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Abstract
To improve the detection accuracy and speed of palletizing robot positioning bolts in complex scenes, we proposed a
positioning bolt (PB) detection method based on improved YOLO-V3. First, due to the actual detection requirement, we
constructed the PB data set by using a series of data enhancement operations such as horizontal flip, ±30degree rotation, and
random luminance enhancement or decrease. Then, an improved anchor box mechanism based on the k-means++ algorithm
was designed to obtain a more accurate anchor box for the PB data. According to the feature of the PB data in the palletizing
robot, such as the existence of dust and dirt on the surface, the feature extraction network was further enhanced by adding
a Densenet-4 module. In this way, the low-level semantics and high-level abstract features can be extracted effectively to
improve detection performance. Finally, a new bounding box regression loss function was elaborated to accelerate the neural
network training. The experimental results demonstrated the effectiveness of the proposed improvement mechanisms. The
comparable results also show that our method is superior to the original YOLO-V3, SSD, and Faster R-CNN for PB data,
and has a detection AP of 86.7%, a recall rate of 97%, and a detection speed of 25.47 FPS, which can achieve high-efficiency
and high-precision detection in complex industrial scenarios.
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1 Introduction

Palletizing robots are important equipment in the logistics
system of modern manufacturing enterprises. They are
mainly used for the acquisition and handling of large
quantities of workpieces, which provide an important
guarantee for the flexible and efficient operation of
industrial systems [1]. The working process of industrial
robots is generally to grab materials from a fixed position
and transport them to a specific location for installation
and other processes. Therefore, the industrial robot has
extremely high requirements for the accuracy of the material
position. Once the material position deviates slightly, it
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affects the material grabbing of the palletizing robot and
even leads to the deviation of the final material installation
position, thereby affecting the product quality (Fig. 1).

In the beginning, most industrial robots acquired the
material position through manual pre-teaching, but the
types of materials on the assembly line are diverse. When
the materials change, the robots need to be re-teaching
by professionals, which largely affects the flexibility and
productivity of the robots, and increases operating costs [2].

To solve these problems, domestic and foreign
researchers have combined machine vision and industrial
robot control technology for material positioning [3]. Wang
et al. [4] proposed a material positioning method by fusing
scale invariant feature transform and moment invariants.
Chen et al. [5] realized the material positioning by extract-
ing the Hu invariant matrix of the material contour, but this
method is extremely sensitive to material contour changes
caused by factors such as occlusion, reflection, and shadow.
Huang et al. [6] determined the material location by match-
ing the extracted contours with the object contour from the
template image, but this method cannot adapt to the change
of complex environment. M et al. [7] used the aggrega-
tion and representativeness of surface features to identify
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Fig. 1 Palletizing Process

materials. Choi et al. [8] took surface-to-surface, surface-
to-boundary, boundary-to-boundary, and line-to-line as
pair recognition features to identify material’s location.
To achieve the goal of the robot which has the capability
of learning and grasping the predetermined workpieces
actively on the assembly line, Yang et al. [9] proposed a
multi-material detection algorithm based on the shape-
SVM learning model. For incomplete information material
detection, Fu et al. [10] proposed an algorithm of charac-
teristic region minimum rectangle fitting to achieve the
pose of assembly workpiece with incomplete information.
Although the above solution achieves semi-automation of
material positioning, it still requires human intervention
and the accuracy needs to be improved.

In recent years, convolutional neural network (CNN)
methods have achieved excellent results in many computer
vision applications, such as object detection, natural
language processing, image recognition, and automatic
drive [11–14, 26] and simultaneous localization and
mapping [33, 34]. Several workpiece detection methods
based on CNN have also been proposed. Li et al.
[15] combined a binocular eye-in-hand system and CNN
for workpiece localization. Lin et al. [16] extracted the
geometric features of the workpiece using CNN and
k-means clustering, and then applied a particle swarm
optimization algorithm to detect the degree of matching
between the geometric model and the actual workpiece.
Although these methods have been widely used in robot
welding, trajectory tracking, and defect detection, there is
still a lack of a high-precision material positioning method
for palletizing.

Therefore, we proposed a Positioning Bolt (PB) detection
algorithm based on improved YOLO-V3 [17], which can
obtain the location of the PB and the material automatically
with satisfactory accuracy. The specific contributions of this
work are as follows:

1) According to the characteristics of the PBdata, we designed
a new anchor box mechanism based on k-means++ [18]
to obtain the anchor box size suitable for PB.

2) Aiming at the problem that PB features are difficult
to extract, we referred to the dense network structure
in DenseNet [19], and designed densenet-4 module for
feature extraction network to obtain richer semantic
information of PB.

3) To accelerate the convergence of the network and
improve the detection accuracy, a new bounding box
loss function was proposed.

The remainder of this paper is organized as follows. In
Section 2, we introduced the PB data set and the basic theory
of YOLO-V3, In Section 3, we described the improved
method of our approach in detail. Section 4 gave the
experiments of our method on the PB data set and compared
the performance with Faster R-CNN, SSD, and YOLO-V3.
Finally, conclusions were presented in Section 5.

2 RelatedWork

2.1 Positioning Bolt Data Set

In this study, the PB image acquisition was conducted using
a camera with 1920×1080 pixel resolution. We collected
1000 PB images under different lighting conditions,
including 250 images from the front light, 250 images from
the back light, 250 images from the side light, and 250
images from scattered light. In addition, considering that the
camera view angle affects the detection performance, we
collected 250 images from multiple view angles (directly
above the PB, 45-degree angle to the left of the PB, and a
45-degree angle to the right of the PB) during the image
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acquisition. These 1250 images were then expanded to 6000
images using data augmentation methods (flip, rotation,
luminance enhancement). Several sample images in the
obtained data set are shown in Fig. 2.

To better compare the performance of different algo-
rithms, we used Labellmg to mark the position of PB in the
image and converted it to Pascal VOC 2012 format for sub-
sequent network training [20]. When constructing the data
set, the length of the PB image is rescaled to 512 pixels and
the width is adjusted accordingly to maintain the original
aspect ratio. To ensure the correctness of the data set, we
did not label the PB images with unclear imaging areas and
we also did not label the images with PB occlusion areas
greater than 85%.

2.2 YOLO-V3

PB detection is an object detection task within the
field of computer vision. Recently, the rapid development
of convolutional neural networks (CNN) and computer
hardware afforded deep learning to become an essential
asset for object detection [11], involving two-staged and
one-staged methods. Two-staged algorithms are based on
regional recommendation, i.e., in the original image the
candidate region of the object to be detected is generated,
and then on each candidate region, object identification
and location are performed. In 2013, Girshick et al.
[27] proposed the first region-recommendation-based object
detection algorithm entitled R-CNN, which generated 2000
object candidate regions using selective search and then
employed CNN to extract features from the candidate
regions. On this basis, in [28], the authors proposed the
Fast R-CNN variant, where a CNN is applied to the original
image to obtain the feature map and links the candidate
regions to the feature map to realize the sharing of candidate
regions to the deep convolutional layer. This strategy
solves the feature extraction requirement per candidate
region, significantly reducing the computational burden.
Subsequently, Ren et al. [24] developed the Faster R-CNN

algorithm, involving a new candidate region generation
network (RPN), solving the candidate box pre-generation
problem and affording GPU acceleration.

One-staged algorithms rely on regression and do not
require generating the target’s candidate region, as these
methods directly employ regression for object recognition
and localization. The “one-blade flow” detection algorithms
are represented by the YOLO and SSD families. In 2015,
Redmon et al. [29] proposed YOLO, which directly solves
the object detection problem as a regression task without
generating candidate regions. Despite YOLO being very
fast in detection, it is less robust and generalizable for
small targets. Liu et al. [25] proposed SSD to address the
above problems, which extracts feature maps of different
scales and uses a priori frames of different scales and aspect
ratios. Subsequent researchers improved YOLO and SSD
and successively proposed a series of “one-stage” detection
algorithms such as YOLO-V2, YOLO-V3, FSSD, RSSD,
DSSD, and RetinaNet to further improve detection accuracy
[30–32].

To balance the detection speed and accuracy of PB and
apply it to industry, yolov3 is improved in this paper.
YOLO-V3 regards object detection as a regression problem,
and the network structure is shown in Fig. 3. Firstly, YOLO-
V3 extracts multi-level image features by the Darknet-53
framework, which is composed of five residual modules,
and each residual module is composed of one or more
residual units. After obtaining the feature map, YOLO-V3
then selects three image feature layers to build a feature
pyramid structure and uses the three feature layers output
by the feature pyramid to predict the bounding box of the
object and classify the object. The specific training process
of YOLO-V3 is as follows.

Step 1: The image is scaled to a standard size of 416×416
and inputted into the network.

Step 2: Darknet-53 extracts image features and generates
a 13×13 feature map on a small scale.

Fig. 2 (a) Palletizing Robot
Camera (b) PB images
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Fig. 3 The Network Structure of YOLO-V3

Step 3: The 13×13 small-scale feature map is first
subjected to convolution set and 2 times up-
sampling, and then connected with the 26*26
feature map to output the prediction result.

Step 4: the 26×26 feature map obtained by step3 is
subjected to convolutional set and 2 times up-
sampling, then connected to the 52×52 feature
map and output the prediction result.

Step 5: The features from the three-scale prediction
output are fused, and then the probability score
is used as a threshold to filter out most anchor
boxes with lower scores. Then use non-maximum
suppression (NMS) for post-processing, leaving
more accurate bounding boxes.

3 ProposedMethod

Although YOLO-V3 performs well on public data sets such
as voc2012 and COCO2017, it is not suitable for the PB
images with blurred boundaries, greater noise, and lower
contrast. To solve these problems, we improved YOLO-
V3 in three aspects for the features of the PB dataset: 1)
Used the k-means++ algorithm to obtain a more accurate
PB anchor box size; 2) Added Densenet-4 to enhance
the feature extraction network structure; 3) Used a new
object bounding box regression loss function. The specific
improvement measures are as follows.

3.1 New Anchor Mechanism

The original Yolo-V3 introduces the anchor frame mecha-
nism and uses k-means clustering to obtain the size of the
anchor frame. The anchor frame size obtained by K-means
clustering effectively improves the detection performance of
the target, but the anchor frame size in Yolo-V3 is obtained
based on 80 targets such as people, bicycles, cars, and
airplanes, which is not suitable for PB data evidently. More-
over, the clustering results of k-means are greatly affected
by the selection of initial points. To solve this problem, this
paper proposes a new anchor mechanism (NAM) that uses
the K-means++ algorithm to cluster the positioning bolts
to obtain the anchor frame size. The specific process is as
follows:

1) Move the centers of all manually marked rectangular
boxes(Ground Truth, GT) in the PB data set to the
origin of the coordinate system.

2) Initialize a cluster center randomly, calculate the
shortest distance D(X) between each sample and the
currently known cluster center, and then calculate the
probability of each sample being selected as the next
cluster center; finally, follow the roulette method to
select the next cluster center.

3) Repeat step 2) until k cluster centers are selected,
that is, randomly select K rectangular boxes as cluster
centers.
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Fig. 4 The structure of
DenseNet

4) Calculate the distance from each rectangular box to the
K cluster centers according to formula (1), and classify
each rectangular box to the nearest cluster center.

d(box, boxcluster) = 1 − IoU(box, cluster) (1)

where IoU(box, cluster) represents the intersection ratio
of GT and cluster centers.

5) Recalculate the cluster centers of the k clusters after
classification according to formula (2).

W ′ = 1

N

∑
wi, H

′ = 1

N

∑
hi (2)

wi represents the width of the i-th rectangle, hi represents
the height of the i-th rectangle, N is the number of rectangles
in each cluster.

6) Repeat steps 4) and 5) until the cluster center change is
less than the artificially set threshold and then stop the
iteration.

Compared with k-means, k-means++ abandons the
theory of randomly selecting k cluster centers, but randomly
initializes a cluster center and selects subsequent cluster
centers through the roulette method, so that the distance
between the K cluster centers is far enough. Although
K-means++ is time-consuming to calculate the clustering
center, it can converge faster in the iterative process, which
improves the network training speed. The 9 anchor frame
sizes obtained by k-means++ in this paper are (20, 27), (22,
29), (28, 38), (41, 49), (45, 56), (52, 51), (52, 62), (59, 57),
(61, 69).

3.2 Improved Feature Extraction Network

The detection object in this paper is the PB. Compared
with the object in public data sets such as voc2012 and
coco2017, the PB not only has a smaller size, but also
has a dirt and ash layer on the surface. Its’ features
are difficult to extract, which leads to a decrease in the
detection accuracy of the PB. To address this problem, we
are inspired by DenseNet to improve Darknet-53. Darknet-
53 is basically composed of 1×1 or 3×3 convolutional

kernels, while several ResNet [21] are used, but the
ResNet use superposition to handle constant mappings and
nonlinear outputs, which disrupts the information flow in
the network to some extent. Unlike ResNet, which adds
the values of the subsequent layers by constructing an
identity map, DenseNet connects all the layers for channel
merging to achieve feature reuse. Compared with ResNet,
the backpropagation of the gradient is enhanced, which can
make better use of feature information and improve the
transmittance of the information between layers.

In Fig. 4, X1, X2, X3, and X4 represent the feature
maps, while C1, C2, C3, C4 and C5 refers to the nonlinear
transformations (Batch Normalization+Relu+Convolutional
(BN+Relu+Conv)) [22]. DenseNet connects each layer to
other layers in feedforward mode, thus layer l receives all
the feature maps of the preceding layers x0, x1, x2...xl−1 as
input.

xl = Cl[x0, x1, x2...xl−1] (3)

Therefore, we designed the network structure named
densenet-4 by referring to the idea of Densenet, which
consists of 4 DCBR modules. The convolution, Batch
Normalization, and ReLU make up the CBR module,
while two CBR modules are cascaded into a Double-CBL
(DCBR) module. We used the DCBL module as transport
layer Ci : Conv (1 × 1 × 32)-BN-ReLU-Conv (3 × 3 ×
64)-BN-ReLU and Conv (1 × 1 × 64)-BN- ReLU- Conv (3
× 3 × 128)-BN-ReLU. To balance the detection speed and
accuracy, we kept the residual modules with output sizes of
208×208 and 104×104 in the Darknet-53 framework, and
replace the residual modules with outputs of 52×52, 26×26,
and 13×13 with densenet-4 modules. The feature extraction
network of our method is shown in Fig. 5.

3.3 Bounding Box Regression Loss Function

The loss function of Yolo-V3 consists of the object bound-
ing box regression loss Lloc(l, g), the object confidence loss
Lconf (o, c) and the object classification loss Lcla(O, C),
where λ1, λ2 and λ3 are the balanced weight coefficients.

L(O, o, C, c, l, g) = λ1Lconf (o, c) + λ2Lcla(O, C) + λ3Lloc(l, g)

(4)
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Fig. 5 The feature extraction network structure of our algorithm

The bounding box regression loss function is shown
in Eq. 5, where(x, y) represents the center coordinates of
the bounding box, w and h are the width and height of
the rectangular box, respectively, ˆlmi denotes the coordinate

offset of the mth predicted bounding box, and ĝm
i denotes

the coordinate offset of the mth Ground Truth (GT).

Lloc(l, g) =
∑

i∈pos

∑

m∈{x,y,w,h}

( ˆlmi − ĝm
i

)2
(5)

From Eq. 5, we can see that the mean square error (MSE)
is used to calculate the regression loss of the bounding
box in Yolo-V3. However, MSE is sensitive to the change
of object scale, and the large size of the bounding box
would generate more loss values, which brings difficulties

to optimize the small size bounding box, resulting in poor
detection of small size objects.

To address this problem, we adopt IoU to calculate the
bounding box regression loss [23]. IoU is usually used to
measure the relative size of the overlap area between the
target prediction box and the real box, and it has scale
invariance, non-negativity, and symmetry. However, there
remains two problems when directly using IoU as the
bounding box regression loss function:1) When the value
of IoU is 0, the value of the regression loss function is
also 0. At this time, the network cannot return the gradient
and cannot update the parameters; 2) IoU cannot accurately
reflect the overlap between the object prediction box and the
GT. As shown in the Fig. 6, the IoU value is the same, but
the overlap of the object prediction box and the GT from left
to right is different.

Fig. 6 Different overlaps of the
same IoU value
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Therefore, we proposed a new bounding box regression
loss function, which was defined as follows.

Lloc = 1.01 − IoU(BP , BG) + wd × hd

wc × hc
(6)

where BP is the object prediction box, BG is the object GT,
wd and hd are the width and height of the rectangular box
Bd enclosed by the center point and the center point of BG

and Bp, wc and hc are the width and height of the minimum
closed box Bc for BG and BP , respectively.

The specific calculation procedure is shown in Table 1.

Lloc added a penalty term wd×hd

wc×hc to the IoU, since the
area of Bc is always larger than the area of Bd , so: 0 ≤
wd×hd

wc×hc ≤ 1. When the object prediction box overlaps with

the GT: wd×hd

wc×hc = 0, Lloc = 0.01; when the object prediction

box does not intersect with the GT: wd×hd

wc×hc = 1, Lloc = 2.01.

Table 1 Imporved Bounding Box Regression Loss Function

Algorithm 1 Lloc as bounding box loss

Input: Object prediction box coordinates: Bp = (
x

p

1 , y
p

1 , x
p

2 , y
p

2

)
,

Object GT coordinates: Bg = (
x

g

1 , y
g

1 , x
g

2 , y
g

2

)

Output: Lloc

1: Calculate the areas of Bp and Bg : Sp and Sg

Sp = |(xp

2 − x
p

1

) ∗ (
y

p

2 − y
g

1

)| (7)

Sg = |(xg

2 − x
g

1

) ∗ (
y

g

2 − y
g

1

)| (8)

2: Calculate the area of the overlapping area of Bp and Bg : Si

Si =
{

|(xi
2 − xi

1

) ∗ (
yi
2 − yi

1

)| xi
2 > xi

1, y
i
2 > yi

1

0 otherwise
(9)

where the value of xi
1, x

i
2, y

i
1 and yi

2 are::

xi
1 = max

(
x

p

1 , x
g

1

)
, xi

2 = min
(
x

p

2 , x
g

2

)

yi
1 = max

(
y

p

1 , y
g

1

)
, yi

2 = min
(
y

p

2 , y
g

2

) (10)

3: Calculate IoU(BP , BG):

IoU(BP , BG) = Si

Sp + Sg − Si
(11)

4: Find the coordinates of Bc of the smallest closed box of Bp and Bg :

xc
1 = min

(
x

p

1 , x
g

1

)
, xc

2 = max
(
x

p

2 , x
g

2

)

yc
1 = min

(
y

p

1 , y
g

1

)
, yc

2 = max
(
y

p

2 , y
g

2

) (12)

5: Calculate the width and height of Bc:

wc = xc
2−xc

1, hc = hc
2−hc

1 (13)

6: Calculate the coordinates of the center points of Bp and Bg : bp, bg

bp = (
x

p

1 + x
p

2

2
,
y

p

1 + y
p

2

2
), bg = (

x
g

1 + x
g

2

2
,
y

g

1 + y
g

2

2
) (14)

7: Calculate the coordinates of Bd :

xd
1 = min(

x
p

1 + x
p

2

2
,
x

g

1 + x
g

2

2
), xd

2 = max(
x

p

1 + x
p

2

2
,
x

g

1 + x
g

2

2
) (15)

yd
1 = min(

y
p

1 + y
p

2

2
,
y

g

1 + y
g

2

2
), yd

2 = max(
y

p

1 + y
p

2

2
,
y

g

1 + y
g

2

2
) (16)

8: Calculate the width wd , height hd of Bd :

wd = xd
2−xd

1 , hd = yd
2−yd

1 (17)

9: Calculate Lloc:

Lloc = 1.01−IoU(BP , BG)+wd × hd

wc × hc
(18)

In summary, when IoU = 0, Lloc can still reflect the relative
distance between the object prediction box and the GT, and
provide the moving direction for the regression of the object
prediction box.

4 Experiments and Discussions

4.1 Experimental Setup

The dataset used in this experiment is derived according
to Section 2.1, and the dataset is divided into three parts:
training set (4000 images), test set (500 images) and the
validation set (500 images).

a) Experimental environment: The experimental environ-
ment for model training and verification in this paper is
shown in the Table 2.

b) Training parameters: In the training process of the PB
detection network, the maximum number of training
steps is 100 Epoch; the learning rate is set to be 0.0001
and divided by 10 at 20 epoch, 40 epoch, 60 epoch and
80 epoch; the training/test image size is 512×512 and
the batch size is 8; the MBGD is applied to minimize
the loss function.

c) Evaluation indicators: We evaluate the method in
terms of average precision (AP), and processing time
costs. True positives (TP), false negatives (FN) and
false positives (FP) are firstly calculated to generate
evaluation metrics including recall and precision.
Recall is used to measure the completeness of the test
results, while precision is used to indicate accuracy. The
indexes are defined as follows.

Recall = T P

T P + FN
(19)

Precision = T P

T P + FP
(20)

AP is then obtained by calculating the area under the
Precision-Recall (PR) curve according to Eq. 21. Frames
per second (FPS) is usually used to measure the cost of

Table 2 Experimental environment

Platform Type

CPU Intel Core i9-9900KF

GPU Nvidia GeForce RTX 3090

Memory 24GB

Operating System Ubuntu 18.04

Deep Learning Framework Pytorch1.4

Programming Language Python3.6
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Fig. 7 Fig. 7(a) Origin images (b) PB Detection results

processing time and is defined as the number of images that
the training model detected in 1 second.

AP =
∫ 1

0
PRdr (21)

4.2 Experimental Results

The partial detection results of our method on the PB
data set are shown in Fig. 7. Under different illumination,
different angles and different distributes, our method can
accurately detect PB in the image, which proves that our
method has great detection performance for the PB.

To verify the accuracy and real-time performance of
our method, we compared our approach with Faster R-
CNN [24], SSD [25], and YOLO-V3. The training epoch
is an important factor that affects the performance of deep

networks. Sufficient training epoch ensures the convergence
of the entire training process and enables the module
to achieve the best performance under certain parameter
configuration. Figures 8 and 9 showed the Precision and
Loss of the above method in the training process. It can
be seen that convergence is achieved for each method.
Specifically, our method converges after about the 20th
epoch, while YOLO-V3, SSD and Faster R-CNN have more
severe oscillations during training, and they need about 45
epochs to reach convergence. The precision and loss values
of our method after 100 epochs are about 0.97 and 0.6, while
yolo-v3 and Faster R-CNN both have lower precision than
ours, about 0.93 and 0.82, respectively, and SSD has the
lowest precision (about 0.78) and highest loss value (about
1.7)

Table 3 shows that our method outperforms SSD and
Faster R-CNN in AP and FPS indicators. Compared with

Fig. 8 Variation of Precision
with respect to training epochs
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Fig. 9 Variation of Loss with
respect to training epochs

YOLO-V3, the detection speed of our method is not
significantly reduced, but there is a significant improvement
in the detection AP of PB. The experimental results show
that our improved YOLO-V3 can effectively detect PBs in
real industrial scenes under real-time detection.

4.3 Ablation Experiments

In this section, the effectiveness of each improved module
is investigated. The results of the ablation experiments are
shown in Table 4. The second method adds the NAM
module, resulting obvious improvement in AP from 80.8 to
81.2 and detection speed from 27.13 FPS to 27.58 FPS. The
feature extraction network of the third method introduces
the DenseNet-4 module based on DarkNet-53, and the result
in AP improves from 80.8 to 83.6. The bounding box loss
function L is applied in the fourth method, whose AP
improves from 80.8 to 83.7 compared to the original YOLO-
V3. The experimental results show that the proposed three

Table 3 Experimental comparisons of different methods

Method Backbone Number AP(IoU=0.5) FPS

Faster R-CNN VGG-16 500 78.4 14.61

SSD VGG-16 500 76.2 17.27

YOLO-V3 DarkNet-53 500 80.8 27.13

Ours Fig. 5 500 86.7 25.47

modules can improve the detection performance of PB with
essentially the same detection speed.

4.4 Expansion Experiment

To more intuitively verify the effectiveness of our method,
we selected several representative images and compare the
detection results with Faster R-CNN, SSD and YOLO-V3.
The comparison of detect results are shown in Fig. 10.

We can see that for images with darker lighting
conditions (such as Sample 2, Sample 6), Faster R-CNN
and SSD have missed detection, and PB cannot be detected.
For images with interfering objects (such as Sample1,
Sample3), Faster R-CNN and SSD have false detection.
Although YOLO-V3 performs better than Faster R-CNN
and SSD, there are still false detection (Sample1, Sample2).
In contrast, our method accurately detected all PBs.

A series of comparative experiments show that the
detection performance of PB in complex backgrounds can

Table 4 Comparison results of ablation experiments

Method Backbone Number AP(IoU=0.5) FPS

YOLO-V3 Darknet-53 500 80.8 27.13

YOLO-V3+NAM Darknet-53 500 81.2 27.58

YOLO-V3 +DenseNet-4 / 500 83.6 26.14

YOLO-V3+Lloc Darknet-53 500 83.7 26.77
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Fig. 10 Expansion Experiment (a) Origin images (b) Ground Truth (c) Faster R-CNN (d) SSD (e) YOLO-V3 (f) Ours

be improved by improving the anchor box size, feature
extraction network and loss function.

5 Conclusion

For the small size of the PB in the palletizing robot and
the existence of dust and dirt on the surface, we have
proposed an intelligent detection method for the PB based
on YOLO-V3.

This method first re-clusters and optimizes the anchor
box size of the YOLO-V3 model to obtain the anchor
box size suitable for PB detection, while introducing the
Densenet-4 module in the feature extraction stage, which is
a structure capable of obtaining the low-level semantics and
high-level abstract features of the PB, and finally a bounding
box regression loss function is designed.

Our method has realized high-efficiency and high-
precision PBs detection, which provided a guarantee for the
accurate identification of subsequent material positions. The
experimental results showed that the algorithm in this paper
can achieve the AP of 86.7%, the recall rate of 97%, and a
detection speed of 25.47 FPS, which is higher than Faster
R-CNN and YOLO-V3, and can meet the high-efficiency

and accurate detection of PB in real industrial complex
environments.
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