. The number and initial positions of robots are determined by using
a k-means clustering approach. The exit assignment and evacuation paths of robots are calculated by using a hybrid
bi-level optimization approach taking into account the cooperative mechanism between robots. Then, a robot-guided
crowd evacuation dynamical model is built based on a modified social force model, in which a navigation force is
introduced to influence the speed and direction of evacuees. A case study of a typical railway hub station is used to
demonstrate the effectiveness of the proposed approach. The scenarios of the mall and platform are designed to verify the
evacuation efficiency under different robot distribution schemes. The experimental results prove that setting up robots can
effectively reduce evacuation time, and the utilization of exits is more balanced. The proposed optimal scheme shows the
best performance in evacuation efficiency, including evacuation time and exit utilization rate, compared to the uniform
distribution scheme and no robot scheme.

Keywords Robot guided crowd evacuation · Modified social force model · Railway hub station · Robot distribution ·
Cooperative mechanism · Emergencies

1 Introduction

As a dispersal center of passengers, the railway hub station
usually has a complex internal structure and interchange
paths, and poor connectivity to the outside community. Pas-
sengers have difficulty finding destinations and walking/
evacuation paths under normal and emergent events. Emer-
gency evacuation of passengers is an important part of pub-
lic safety. In case of emergency in crowded places of
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stations, such as platforms, tunnels, and other places, it is
easy to cause serious congestion and even trampling and
casualty events. Therefore, evacuating the crowd efficiently
and safely becomes the key to ensuring social security
issues.

In recent years, the problem of passenger evacuation in
railway stations has received wide attention and focus from
researchers and managers. An in-depth understanding of
how passenger flow is organized in the station and the evac-
uation behavior of passengers is conducive to improving
the evacuation efficiency of railway stations in case of emer-
gencies. At the same time, measures of setting evacuation
guidance such as leader, signage, and robot, are also recog-
nized as effective means of providing guidance information
on paths and exits and reducing evacuation time and casu-
alties [1]. The signage system can provide basic directional
and routing information for passengers, as well as evacua-
tion routes in emergency situations. Its effectiveness largely
depends on the message conveyed by the sign, the legibil-
ity, interoperability, and height of the sign. However, the
signs suffer from shortcomings such as easy to be ignored
and unintuitive instructions. Static indication information is
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difficult to be accepted, understood and adopted by evac-
uees. Leaders, having access to more information than
passengers, can provide more direct evacuation information
to passengers and lead them along safe, less crowded paths.
However, setting up leaders often means a higher cost on an
ongoing basis and is difficult to adapt to scenarios that could
cause harm to leaders, such as fires.

Previous researchers have proposed various models like
social force (SF) model [2], cellular automaton (CA) model
[3], agent-based model [4], discrete-time motion (DTM)
model [5] to study robot-guided evacuation problems.
The effect of robots on human behavior has also been
carefully considered in the model. Garrell et al. [5, 6]
proposed a multi-robots cooperative optimization methods
to guide and regroup evacuees during guiding evacuation
missions. A DTM model was introduced to address this
problem with the goal of minimization of cost for guiding
evacuees. Boukas et al. [3] studied the robot-guided crowd
evacuation by using a cellular automaton model and a
custom-made robotic platform, the evacuees were guided
to a less crowded exit by using a mobile robot and the
evacuation efficiency were improved significantly. Zhang
and Guo [7] presented a distributed multi-robot guided
crowd evacuation system for improving the evacuation
efficiency in case of emergencies. A cooperative algorithm
was designed to generate the optimal exit distribution
scheme and enable exits to be used properly. Sakour and
Hu [4] proposed an agent-based evacuation system to study
robot-assisted crowd evacuation, the quad-rotors were used
to provide a safe and less crowded path for evacuees.
The crowd evacuation efficiency under two robot guidance
strategies i.e., shepherding and handoff, was investigated
by Nayyar and Wagner [8]. Zhang et al. [9] attempted to
quantitatively explore the impact of a robot and its type
on pedestrian dynamics through controlled human-robot
crossing experiments, which provides effective support for
modeling realistic robot-guided pedestrian behaviors. Kim
et al. [10] designed a portable robot with high-temperature
resistance for environmental perception and guiding crowd
evacuation in fire scenarios.

The robot-assisted pedestrian regulation has been inves-
tigated in typical scenarios such as shopping mall [2], exit
corridor [11], walkway [12] and L-shaped area [13]. Tang
et al. [2] proposed a modified social force model to study
robot-assisted crowd emergency evacuation taking the panic
propagation into account, the optimal exit solution is gen-
erated by using an exit selection algorithm with the goal
of minimizing evacuation time. Jiang et al. [12, 14] for-
mulated the robot-assisted pedestrian optimization problem
into an optimal control based on the social force model with
embedded passive human-robot interaction relation. An
adaptive dynamic programming-based learning approach
was proposed to optimize the robot motion parameters and

control the movement of pedestrians at the desired speed,
and finally to optimize pedestrian flow and reduce the
risk of crowd disasters. Wang et al. [13] proposed a deep
reinforcement learning to solve the same problem with max-
imization of the pedestrian outflow in the scenario of an
L-shaped area with a bottleneck. Robots’ motion decisions
were learned online through a CNN and a Q network.

Sakour and Hu [15] reviewed the crowd simulation
methods from macroscopic and microscopic perspectives
and analyzed the positive effect of autonomous robots on
disaster evacuation and rescue missions. Liu et al. [16]
formulated the robot-assisted crowd evacuation as an opti-
mal control problem, and the distribution and command of
robots were determined. A stochastic differential equation
model was proposed to describe the motion of pedestrians
taking into account the impact of robots. Bahamid et al.
[17] reviewed and discussed the robots-guided evacuation
systems equipped with advanced perceptual devices such
as cameras and sensors. The mechanisms of trust of evac-
uees in robots and the factors affecting human-robot trust
during crowd evacuation have also received attention from
researchers [18].

Robinette et al. [19, 20] systematically investigated how
to efficiently guide crowd evacuation through robots and the
mechanisms of change in evacuees’ trust in robots through
experiments with a total of more than 2,000 people. Experi-
ments in real and virtual scenarios were implemented to
compare their differences in robot trust. Most human evac-
uees would trust a guidance robot that conveys understan-
dable messaging and exhibits effective guidance behavior
in emergency scenarios. Robinette et al. [21] identified pos-
sible negative effects of the robot on crowd evacuation
when robots did not perform well through controlled non-
emergency and emergency experiments in an interior area of
buildings. Wagner [22] given a view that the robot-guided
evacuation is used as a paradigm for human-robot inter-
action, and a series of approaches for developing robots
and solving evacuation problems were proposed to obtain
solutions. Therefore, ensuring that the guidance information
provided by robots is accurate and reliable is a prerequi-
site and key to improving the efficiency of robot-guided
evacuation.

The main contribution is summarized as follows. Firstly,
the number and initial positions of robots are determined
by using a k-means clustering approach. Secondly, the exit
assignment and evacuation paths of robots are calculated by
using a hybrid bi-level optimization approach. Then, a
robot-guided crowd evacuation dynamical model is built
based on a modified social force model, in which a naviga-
tion force is introduced to influence the speed and direction
of evacuees. At last, a case study in a typical railway hub
station is conducted to demonstrate the effectiveness of the
proposed approach.
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The remainder of this paper is organized as fol-
lows. Section 2 presents and formulates the robot-guided
crowd evacuation problem in a railway hub station, the
robot-guided crowd evacuation schemes, including initial
distribution, exit assignment, and path planning of robots, are
generated based on k-means clustering and multi-objective
collaborative optimization algorithms. In Section 3, the mo-
dified social force model is built to model the crowd evacu-
ation dynamics with the guidance of robots. A case study is
conducted to study the effectiveness of robot-guided crowd
evacuation schemes in Section 4. The conclusions are made
in Section 5.

2 Description and Formulation
of Robot-Guided Crowd
Evacuation Problem

In the event of an emergency such as a power outage or fire
in the platform of railway hub station, the passenger’s visual
field is reduced, which makes it difficult for passengers to
find an exit and a suitable evacuation path. By adding a
certain number of robots in suitable places, the efficiency of
crowd evacuation can be greatly improved and the difficulty
of way-finding reduced. The proper placement of the robots
and their coverage for evacuees greatly determines the
robots’ guiding efficiency. In addition, the choice of evacua-
tion paths and exits for robots and their followers also
affects evacuation efficiency.

The robot-guided crowd evacuation problem is trans-
formed into a problem of determining the initial location
and number of robots and evacuation paths. The optimal dis-
tribution scheme is formulated by using the k-means clus-
tering method. The evacuation paths are then determined
by a Multi-objective cooperative coevolutionary algorithm.
A real platform scenario of railway hub stations is cho-
sen for studying guidance schemes and characteristics of
robot-guided crowd evacuation. The number and positions
of robots are determined by considering the cost of robots
and the coverage of passengers. A k-means clustering-based
robot distribution optimization algorithm is proposed to
search the initial position of robots during evacuation.

2.1 Scenario Description and Assumptions

We take a typical railway hub station as an example to
illustrate the formulation of robot-guided crowd evacuation
scheme (Fig. 1). The physical space of railway platform is
defined by � ∈ R2. It is divided into a set of smaller grids
with the size of l ∗ l. The red lines represent the exits/entran-
ces (g = 1, 2, · · · , G). The blue blocks represent obstacles
that cannot be penetrated, which are defined by areas (m =
1, 2, · · · , M). The red dots (r = 1, 2, · · · , Nrob) and black

dots (p = 1, 2, · · · , Npas) correspond to the robots and
passengers, respectively.

We make some reasonable assumptions in order to
facilitate and simplify the problem formulation.

1) The robot always gives the right instructions, and the
passenger always trusts the robot he/she chooses to
follow.

2) There is no conflict in evacuation instructions given by
various robots during the evacuation process.

3) The states of robots, i.e., position, linear velocity,
and angular velocity, are completely controlled by the
Central Control Room of railway hub stations.

2.2 Robots’ Initial Distribution Optimization

A robots’ initial distribution scheme is generated to determi-
ne the number and initial positions of robots in the platform
of railway hub stations. The following fitness function is
designed to evaluate the distribution scheme by trading off
the cost of robots and coverage of passengers.

Fit = 1

ωr · Nrob + ωc · Cr

(1)

where ωr and ωc are the wights of cost and coverage,
respectively. Cr corresponding to the coverage of passenger,
which is defined as follows:

Cr = Npas

Nc

(2)

where Npas is the total number of passengers on the
platform at the beginning of the evacuation. Nc is the sum
of the number of passengers guided by robots, which is
calculated by the following equation.

Nc =
Npas∑

i=1

ICi (3)

where ICi is a binary variable, its value is 1 if passenger i
is guided by a robot, and 0 otherwise. It is defined as shown
in Equation 4. The schematic of coverage of passengers is
shown in Fig. 2.

ICi
i∈gr

=
{
1 dir ≤ rro
0 otherwise

(4)

where rro is the radius of influence of robot r . gr

represents the set of elements of cluster r . dir =√
(xr − xi)

2 + (yr − yi)
2, (xi, yi) and (xr , yr ) represent

the coordinates of passenger i and robot r , respectively.
The initial positions of robots are obtained by using

the k-means clustering method taking into account the
passengers’ distribution and the coverage of evacuees. The
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Fig. 1 The geometry of two typical scenarios at railway hub stations: (a) hall, and (b) platform

flowchart of the k-means clustering-based robot position
optimization algorithm is shown in Fig. 3. The procedure of
this algorithm can be summarized as follows:

Step 1 Initialization: inputting the geometry configuration
of platform scenario, the initial distribution of passengers,
and the initial number of clusters k = 1, k ∈ [1, K];

Step 2 Increasing the number of clusters k = k + 1;

r

IRr

ror

ird
i

Fig. 2 The schematic of coverage of passengers

Step 3 Calculating the initial positions of robots (centroid)
by using a k-means clustering method for a given number of
clusters;

Initialization

(Geometry configuration of scenario, distribution of 

passengers, initial number of clusters)

k = k+1

Calculating the initial positions of robots  (centroid)  

based on a k-means clustering method

Calculating the coverage of passengers

Terminal conditions?

Outputting the number of clusters and positions of 

robots

End

Yes

No

Fig. 3 The flowchart of k-means clustering based robot position
optimization algorithm
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Step 4 Calculating the coverage of passengers according to
the Equation 4;

Step 5 Termination criterion: If the number of clusters
reaches the maximum, or the values of the fitness function
(Equation 1) for three successive iterations are no more
decline, it is considered to converge to the optimal value and
iteration process is terminated. Otherwise, skip to Step 2;

Step 6 Outputting the number of clusters and positions of
robots.

2.3 Exit Assignment and Path Planning for Robots

After the initial positions and the number of robots are
given, it is necessary to further assign exit and evacuation
paths to them with certain objectives. Considering the real-
time requirements and huge solution space of the exit
assignment and path planning problem, we propose a hybrid
bi-level approach to search for the optimal solution. The
schematic of the solution procedure is described in Fig. 4.
The upper level is used to solve robots’ exit assignment
problems, and the lower level is used to solve robots’ path
planning problems.

Initialization

(Geometry configuration of scenario, Initial positions of robots)

0-1 integer programming model

Heuristic algorithm

(Multi-objective cooperative co-evolutionary algorithm)

Path planning scheme E2

Exit assignment scheme E1

Robots  evacuation scheme E

Euclidean distance of OD pairs, imbalance level of exits

utilization

Upper-level

Lower-level

Fig. 4 Schematic of the solution procedure of the exit assignment and
path planning scheme

2.3.1 Upper Level Exit Assignment

The initial position of robots is an Nrob ∗ 2 dimensional
matrix, which is denoted as S = [s1, s2, · · · , sr , · · · ,

sNrob
]′, where sr = (xo

r , yo
r ). The decision variable of

exit assignment is defined as X, which is an Nrob ∗ Ngoal

dimensional matrix.

X =
⎡

⎢⎣
χ1,1 · · · χ1,Ngoal

...
. . .

...
χNrob,1 · · · χNrob,Ngoal

⎤

⎥⎦

Nrob×Ngoal

(5)

where χr,g is a binary variable, its value is 1 if robot r is
assigned to exit g, and 0 for otherwise.

A bi-objective optimization model is built to determine
the exit assignment scheme taking into account the path
length and exit balancing.

H(X) = min [h1(X), h2(X)] (6)

s.t .

Ngoal∑

g=1

χr,g = 1, for ∀r ∈ {1, 2, · · · , Nrob} (7)

χr,g ∈ {0, 1} (8)

where h1(X) and h2(X) represent the sum of Euclidean
distance between the initial position and the destination and
the imbalance level of exit utilization, respectively.

The h1(X) is defined as follow:

h1(X) =
Nrob∑

r=1

Ngoal∑

g=1

χr,g · drg (9)

where drg represent the Euclidean distance between the
robot’s initial position and its destination.

The h2(X) is defined as follow:

h2(X) =
Ngoal∑

g=1

⎛

⎜⎜⎜⎝

|
Nrob∑
r=1

χr,g · N
p
r − Avep|

Avep

⎞

⎟⎟⎟⎠ (10)

It reflects the degree of imbalance in the utilization rate
of each exit during the crowd evacuation process under the
guidance of robots. Avep represents the average number
of evacuated passengers per exit, i.e., Avep = Npas

Ngoal
. N

p
r

denotes the number of passengers who choose to follow
robot r for evacuation.

Constraint (7) indicates that each robot must be assigned
an exit. Constraint (8) indicates the value of decision
variable is 1 or 0. The h1(X) and h2(X) are normalized and

Page 5 of 14    67J Intell Robot Syst (2022) 104: 67



their weights depend on the decision maker’s preference.
If the weight of h1(X) is 1, it degenerates to the shortest
distance exit assignment scheme. If the weight of h2(X)

is 1, it is the absolute mean exit assignment scheme. The
above exit assignment problem is a typical 0-1 integer
programming problem. It can be solved by using LINGO
software.

2.3.2 Lower Level Path Planning

The initial position and destination of robot r ∈ {1, 2, · · · ,

Nrob} are sr = (xo
r , yo

r ) and gr = (x
g
r , y

g
r ), respectively.

The decision variables of path planning for all robots are
denoted as a matrix P = [P1, · · · ,Pr , · · · ,PNrob

]. The
path of robot r is denoted as Pr = {p1, · · · , pj , · · · , plr },
where p1 = sr , plr = gr . After the initial positions
and destinations of robots are given, a multi-objective opti-
mization model is built to determine their evacuation paths.

F(P∗) = min [f1(P∗), f2(P∗), f3(P∗)] (11)

where f1(P), f2(P), f3(P) represent the sum of the path
lengths, smoothness, and safety performance, respectively.

The f1(P) is defined as follow:

f1(P) = Nrob
max
r=1

{Len(Pr )} + N1 · η1 (12)

where Len(Pr ) represents the path length of
robot r , which is defined as Len(Pr ) =
lr−1∑
j=1

√
(x

j+1
r − x

j
r )

2 + (y
j+1
r − y

j
r )

2
. N1 is the number of

unfeasible segments in path Pr . η1 is a positive integer.
The f2(P) is defined as follow:

f2(P) =
Nrob∑

r=1

Smo(Pr ) (13)

where Smo(Pr ) represents the smoothness of the path of

robot r , which is defined as Smo(Pr ) =
Nt∑
k=1

cosϕk

Nt
. Nt is the

number of inflection points of the entire path of robot r and
cosϕk is the cosine of the k th corner.

The f3(P) is defined as follow:

f3(P) = Nrob
max
r=1

{Saf(Pr )} (14)

where Saf(Pr ) represents the safety performance of the
path of robot r . When the path Pr is feasible, it is defined as
Saf(Pr ) = 1

do
min

. do
min denotes the shortest distance between

robot r and all obstacles and other robots during its motion

process. Otherwise, Pr is defined as N1 · η3, where η3 is a
positive integer.

We use a multi-objective cooperative co-evolutionary
algorithm [23] to search the optimal paths for robots. The
algorithm uses the Pareto dominance concept to extend
the single-objective cooperative co-evolutionary model to
solve multi-objective optimization problems. An external
set of limited capacity is set to store the non-dominated
solutions searched during the evolutionary process and
make them participate in each generation to form the
parental subpopulation of the new generation. Thus, starting
from generation 2, the parents of the subpopulation contain
the elite individuals retained by the external set. Each
individual to be evaluated in the subpopulation of children
generated by the reproduction operation will cooperate to
generate the complete solution from randomly selected
individuals from the parents of the remaining subpopulation
(the purpose of random selection is to increase the diversity
of the searched candidate solutions) and determine whether
the solution should be updated for the external set based on
the concept of Pareto domination: if no solution exists in the
external set that dominates or is equal to the solution, the
solution is added to the external set and all solutions in the
external set that are dominated by the solution are removed;
otherwise, the newly generated solution is discarded. The
procedure of multi-robots’ path planning is as follows:

Step 1 Let evolutionary generation e = 1, randomly
generate Nr initial parent-subpopulations Parpopi(r) with
the size Nc, and set an empty external set A. Each
chromosome in the subpopulation represents a path of robot
r, encoded in floating point numbers with the following
structure:

Parpopi(r) = [(x1
r , y1

r ), · · · , (x
j
r , y

j
r ), · · · , (xlr

r , ylr
r )]

(15)

Step 2 Perform evolutionary operations, i.e., crossover,
mutation, deletion, repair, and smooth, on each parent
subpopulation in turn to generate Nr child subpopulations
Childpopi(r).

Step 3 Let each individual in the Childpopi(r) cooperate
with the parent Parpopj (r) of the rest of the subpopulation,
in turn, to generate a complete solution, calculate the
value of the multi-objective function of the solution, and
determine whether the solution should be updated or
discarded for the external set A until all individuals in the
subpopulation of all children have been processed.

Step 4 If the number of solutions in the external set A
exceeds its maximum capacity M, a reduction operation is
performed on it to remove those solutions that have the
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nearest neighbors (the shortest distance to the remaining
solutions).

Step 5 If |A| ≤ N (| · | denotes the number of elements in
the set), thenN−|A| individuals are randomly selected from
each offspring subpopulation Childpopi(r), respectively,
and they are combined with the corresponding components
of all solutions in A to form a new generation of parent
subpopulation Childpopi+1(r), otherwise, if |A| > Nc,
then Nc solutions are randomly selected from A and their
components are combined to form a new generation of
parent subpopulation.

Step 6 If the termination condition is satisfied, then the ex-
ternal set A is output as the final found non-dominated solu-
ion set and the algorithm terminates, otherwise, e = e + 1
and go to step 2.

3Modeling of Crowd Evacuation Dynamics
with the Guidance of Robots

3.1 Robot Kinematic Model

In this study, the two-wheeled differential drive robot is
chosen to guide pedestrian evacuation in case of emergen-
cies. The differential drive is a two-wheeled drive system
with independent actuators for each wheel. The illustration
of the two-wheeled differential drive robot kinematic model
is shown in Fig. 5. vl and vr are the speeds of the left wheel
and right wheel of the robot, respectively. dwb denotes the
diameter of the outer circle of the robot, rc denotes the
steering radius of the center point of the robot. [vc, ω]T
describes the speed of the center point (red circle), where vc

is the linear velocity, and ω is the angular velocity. The blue

curve is the trajectory of the robot. ICR is an abbreviation
for the instantaneous center of rotation, which represents the
point that the rigid body has only rotational motion around
it.

An inverse kinematic model is designed by direct con-
trolling of the two-wheeled differential drive method.

[
vr

vl

]
=

[
1 dwb

2
1 − dwb

2

][
vc

ω

]
(16)

If the center of a robot is controlled to move at a preset
speed (vc, ω), then the theoretical speed of the two drive
wheels is calculated by Eq. 16, and then the PID algorithm
is used to control the precise rotation of the drive wheels.

During the crowd evacuation in case of emergencies,
the linear velocity vc is determined by the speed of the
passengers following it. The angular velocity ω is deter-
mined by the evacuation path of the robot.

3.2 Robot-Guided Crowd EvacuationModel

In this paper, the effects of robot guidance on passenger
dynamics are formulated based on the social force model
[24]. During the evacuation passengers will choose to follow
the robot or their neighbors depending on their surroun-
dings. When passengers do not know the location of the
exits, they will choose to follow the robot or their neighbors
depending on the surroundings during the evacuation
process. The presence of robots affects not only the desired
direction but also the movement velocity of the passenger.
The diagram of the modified social force model for robot-
guided passenger movement is shown in Fig. 6. The circular
vision field (VF) with a certain radius rvf is considered
in this model ([25–27]). dij , diw, and dir represent the

Fig. 5 Illustration of the
two-wheeled differential drive
robot kinematic model

RICR
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wbd
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L

Page 7 of 14    67J Intell Robot Syst (2022) 104: 67



iwf

ijf

i

j

vfr

wall

ij

ijd

iwd

iv

VFi

0

ie 0

if

targetrobot

e

r

passenger

ird

irf

ir
r
if

Fig. 6 Illustration of the decision maker interacting with environments
under the effect of robot

distances between the passenger i and passenger j , obstacle
w, and robot r , respectively.

The modified social force model for passenger move-
ment is formulated as follows:

mi
dvi

dt
= f 0

i + ∑
j∈V Fi

f ij + ∑
w∈V Fi

f iw + ∑
r∈V Fi

f ir + f r
i
,

(17)

where V Fi represents the visual field of passenger i. f 0
i

represents the desired force of passenger i, which reflects
the speed that the passenger wants to achieve. f ij , f iw, and
f ir correspond to the ‘interaction force’ between passenger
i and passenger j , passenger i and wall w, and passenger i

and robot r , respectively.
The desired force f 0

i is expressed by the following
equation:

f 0
i = mi

v0i (t)e
0
i − vi (t)

τi

, (18)

where e0i (t) corresponds to the desired direction of
passenger i, which is in accordance with the direction of
guidance’s instruction, v0i (t) and vi represent the desired
speed and actual velocity of passenger i, τi is the relaxation
time [24].

The definitions of f ij and f iw are consistent with those
presented in the Ref. [25]. The effect of the visual field in
socio-psychological force is also considered in this model.

f ij = Ai · exp[(rij − dij )/Bi] · nij · (19)

×
(

λi + (1 − λi)
1 + cos(ϕij )

2

)
+

k · g(rij − dij ) · nij + κ · g(rij − dij ) · 
vt
ji · t ij

where λi is a constant that takes values in the range 0-1. It
determines that passengers in front of the visual field bring
a greater impact than those behind. The angle ϕij is defined
as follows: cosϕij (t) = −nij (t) · ei (t).

f iw = Ai · exp[(ri − diw)/Bi] · niw

+ k · g(ri − diw) · niw + (20)

κ · g(ri − diw) · 
vt
wi · t iw

The interaction force of f ir between passenger i and
robot r is similar with that of f ij . The definition of other
parameters is the same as that in Ref. [28].

We introduce the navigation force f r
i to quantify the

effect of the robot guidance on the movement of passenger i.
It reflects the tendency that the passenger try to move toward
the robot. During the evacuation process, the navigation
force is generated when passenger i chooses to follow robot
r . The navigation force f r

i is formulated as follows:

f r
i = αi · mi ·

[
−b1

xi (t) − xr (t)

τ 2i

− b2
vi (t) − vr (t)

τi

]

(21)

where αi is a binary variable, its value is 1 if the follower i

can get the robot’s information, and 0 for otherwise. b1 and
b2 are coefficients, which reflect the weights of navigational
feedback. xi (t) and xr (t) are the positions of follower i and
robot r respectively at time t . vr (t) is the speed of robot r at
time t .

The environment of railway hub stations is complex
and changeable in case of emergency. According to the
distributions of robots, passengers, obstacles, and exits,
the flowchart of passenger’s decision process under the
influence of robots is shown in Fig. 7.

Based on the flowchart shown in Fig. 7, the rules for
determining the desired direction of a passenger i is defined
as follows:

e0
i

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

eexit , exit

nir , robot

Norm[(1 − pi) · ei + pi

〈
e0j (t)

〉

i
], neighbours

Rand(n), nothing

(22)

From the passenger evacuation dynamics model
described in Equation. 17, it is clear that when passengers
choose to follow the robot for evacuation, they are sub-
jected to navigational forces (Equation 21) and thus change
their movement speed, while the desired direction changes,
i.e., following the path of the guiding robot.
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Fig. 7 Flowchart of passenger’s
decision process for the desired
direction under the influence of
guidance
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The optimization problem considered in Section 2 is to
obtain the optimal initial distribution of robots and their
exits and evacuation paths. Among them, the robot cost
and coverage of passengers are examined in the initial
distribution optimization, which is to maximize the robot
guidance efficiency and lead as many passengers as possible
for evacuation with as few robots as possible. In the
optimization of exit assignment and path planning, factors
such as the length of the evacuation path and utilization of
each exit (degree of imbalance) are taken into account in
order to reach the exits as quickly as possible and to make
each exit is used rationally.

4 Case Study

A case study of a typical Beijing railway hub station is
used to demonstrate the effectiveness and feasibility of the
proposed approach. The typical scenarios of the mall and
platform, as shown in Fig. 1, are chosen to simulate the
crowd evacuation dynamics with the guidance of robots.
The robot-guided evacuation scheme is obtained according
to the method proposed above, which is noted as Opt Dist.
We also design the uniform distribution (Uni Dist) and no
robot guidance (No Robot) as comparison schemes. For the
Uni Dist scheme, a given number of robots are uniformly
distributed in the hall. The number of robots is consistent
with that in the Opt Dist scheme.

The robot kinematic model and passenger evacuation
model are adopted to simulate the dynamics of robots
and evacuees respectively, during evacuation in case of
emergencies.

General parameters of the scenarios, the modified social
force models, and algorithms are shown in Table 1. For each

follower, the weights b1 = 0.05 and b2 = 0.05 are same as
that in Refs. [29] and [27].

The geometry of the mall is shown in Fig. 1a. There
are four 4-meter wide entrances/exits on four sides of the
mall, which are recorded as A, B, C, and D starting from
the west in a clockwise direction. Its area is 1920 square
meters. It has an obstacle with the size of 8 m ∗ 4 m in the
middle of the mall. The scenario of a smoke-filled mall is
designed to validate the proposed strategy. 300 passengers
are randomly distributed in the station with randomly given
initial directions and speeds. The radius of the visual field
rvf is set to 10 m in this paper. The range of visual field
of these passengers is affected by the smoke. The Opt Dist
scheme is generated by using the method proposed in
Section 3. Simulation experiments under the three schemes
are performed.

The snapshots of the robot-guided crowd evacuation with
the Opt Dist scheme at a mall of railway hub station at
different time steps are shown in Fig. 8. At the beginning of
the evacuation, 300 passengers are randomly distributed in

Table 1 General parameters of the scenario and the modified social
force model

Symbol Meaning Value

mi Passenger mass 65 kg

ri Passenger radius 0.3 m

τi Characteristic time 0.5 s

Ai Avoidance force intensity 2000 N

Bi Avoidance coefficient 0.08 m

κ Coefficient of sliding friction 2.4 × 105 kgm−1s−1

k Body compression coefficient 1.2 × 105 kgs−2

λi Non-isotropic influence of vision field 0.3
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Fig. 8 The snapshots of the robot-guided crowd evacuation at a mall of the railway hub station

the hall. Based on the c-means clustering method proposed
in Section 3, 8 robots are arranged in the hall as shown by
the red dots in Fig. 8. The exit distribution and path planning
schemes for robots are also generated taking into account
evacuation distance and exit balancing. Passengers who near
the exits began to evacuate from the direction of the exits.
Other passengers search for the visual field then choose
to follow a nearby robot for evacuation and move towards
the exits. Then, some of the passengers distributed near the
exit are evacuated out of the hall under the guidance of the
robots. The remaining passengers are guided by the robots
and formed 5 groups to move along the direction of the exits.
From Fig. 8c we can see that almost all the passengers are
evacuated in an orderly manner towards the exit under the
guidance of the robots, and those farther away from the exit
have arrived near the destinations. Eventually, the remaining
passengers were successfully evacuated.

The utilization rate of the exits under the guidance of
robots reflects the performance of the proposed schemes
in terms of exit equilibrium. The number and proportion
of passengers evacuated from each exit under different
schemes were compared and analyzed from a quantitative
perspective. The number (percentage) of evacuated passen-
gers through four exits under the Opt Dist scheme, Uni Dist
scheme, and No Robot scheme are shown in Table 2. The
number of evacuees at each exit under the three schemes
shows a more significant difference. More passengers evac-
uate from the mall via Exits C and D than the other exits
under the Opt Dist scheme. The number of passengers evac-
uated from Exits A and C would be higher under the
No Robot scheme. In contrast, the number of evacuees at
each exit is relatively balanced in the Uni Dist scheme,
because the initial distribution of passengers is randomly
given.

Table 2 The number
(percentage) of evacuated
passengers through four exits
under different robot
distribution schemes

Scheme The number (percentage) of evacuated passengers

Exit A Exit B Exit C Exit D

Opt Dist 65.18 (21.73%) 63.25 (20.08%) 94.16 (31.39%) 77.41 (25.80%)

Uni Dist 80.32 (26.77%) 72.26 (24.09%) 86.48 (28.83%) 60.94 (20.31%)

No Robot 85.24 (28.41%) 62.18 (20.73%) 88.32 (29.44%) 64.26 (21.42%)
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Fig. 9 The snapshots of the robot-guided crowd evacuation at a platform of the railway hub station

The scenario of the platform, as shown in Fig. 1b, is
also chosen to further evaluate the effectiveness of the
proposed method. It has an area of 1440 square meters with
dimensions of 12 m ∗ 120 m. Three entrances/exits are
located on the left, middle, and right sides of the platform,
which are recorded as A, B, and C from left to right. Three
obstacles are located on the right side of the platform, each
with a size of 12 m ∗ 6 m.

The snapshots of the robot-guided crowd evacuation at a
platform scenario are shown in Fig. 9. The initial positions
and paths of robots are generated in the same way as that
in the mall scenario. 7 robots are distributed in the platform
based on the distribution of passengers. At the moment the
evacuation begins, passengers who near the exits began to
evacuate from the direction of the exits. Other passengers
are searching for robots in their visual field and begin to
follow them to evacuate. These passengers are divided into
7 groups and led by robots in the direction of the assigned
exits. Most of passengers are successfully evacuated from
the three exits, and some passengers reached near the exits

Table 3 Mean evacuation distance and mean evacuation time for
different path planning strategies under the optimal distribution
scheme

Strategy Optimal Path Shortest Distance

Mean Evacuation Distance (m) 20.62 18.56

Mean Evacuation Time (s) 56.24 64.52

by following the guidance of robots. But the number of
passengers to be evacuated from each exit is uneven. Finally,
only a group of passengers is left near Exit 2.

We conduct the comparison of evacuation efficiency
for different path planning strategies under the optimal
distribution scheme. Table 3 gives a comparison of the mean
evacuation distance and evacuation time under different
path planning strategies under the optimal distribution
scheme. Each individual is evacuated according to the
shortest path, and the average evacuation distance is 18.56
m. This is a reduction of 2.06 m compared to the optimal
solution. The frequency distribution of evacuation distance
for different path planning strategies under the optimal
distribution scheme is given in Fig. 10. The frequency of
the evacuation distance under the optimal solution is lower
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Fig. 10 Frequency of passenger walking distance for different path
planning strategies under the optimal distribution scheme
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Fig. 11 Number of passengers on platform against evacuation time under three kinds of robot guidance schemes: (a) Opt Dist scheme, (b)
Uni Dist scheme, and (c) No Robot scheme

in the interval of 10 m-20 m than the shortest solution, and
for evacuation distance, greater than 20 m is higher than
that of the shortest solution. However, individuals all choose
the shortest evacuation path, which does not guarantee the
minimum evacuation time. The evacuation time is 12.8%
lower than that under the shortest distance strategy. This is
because the passenger evacuation process under the shortest
distance strategy may lead to congestion in bottleneck
areas such as corners and exits. For evacuation time, the
individual optimum is not equal to the global optimum.

The number of passengers on the platform against evacu-
ation time under different robot guidance schemes is shown
in Fig. 11, which also reflects the utilization and balance
of exits under different schemes. At the beginning of the
evacuation, the evacuation speed of passengers at each exit
is essentially the same under three schemes. The difference
starts to appear after 30 seconds and gradually becomes
larger, which is particularly evident in the No Robot scheme
with a lower utilization rate. After 60 seconds, a small num-
ber of passengers are still evacuated from Exits 2 and 3. In
contrast, the proposed Opt Dist scheme in this paper main-
tains a high utilization of each exit during the evacuation
process. Compared with the No Robot scheme, the Uni Dist
scheme improves the exit utilization and reduces the total
evacuation time, but some passengers are still evacuated
from Exit 2 after 60 seconds.

The number (percentage) of evacuated passengers
through three exits under the Opt Dist scheme, Uni Dist
scheme, and No Robot scheme are shown in Table 4.

Table 4 The number (percentage) of evacuated passengers through
three exits under different robot distribution schemes

Scheme The number (percentage) of evacuated passengers

Exit 1 Exit 2 Exit 3

Opt Dist 92.65 (30.88%) 118.57 (39.52%) 88.78 (29.59%)

Uni Dist 55.25 (18.42%) 133.22 (44.40%) 111.53 (31.18%)

No Robot 60.09 (20.03%) 159.03 (53.01%) 80.88 (26.96%)

Regardless of which scheme is used, Exit 2 evacuates the
largest number of passengers, which accounts for more than
39% of the total. Conversely, Exit 1 evacuated the least
number of passengers, which is less than 20% under the
Uni Dist scheme. The No Robot scheme shows the most
significant variability in the number of evacuees at each exit,
in which Exit 2 occupies more than half of the total. The
Opt Dist scheme has the closest proportion of evacuees at
each exit, showing good balance and the highest evacuation
efficiency. The performance of the Uni Dist scheme is in
between the other two schemes.

The relationship between the number of passengers and
evacuation time under different schemes is shown in Fig. 12.
The evacuation time is defined as the time it takes for
the last passenger to leave the platform. The number of
evacuated passengers shows a non-linear relationship with
evacuation time for the same scheme. The effect of the
change in the number of passengers on the evacuation time
is not significant in the No Robot scheme. The number
of passengers increased by 200, but the evacuation time
increased by only 10 seconds. The evacuation time for 300
passengers under the Opt Dist scheme is 56 seconds, which
is a 14% and 10% increase over the time for 100 and
200 passengers, respectively. The evacuation time for the
same number of passengers under the Uni Dist scheme lies
between the other two schemes.
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Fig. 12 The number of passengers against the evacuation time under
different robot distribution schemes
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5 Conclusion

The introduction of robots can provide passengers with
effective evacuation information, such as safety exits and
evacuation paths. In this paper, we proposed a multi-robot
guided passenger evacuation method to help passengers
search evacuation paths and avoid potential risks. Based
on the initial distribution of passengers at the moment
of the emergency event, the number and initial positions
of robots were determined by using a k-means clustering
approach. The optimal evacuation path was generated for
each robot by using a hybrid bi-level optimization approach.
Then, a modified social force model was proposed to
describe robot-guided crowd evacuation dynamics, in which
a navigation force was introduced to quantify the impact
of robots on pedestrian movement. An inverse kinematic
model was designed by direct controlling of the two-whee-
led differential drive method.

The effectiveness of the proposed robot-guided evacua-
tion scheme was demonstrated through a case study of a
typical railway hub station. Two kinds of experiments at
the scenarios of mall and platform were performed, respec-
tively. The results show that setting up robots can effectively
reduce evacuation time, and the utilization of exits is more
balanced. The evacuation time under the optimal path plan-
ning strategy is 12.8% lower than that under the shortest
distance strategy. The proposed optimal robot-guided crowd
evacuation scheme showed the best performance with more
than 30% lower evacuation time, compared to the uniform
distribution scheme and no robot scheme. The number of
passengers evacuated by each exit is more balanced under
the Opt Dist scheme. The proposed scheme can not only im-
prove the evacuation efficiency but also has less congestion.
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