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Abstract
Different from functional alternative equipments such as prostheses, the highly human-machine collaboration performance
are required in exoskeleton robots. At present, the commonly used physical human-machine interface can only obtain motion
after the movement occurs. Therefore, it is difficult to predict the non-rhythmic movement. The inherent intent detection
hysteresis exist in the physical human-machine interface. The cognition based human-machine interface directly detect the
neural electrical signals of the human body, and has the characteristics of advanced motion detection. However, the existing
methods based on the Hill muscle mechanics model mostly set muscle parameters based on experience. It is difficult to
accurately predict joint torque of different subjects because of the parameter difference of the muscle model. Therefore, in
this paper, we proposes a three-step muscle parameters identification paradigm for Hill muscle model based on exoskeleton
robots. Then, the Adam optimizer with variable learning rate is employed to identify the muscle parameters. Eight healthy
subjects are participated in the experiment. The results show that the proposed Adam optimizer with variable learning rate
can make the parameters stably convergence. The estimated torque of the identified Hill muscle model have lower error
than that of the neural network-based method. The performance of the proposed method is competitive with that of the
State-of-art method.

Keywords Exoskeleton robot · Hill muscle model · Human-machine-interface

1 Introduction

The lower limb exoskeleton robot is an effective motion
assist equipment that can improve the wearer’s mobility
with heavy load or Impairment of motor function. The
researches of lower extremity exoskeleton robots has been
developed rapidly in recent years and has been widely
studied in the fields of medical rehabilitation [1], load
transportation [2] and walking assist [3–5]. Different
from functional alternative equipments such as prostheses,
the highly human-machine collaboration performance are
required in exoskeleton robots. The basis of human-
machine collaboration is the human-machine interface.
Therefore, human-machine interface has become one of the
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key technologies in controling of lower-limb exoskeleton
robots.

According to the detection targets, there are mainly two
types of human-machine interfaces for lower extremity
exoskeleton robots currently [6]. The one is the physical
based human-machine interfaces which is to constructed
through sensors that detect motion, such as IMU [7] and
interaction force [8, 9] based physical human-machine
interfaces. This type of human-machine interfaces can
only collect the information after the movement occurs.
This kind of human-machine interfaces is difficult to
predict the non-rhythmic movement especially. Therefore,
this type of human-machine interface has an inherent
hysteresis of intent detection. The second one is the
cognition based human-machine interface which is to
constructed by detecting the human neuroelectric signal,
for example, the electroencephalograph (EEG) or surface
electromyography (sEMG) based human-machine interface
[10]. The advantage of this kind of human-machine
interface is the advanced detection of motion. However,
the EEG signal has a low signal-to-noise ratio (SNR) and
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complex patterns, which makes it difficult to use for real-
time control. Therefore, the researches on sEMG signals
based human-machine interfaces have been conducted in
controlling of exoskeleton robots.

There are three main ways to apply sEMG signals
to exoskeleton robots: The first one is to evaluate the
effect of the exoskeleton robot’s gait or assist mode by
the sEMG signals of the main muscles of the lower
limbs [11–13], and then provide the optimization direction
of power assist control offline. The second way is to
switch and control the fixed motion modes by sEMG
based pattern recognition. D. Llorente-Vidrio et al. [14]
proposed presents an event driven automatic controller
which employs the sEMG as the trajectory selector. L.
Zhang et al. [15] proposed the sEMG and multilayer
perceptron neural network based walking pattern selector
to control the lower limb exoskeleton robot. H.-J. Liu
et al. [16] proposed the sEMG and adaptive neuro-fuzzy
inference system (ANFIS) based selector to find proper
parameters that are better suited for different subjects.
Although the EMG signal can accurately identify a variety
of patterns, these patterns are relatively fixed and discrete,
and cannot be applied to continuous motion control. The
third category is the sEMG based torque estimation control
method. According to different modeling methods, this kind
of method can be further divided into two sub-categories:
machine learning-based methods and biomechanical model-
based methods. Machine learning based methods usually
employ linear regression models or neural networks to
estimate joint torque through sEMG signals, and then
implement the control of exoskeleton robots based on the
estimated torque. Z. Li et al. [17] proposed the nonlinear
normalization method to estimate joint torque and then
cascade the Kalman filter to smooth the torque curve. The
estimated torque are tracked by a PD controller afterward.
K. Kiguchi et al. [18] proposed a linear regression model to
estimate the multi-joint torque by sEMG signal. Similarly,
K. Gui et al. [19] employed the linear regression model to
estimate torque in the exoskeleton robot controller as well.
To solve the disadvantages of insufficient torque accuracy
of linear regression model, G. Yin et al. [20] proposed
the sEMG and bayesian fusion algorithm based method
to regress the gait cadence. Besides, [21–25] proposed a
series of nonlinear regression methods based on neural
networks. The model based on machine learning is simple
and convenient, but lacks interpretability, and it is difficult
to adjust the delay, gain and other characteristics of the
model. The biomechanical model-based methods usually
employ Hill-based muscle model to estimate joint torque.
D. Ao et al. [26, 27] employed the Hill model to estimate
the torque of ankle joint to control the exoskeleton robot.
H. Liu et al. [28] proposed a sEMG signals based and
combining the regression method with the classification

method human robot cooperative control framework to
control the pneumatic upper limb exoskeleton in accordance
with the wearer’s motion intentions. The regression model
is based on the Hill-type musculoskeletal model. Z. Li
et al. [29] employed the Hill model to estimate the joint
torque and muscle stiffness. The joint torque and muscle
stiffness are used to construct adaptive impedance controller
in the exoskeleton robot. Although the muscle model has
been used in controlling lower limb exoskeleton robot, the
body parameters of each wearer are not same, that is the
parameters of the muscle model of individuals are different.
The parameter identification of the muscle models of
different wearers are not considered in the above researches.
W.Wang et al. [30] proposed a stochastic particle swarm
optimization (SPSO) and conjugate gradient algorithms
(CG) based muscle model identification method to improve
the accuracy of joint torque estimation of sEMG. Although
this method can identify models, the identification accuracy
needs to be further improved to provide better control
effects.

This paper mainly makes the following contributions to
the parameter identification of the Hill model:

1. First, a new parameter identification paradigm is
designed based on exoskeleton robot, and the muscle
model parameter identification is realized through three
steps.

2. An Adam optimization method with varying learning
rate is proposed to achieve stable muscle parameter
identification on 8 subjects.

3. The estimation error of the proposed method is
competitive with that of the State-of-art method.

The organization of this paper is as follows. In Section 2,
the proposed paradigm and the muscle model are described
in detail. The platform, expriment protocol and results are
described in Section 3. The conclusion is summarized in
Section 4. Finally, Some analysis and future work of this
research are given in Section 5.

2Methods

In this section, the framework of the proposed method is
introduced in detail firstly. Then the Adam optimizer with
variable learning rate are described. The modeling process
of the knee joint and the Hill muscle model are introduced
for easily understanding the effects of the parameters.

2.1 The Framework of the ProposedMethod

The framework of our method is shown in Fig. 1. The whole
method can be divided into three parts according to the
times of information collection. The first part is to collect
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Fig. 1 The framework of the proposed method

the swing angle, angular velocity, and motor torque of the
exoskeleton which is unloaded. Then calculate the angular
acceleration, and calibrate the dynamic parameters of the
exoskeleton (p and q) through model gradient and adam
optimization, so as to obtain the exoskeleton kinetic model.

The second part is to collect the swing angle, angular
velocity, and motor torque of the exoskeleton under
the condition of driving the lower limbs to swing (the
subject does not exert force). Then calculate the angular
acceleration, and calibrate kinetic parameters (p′ and q ′)
of the exoskeleton-lower limb combined model through
model gradient and adam optimization, in order to obtain a
dynamic model of exoskeleton-lower limb.

At this time, the dynamic parameters and model of
the human active force torque (TFCE

) can be obtained by
making difference of the above two models. Afterwards, the
active force torque can be calculated according to the angle
and angular acceleration, that is, the indirect measurement
value of the active force dynamic torque (T̂FCE

) can be
obtained.

The last step is to measure the EMG signal when the
subject’s leg actively swings. Through the hill model, the
estimated torque of the knee joint when the lower leg
swings is calculated in the forward direction. According
to the estimated torque TFCE

and the measured torque
T̂FCE

constructs the optimization target and optimizes the
parameters of the hill model by adam optimization.

2.2 AdamOptimizer with Variable Learning Rate

Adaptive moment estimation (Adam) [31] is a very popular
training algorithm for deep neural networks, implemented

in many machine learning frameworks. Adam uses a
parameter update stratergy that is similar to root mean
square propagation, but with an added momentum term.
It keeps an element-wise moving average of both the
parameter gradients and their squared values. In practice
the inclusion of momentum often speeds up convergence,
but may cause oscillations around the minimum. Hence
a variable learning rate strategy is added in the Adam
optimizer in this experiment. The variable learning rate η is
defined as:

η = η0 − (η0 − ηend) · t

T
(1)

where η0 is initial learning rate, ηend is final learning rate, t
is the current number of iteration, and T is the total number
of iteration.

2.3 Dynamic Model of Knee Joint

Under the condition that the thigh remains stationary, the
movement of the calf around the knee joint is approximately
regarded as the rotation of a pendulum rod around the
axis. It has only one degree of freedom, like the rotation
of a robotic arm. Therefore, dynamic modeling of knee
joint movement is conducted. Lagrange method is used to
establish the dynamics model, and the model parameters are
shown in Table 1.

K = 1

2
m(dθ̇)2 = 1

2
md2θ̇2 (2)

P = mgd cos θ (3)
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Table 1 Lagrangian kinetic parameters

Variable Expression

lagrange Function L

Kinetic Energy K

Potential Energy P

Torque τ

Mass m

Distance from the center of mass to the axis of rotation d

The Angle of the exoskeleton to the vertical direction θ

Where g is the acceleration of gravity.

L = K − P = 1

2
md2θ̇2 − mgd cos θ (4)

∂L

∂θ
= mgd sin θ (5)

∂L

∂θ̇
= 1

2
md2(2θ̇ ) = md2θ̇ (6)

d

dt
· ∂L

∂θ̇
= md2θ̈ (7)

τ = d

dt
· ∂L

∂θ̇
− ∂L

∂θ
= md2θ̈ − mgd sin θ (8)

For the same object, m and d are determined. Parameter
identification is actually the identification of m and d.
However, the direct identification of m and d will cause
multiple solutions, and the identification effect is greatly
affected by the initial value. Therefore, we set md2 =
p, md = q, then the dynamic equations of the exoskeleton
without load and with load can be expressed as Eqs. 9 and
10 separately.

Te = pθ̈ − qg sin θ (9)

The = p′θ̈ − q ′g sin θ (10)

Where Te and The are respectively the output torque of
the exoskeleton without load and with load, while p, q

and p′, q ′ are respectively the parameters of exoskeleton
dynamic equations without load and with load.

In order to train the parameters, whether the exoskeleton
is unloaded or loaded, it must swing according to a specific
trajectory. The swing we designed is the superposition
of two sine waves of different frequencies. This design
is to prevent multiple solutions caused by simple swing
trajectories. The swing trajectory is shown in Eq. 11:

Trace = C(sin(0.1 · 2π · t) + sin(0.2 · 2π · t)) (11)

where C is a fixed constant, and t is time.

Then the dynamic model of human active motion can be
obtained by taking the difference between the exoskeleton
dynamic model with load and without load.

TFCE
= The − Te = (

p′ − p
) · θ̈ − (

q ′ − q
) · g · sin θ (12)

Where TFCE
is the human active force torque, while Te and

The have been defined in Eqs. 9 and 10 separately.
Our optimization goal is to minimize the sum of error

squares J , which is defined as following:

J =
∫

(τ − τ̂ )2 (13)

where τ is the torque obtained according to the dynamic
model, τ̂ is the torque directly measured.

Partial derivatives of the optimization target to the two
parameters are shown as Eqs. 14 and 15 respectively.

∂J

∂p
= ∂J

∂τ
· ∂τ

∂p

= 2
∫

(τ − τ̂ ) · θ̈

(14)

∂J

∂q
= ∂J

∂τ
· ∂τ

∂q

= 2
∫

(τ − τ̂ ) · (−g sin θ)

(15)

Once the gradient is calculated, adam can be used for
optimization.

2.4 Hill Muscle Model of Active Knee Extension

Hill model is a biomechanical model that describes
the function of three-unit skeletal muscle [26, 32]. The
contraction element CE is connected in series with a
nonlinear elastic element SE, and then in parallel with
another nonlinear elastic element PE. According to the hill
model, we established a model for solving the joint torque
from the EMG signal. There are some parameters in the
hill model, and the benchmark values are obtained based on
anatomy in the software Opensim, but different individuals
have different sexes, so in actual application, the parameters
must be optimized.

After the EMG preprocessing, which includes 50Hz
notch filtering, 30Hz zero-phase shift high-pass filtering,
full-wave rectification, 5Hz zero-phase shift low-pass
filtering and normalization in order, the following steps are
required to obtain the knee torque from the preprocessed
EMG. The neural activation value u(t) is expressed as:

u(t) = αe(t − d) − β1u(t − 1) − β2u(t − 2) (16)

where u(t), u(t −1), u(t −2) represent the neural activation
values at time t, t −1, t −2 respectively. e(t −d) represents
the EMG signal after preprocessing considering delay time
d, which is reported to be between 10−100ms. In our study,
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fixed d = 20ms. To form a stable equation, the following
constraints must be satisfied:

β1 = γ1 + γ2, β2 = γ1γ2, α − β1 − β2 = 1,

|γ1| < 1, |γ2| < 1 (17)

where α, β1, β2 are second order kinetic coefficients. In
our study, fixed γ1 = γ2=0.5, therefore β1 = 1.0, β2 =
0.25, α = 2.25. The muscle activation value a(u) is denoted
as:

a(u) = eAuR−1 − 1

eA − 1
(18)

where A is the nonlinear shape factor that defines the
curvature of the function, satisfying A ∈ [−3, 0], R is
the maximum neural activation in MVC(maximum random
contraction), which is defined as follows:

R = krumax (19)

where umax is the maximum value of neural activation, kr

is a ratio to be optimized. The optimal fiber length lmo is
expressed as:

lmo = lo(λ(a(u) − 1) + 1) (20)

where lo is the optimal muscle fiber length at zero
activation, a(u)is the muscle activation value, λis the
parameter to be optimized.

The normalized fiber length l̃mis expressed as:

l̃m = lm

lmo
(21)

where lm is the actual fiber length, which will change with
motion.

lm = ksl
m
f (22)

where lmf is the data obtained by opensim fitting, and ks

is the parameter to be optimized. In the opensim model
gait2392, lmf has an approximate linear relationship with the
change of the knee joint angle. Therefore, we use linear
fitting to obtain the relationship between lmf and the joint
angle.

Muscle fiber length influence factor Fl−f shows how
FCE is affected by muscle fiber length. In the process
of muscle contraction, the length of muscle fiber changes
constantly, resulting in the change of the main force. With
the gradual increase of the length of muscle fiber, the main
force shows a trend of first increase and then decrease.
When the muscle fiber reaches the optimal length of muscle
fiber, the main force of muscle fiber reaches the maximum
at this time.

fl−F = e
−(l̃m−1)

2

γ (23)

where γ is the active force-length relationship shape factor,
usually 0.45, which is related to age. The normalized fiber
motion velocity ṽmis expressed as:

ṽm = vm

vmax

(24)

where vm is the actual shrinkage speed of the fiber [33],
which satisfies vm = −l̇m, because l̇m is lm Changes
in elongation rather than shrinkage. As mentioned earlier,
in our research, lm is linearly fitted with angle, so vm is
obtained by linear fitting with angular velocity. vmax is
the maximum contraction speed of muscle fibers, which
satisfies vmax = 10lokv , where lo is the same as before, and
kv is the parameter to be optimized .

The muscle force increases with the increase of muscle
fiber contraction speed. When the muscle fiber reaches
the ideal contraction speed, the main force of the muscle
fiber is about 1.5 times that of the maximum isometric
or contraction state. Influence factor of muscle fiber
contraction velocity Fv−f is represented as:

fv−F =

⎧
⎪⎪⎨

⎪⎪⎩

1+ṽm

1− ṽm

Af v

, ṽm ≤ 0

gmax·ṽm+ Af v(gmax−1)
Af v+1

ṽm+ Af v(gmax−1)
Af v+1

, ṽm > 0
(25)

where gmax is the maximum normalized muscle elongation
force, with a value of 1.5. Af v is the factor of the hill model,
and the value is 0.25.

The active muscle force is expressed as:

FCE = a · fl−F · fv−F · FM
0 (26)

where, a is the muscle activation; fl−F is the influence
factor of muscle fiber length; fv−F is the influence factor
of muscle fiber contraction speed; FM

o is the maximum
isometric contraction force of muscle fiber, which can be
obtained directly from Opensim. According to the above
formula, FCE can be expressed in detail as:

FCE =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a · e
−(l̃m−1)

2

γ · 1+ṽm

1− ṽm

Af v

· FM
0 vf ≤ 0

a · e
−(l̃m−1)

2

γ · gmax·ṽm+ Af v(gmax−1)
Af v+1

ṽm+ Af v(gmax−1)
Af v+1

· FM
0 vf > 0

(27)

The feathery characteristics of human skeletal muscles
indicate that there is a certain angle between the force
generated by muscle fibers and the force acting on the bone,
that is, the pinnate angle, and the effect of the pinnate angle
on the output force of muscle fibers cannot be ignored.
When the muscle fiber is in a resting state, the muscle
thickness h can be expressed as:

h = l0 · sinϕ0 (28)
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When the muscle fiber is in any position, the muscle
thickness h satisfies:

h = lm · sinϕ (29)

Then the pinnate angle ϕ corresponding to different
muscle fiber lengths can be obtained:

ϕ = arcsin

(
l0 sinϕ0

lm

)
(30)

where l0 is the length of the muscle fiber in the resting state,
ϕ0 is the pinnate angle in the resting state, lm is the length of
the muscle fiber at any time. Muscle force FM is expressed
as:

FM = FT = Ff · cosϕ = (FCE + FPEE) · cosϕ (31)

where FCE is the active force of muscle fiber; FPEE is
the negative force of muscle fiber [34]. Since this research
focuses on the active muscle force generated by the EMG
signal, the muscle force in this paper is expressed as:

FMCE = FCE · cosϕ (32)

For a specific muscle i, its force arm ri is expressed as:

ri = ∂lmt
i /∂θ (33)

where lmt
i refers to the sum of muscle length and tendon

length of a specific muscle i rather than the length of
individual muscle fibers. lmt

i satisfies:

lmt
i = lmi cosϕi + lti (34)

where lti is the tendon length, which changes very little
during muscle exercise. Therefore, it is considered to be a
constant value in this study, so ri can be expressed as:

ri = ∂lmt
i

∂θ

= ∂(lmi cosϕi)

∂θ

= ∂lmi

∂θ
cosϕi + lmi

∂ cosϕi

∂θ

= ∂lmi

∂θ
cosϕi + lmi

∂ cosϕi

∂ϕi

· ∂ϕi

∂lmi
· ∂lmi

∂θ

= ∂lmi

∂θ
(cosϕi + lmi · (− sinϕi) · ∂ϕi

∂lmi
)

(35)

Set the part in parentheses in Eq. 30 as K , we can get:

∂ϕi

∂lmi
= ∂ϕi

∂K
· ∂K

∂lmi

= 1√
1 − K2

· −li0 sinϕi
0

(lmi )2

(36)

So ri can be expressed as:

ri = ∂lmi

∂θ

(

cosϕi + sinϕi · li0 · sinϕi
0

lmi · √
1 − K2

)

(37)

The above is the calculation of the torque of single
muscle. In this study, the active force torque of the knee
joint is regarded as the sum of 3 muscles, so the active force
torque TFCE

is expressed as:

TFCE
=

3∑

i=1

riF
MCE
i (38)

3 Experiments

In this section, the exoskeleton platform and the exper-
iments protocol are described at first. Then three exper-
imental results are introduced in detail to evaluate the
performance of the proposed method. We selected a total
of eight subjects. Their age is 23.8750±0.8345 years old,
their height is 173.8750±5.6930cm, and their weight is
65.5000±7.0912kg.

3.1 Platform

The experimental platform is shown in Fig. 2. Subjects sit
on a special experimental chair, with their right thigh held
up by the support frame, which kept them basically level.
The right shank wears an exoskeleton. The exoskeleton is
fixed in the frame by bolt links, and the position can be
adjusted front and back while up and down to adapt to
different subjects ,in order to make the rotation axis of
the knee joint maintain consistency with the rotation axis
of the exoskeleton motor. The drive is a high-performance
DC servo drive (Accelnet AEM-090-30), and realizes the
position, speed and torque control of the motor through
the Ethernet fieldbus EtherCAT. The driving motor is a DC
servo motor (HT-03), which is matched with a reducer with
a reduction ratio of 6:1, and the maximum output torque is
17N · m, which can drive the subjects’ shanks to swing.

Knee Joint 

Exoskeleton Robot

Thigh Brace

Force Sensors

Driver

Motor

Fig. 2 Experiment platform
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Fig. 3 Motion process of the
subject. (a) represents θ > θ0
and swing forward; (b)
represents θ > θ0 and swing
backward;
(c) represents θ < θ0 and swing
backward; (d) represents θ < θ0
and swing forward

3.2 Expriments Protocol

As mentioned in Eq. 33, the angle between the shank and
the thigh is θ . The knee joint exercises include stretching
exercises and knee bending exercises, which correspond to
the forward and backward swing of the calf respectively.
When the leg is straight, θ = 0. According to the definition
standard of opensim, θ decreases during knee bending, and
θ increases during stretching, so the range of θ is defined as
−120◦ ∼ 0◦. The form of exercise aimed at in this study is
that, the subject sits on a chair with the right thigh lifted to
remains basically level during the experiment, and the lower
leg is suspended and can swing freely.

When at rest, the subject’s leg is relaxed, and the lower
leg is naturally perpendicular to the ground. At this time,
θ = θ0. Generally speaking, the thigh can not be completely

Fig. 4 The quadriceps

horizontal, but slightly inclined downward, so θ0 is often
slightly larger than −90◦, around −85◦. Based on the size
relationship between θ and θ0 and the difference in the
direction of movement, the movement is divided into 4
processes, as shown in Fig. 3. The movement continues in
the order of (a) → (b) → (c) → (d) → (a) → (b) →
(c) → (d)..., which constitutes the periodic swing of the
shank. In the processes a and b, it is the quadriceps that
drives the knee joint to drive the shank.

In process (a), the quadriceps muscle needs to work
against gravity and generate the acceleration of the lower
leg. In this process, overcoming gravity is the main task,
because the acceleration of motion is not great. Therefore, in
this process, the torque generated by the quadriceps muscle
increases continuously, and when the motion angle reaches
the extreme value, the torque also basically reaches the
extreme value. In process (b), gravity and the quadriceps
muscle work together to generate acceleration of motion,
and the quadriceps muscle contraction decreases, resulting
in a decreasing torque.

As can be seen in Fig. 4, the rectus femoris, lateral
femoris, and medial femoris muscles are close to the human
epidermis, so their surface electromyography is easy to
collect. The intermediary femoris muscle is located on the
deep surface of the rectus femoris and is covered by the
rectus femoris. Therefore, its EMG signal is difficult to
collect without injury. Therefore, this study only collected

Table 2 Dynamic parameters of exoskeleton in different states

Pattern p(p’) q(q’)

Empty 0.0244 0.2385

Hold Subject 1 0.0819 1.4886

Hold Subject 2 0.0089 1.6919

Hold Subject 3 0.1983 1.8353

Hold Subject 4 0.0690 1.5165

Hold Subject 5 0.0740 1.4845

Hold Subject 6 0.1553 1.8205

Hold Subject 7 0.1446 1.5388

Hold Subject 8 0.1325 1.7929
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Fig. 5 Convergence process
of dynamic parameters.
(a) represents the convergence
process of the dynamic
parameters of the exoskeleton
without load; (b) represents the
convergence process of the
dynamic parameters of the
combination of the exoskeleton
driving the shank
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the EMG signals of the rectus femoris, lateral femoris and
medial femoris to estimate the main dynamic torque of the
knee joint. The role of the intermediate femoris muscle will
be compensated in the parameter optimization.

3.3 Parameters Convergance Process

It can be seen from the Table 2 and Fig. 5 that the value
of parameter p is much smaller than q whether it is no-
load or load. According to our setting, p = md2, q =
md. The length of the exoskeleton is about 0.3m, and
the average length of the shanks of the 8 subjects is
about 0.4m. Assuming that their center of gravity is at
the midpoint, for the unloaded exoskeleton, d = 0.15m;
for the loaded exoskeleton, d < 0.2m. That is, p is one
order of magnitude smaller than q, and the experimental
results meet the hypothesis. It can be seen from Eq. 11
that the swing frequency is low and the acceleration is
not large. In the dynamic model, p represents the role
played by acceleration, and q represents the role played
by gravity. Therefore, we show from the theoretical and
experimental results that in the movement paradigm we
designed, the torque generated by the exoskeleton and
human legs to overcome gravity plays a major role, and
the torque generated by the acceleration plays a secondary
role. Therefore, it can be considered that the active force
dynamics model we established is relatively reliable.

It can be seen from Fig. 6 that the dynamic parameters of
the exoskeleton have a good regression effect no matter it is
unloaded or loaded. The deviation of the regression mainly
appears near the extreme point. When loaded, the error is
slightly larger than that of no-load. The reason is that certain
relative motion and friction will occur in the interaction
between human and exoskeleton, which we ignore in the
modeling because we think it is not important. However,
it will still be reflected in the results. It can also be found
from Fig. 5 that the dynamic parameters of the unloaded
exoskeleton achieve good convergence around 100s, while
the dynamic parameters of the loaded exoskeleton achieve
good convergence around 200s. The reason is also the same,
that is, for the model with load, some minor items are
ignored, making the error between it and the actual dynamic
model larger than that of the unloaded model. But even so,
the error is still within an acceptable range.

It can be seen from Fig. 7 that the convergence speed of
different parameters is different. It can be sorted according
to the speed of convergence: kr , A, λ, ks , kv . It can
also be seen from Fig. 7 and Table 3 that the parameter
convergence process and results of different subjects are
relatively consistent, but there are also some differences.
For the parameters A, kr , λ, the convergence results of
different subjects are relatively close; for the parameters
ks , kv , the convergence results of different subjects are
somewhat different. The more unique one is Subject 3.

Fig. 6 Torque in motion of the
exoskeleton. (a) is the regression
result of torque when the
exoskeleton is unloaded;
(b) represents the regression
result of torque when the
exoskeleton is loaded
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Fig. 7 Convergence process of
hill model parameters of four
subjects (subjects 1 to 4)

The mean square error of his torque regression is larger
than that of the other three subjects. At the same time, his
parameters generally converge more slowly than the other
three subjects. The final convergence value of parameter ks

differs greatly from that of the other three subjects. In our
experiment, all parameters will be updated in each step of
iteration. The different convergence speeds of parameters
give us some enlightenment. In the following research, we

will try to fix some parameters and let others converge first
to explore the influence of different parameter convergence
orders on the results.

3.4 Torque Estimation Results

There are two main differences between the torque of
Figs. 8 and 9. First, Fig. 8 shows the training process, while
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Table 3 Hill Model Parameter Convergence Results of 8 Subjects

Subject A kr λ ks kv

Subject1 -0.1759 0.0076 -0.0274 1.7264 1.5069

Subject2 -0.0622 0.0024 -0.0024 2.0329 8.3654

Subject3 -0.0375 0.0006 0.0773 6.7156 8.4225

Subject4 -0.1211 0.0046 -0.0002 2.0457 8.3562

Subject5 -0.0478 0.0012 0.0841 6.8002 1.4989

Subject6 -0.0275 0.0007 -0.0005 2.3908 8.4695

Subject7 -0.0137 0.0003 0.0224 7.1072 8.2168

Subject8 -0.0377 0.0010 -0.0016 2.3500 8.3705

Fig. 9 shows the final convergence result. Second, Fig. 9
deletes the torque less than 0. This is because the muscles
selected by us locate in the front of the thigh (Fig. 4).
In addition, we divide the leg swing into four consecutive
periodic stages (Fig. 3). In the (a) and (b) stages of Fig. 3,
the three muscles (RF, VL and VM) selected in this paper
provide the torque of knee joint movement; in the (c) and (d)
stages of Fig. 3, these three muscles are basically in a resting
state, and the torque of knee joint movement is provided
by the muscles at the back of the thigh, which is not the
research content of this paper.
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Fig. 8 Torque convergence process of 4 subjects

In Figs. 8 and 9, the measured torque (red line) is
calculated by the dynamic model described in Section 2.3,
which expressed the knee joint output torque, while the
estimated torque (blue line) is estimated from the EMG
signal based on the hill model.

In Fig. 9, we mark the EMG cycle and the torque cycle in
the same time period with the same color rectangular box,
and use a different color to distinguish the adjacent cycle.
By comparing any period of EMG signal and the change
of torque in the corresponding period, it can be found that
when the EMG signal is output, that is, when the three
muscles are active, both the measured torque (red line) and
the estimated torque (blue line) are positive, corresponding
to the stage (a) and (b) in Fig. 3. When the EMG signal
is near 0, that is, when the three muscles are resting,
the measured torque (red line) should be negative and the
estimated torque (blue line) should be 0, corresponding to
the (c) and (d) stages in Fig. 3.

This means that not all points have to be calculated in
the training process to make estimated torque (blue line)
fit the measured torque (red line). Because in each cycle,
there is a period of time when there is no output signal from
the EMG. During this period, the estimated torque (blue
line) from the EMG is 0, and the measured torque (red line)
from the dynamic equation is negative. But in practice, we
didn’t simply train for periods of time when the measured
torque was positive. First, the training process would not
be continuous if we did it, because we had to break up a
series of successive swing periods. Second, we wanted to
test whether the model would overfit during the training,
since we didn’t limit the range of the force arm in (33).

Therefore, when training the model, we used all the
torque data during exercise, instead of just taking data
greater than 0. It can be seen from Fig. 8 that during
the entire training process, the measured torque (red line)
alternates between positive and negative, and the estimated
torque (blue line) generally stops to fall when it drops to
0, and it will be less than 0 on rare occasions. This is
the overfitting situation of training. But overall the training
effect is good.

From the foregoing, when estimating the error, in the
interval where the EMG is 0, the estimated torque (blue line)
should be 0, and the measured torque (red line) is negative.
It is meaningless to calculate the estimated error in these
intervals. Therefore, in Fig. 9, the part where the torque is
less than 0 is uniformly truncated to show the training effect
more clearly. After that, the estimation error is calculated.

It can also be seen that the motion frequencies of the
eight subjects are not exactly the same, and the motion
frequency of Subject 2 is obviously higher than that of the
other subjects. From Fig. 9 we can see that in the period of
20s − 50s, subject 2 moved about 20 cycle, and subject 4
moved about 12 cycles. It can be found that the estimated
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Fig. 9 Torque convergence results of 2 Subjects. (a) is the original EMG value of the three muscles and the hill model based final torque
convergence result of subject2; (b) is the original EMG value of the three muscles and the hill model based final torque convergence result of
subject4

torque of subject 2 is larger than the calculated torque near
the peak; and the estimated torque of subject4 is closer to the
calculated torque near the peak. The reason is as mentioned
above. In the process of establishing the dynamic model of
the active force of the knee joint, the swing velocity and
the acceleration is small, while the friction and other items
are ignored. But in fact these factors are reflected in the
autonomous swing.

It can be seen from the Table 4 that the RMSE, MAXE,
and MAE sizes of different subjects are correlated. Among
them, the error of subject 3 is significantly different from

Table 4 Torque estimation error of 8 subjects

Subject RMSE MAXE MAE

Subject 1 1.7088 5.8500 0.9887

Subject 2 1.2635 5.3161 0.6872

Subject 3 2.7036 11.5735 1.4628

Subject 4 1.1108 4.8781 0.6081

Subject 5 1.6819 8.4163 1.0952

Subject 6 1.7834 7.9022 1.2019

Subject 7 2.0501 6.4855 1.2532

Subject 8 2.3667 7.5066 1.5866

mean 1.8336 7.2411 1.2445

the errors of the other subjects. The MAXE of the others
are all less than 8; while the MAXE of subject 3 is greater
than 11. The RMSE of subject 3 is also greater than others.
The reason is as mentioned above, the convergence effect of
subject 3 is not as good as that of the other subjects.

It can be seen in Table 5 and Fig. 10(a) that the average
values of RMSE and MAXE of the eight subjects are
significantly smaller than the NM-CO, NM-NC and M-
BP methods [30]. As shown in Fig. 10(b), compared with
NM-COA, only subject 4’s RMSE is smaller than its value
(1.1108 vs. 1.14), but the other seven subjects’ RMSE is
larger than it. The MAXE of the eight subjects are all larger
than NM-COA’s value. In detail, subject 4’ s value is very
close to it(4.8781 vs. 4.73), and the MAXEs of the other
seven subjects are slightly farther away from it. Although

Table 5 Torque estimation error of different models

method RMSE MAXE

ours 1.8336 7.2411

NM-CO 4.85 16.98

NM-COA 1.14 4.73

NM-NC 8.39 27.81

M-BP 10.34 41.78
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Fig. 10 Bar diagram of torque
estimation error. (a) is the
comparison between the average
RMSE and MAXE values of 8
subjects obtained by our method
and the results of methods
NM-CO, NM-NC and M-BP;
(b) is the comparison between
RMSE and MAXE of 8 subjects
obtained by our method and
method NM-COA

(a) (b)

the performance of torque prediction is comparable with
NM-COA, the proposed method have few parameters
and the times of iteration of the gradiant based method
(Our method) is less than the heuristic based algorithm
(NM-COA).

3.5 The Effects of Variable Learning Rate
in AdamOptimizer

It can be seen from Fig. 11 that under a fixed learning rate,
the parameters will not converge to a fixed value, and will
eventually oscillate around the value; while under a variable
learning rate, the parameters will eventually converge to

a fixed value. Under a fixed learning rate, the time for
parameter convergence is relatively short. In Fig. 11(a),
A converges around 15s, while in Fig. 11(b) A converges
around 30s. The reason is that the variable learning rate is
reduced during iteration, and therefore converges more and
more slowly.

4 Conclusion

To overcome the shortcoming of identifying the Hill muscle
model with experience, a three-step parameter identification
paradigm is designed for accurately identifying the param-

(a) (b)

Fig. 11 Fixed learning rate versus variable learning rate. (a) is the convergence process of mean square error and parameter A under fixed learning
rate; (b) is the convergence process of mean square error and parameter A under variable learning rate
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eters of muscle model. The exoskeleton robot is employed
in the identification process to estimate the kinetic
parameters of human limb. The adam optimizer with vari-
able learning rate is employed in the Hill model identifica-
tion. The optimizer with variable learning rate shows good
convergence performance comparing to the with fixed learn-
ing rate optimizer. The identified Hill muscle model have
lower torque prediction error than the NM-CO, NM-NC and
M-BP based methods. The performance of the proposed
method is competitive with that of the State-of-art method.

5 Disscussion and FutureWork

From our results, it can be seen that by optimizing the
parameters of the hill model, the active force torque of
the knee joint estimated by emg can be very close to
that calculated by the dynamic model. But it should be
pointed out that we only optimized some of the parameters,
and took fixed values for other parameters, such as the
EMG delay d in Eq. 16. Because in the definition of
the model, its gradient cannot be described, so gradient
descent related algorithms cannot be used. In the next
step, we plan to use heuristic algorithms to achieve higher
model identification accuracy. Another point is that in the
process of dynamic parameter identification, although we
used harmonics to increase the complexity of the trajectory,
the motion trajectory was still at a fixed and low frequency.
Therefore, the estimated dynamic model is not good enough
to adapt to higher speed motions. In the next step, we will
increase the complexity of the trajectory to achieve better
dynamic parameter identification, thereby laying a better
foundation for hill model parameter identification.
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