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Abstract
This article contributes with a methodology based on deep reinforcement learning to develop running skills in a humanoid
robot with no prior knowledge. Specifically, the algorithm used for learning is the Proximal Policy Optimization (PPO). The
chosen application domain is the RoboCup 3D Soccer Simulation (Soccer 3D), a competition where teams composed by 11
autonomous agents each compete in simulated soccer matches. In our approach, the state vector used as the neural network’s
input consists of raw sensor measurements or quantities which could be obtained through sensor fusion, while the actions
are the joint positions, which are sent to joint controllers. Our running behavior outperforms the state-of-the-art in terms of
sprint speed by approximately 50%. We present results regarding the training procedure and also evaluate the controllers
in terms of speed, reliability, and human similarity. Since the running policies with top speed display asymmetric motions,
we also investigate a technique to encourage symmetry in the sagittal plane. Finally, we discuss key factors that lead us to
surpass previous results in the literature and share some ideas for future research.

Keywords Deep reinforcement learning · Robotics · Proximal Policy optimization

1 Introduction

RoboCup is an international academic competition created
with an ambitious long-term objective of a team of huma-
noid robots beating the human soccer World Cup champions
by 2050 [1]. To accelerate progress, it is composed of many
leagues with different game rules and constraints on robot
design.

RoboCup 3D Soccer Simulation (Soccer 3D) is a league
of RoboCup Soccer based on a robot soccer simulator
with high-fidelity rigid-body dynamics. Each team consists
of 11 simulated Nao humanoid robots [2]. Soccer 3D
contributes to RoboCup Soccer by providing an interesting
research environment for high-level multi-agent cooperative
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decision making and humanoid robot control [3]. Since
researchers are not constrained by real robot hardware, they
typically rely on model-free optimization and machine lear-
ning techniques to develop high-performance motions or
complex decision making algorithms. Simulation permits
automatic execution of many well-controlled experiments,
which is hard to carry out in a real robot setting [4, 5] due
to the following issues [4, 5]:

– Battery autonomy is very limited with current technol-
ogy, so batteries need to be recharged frequently.

– Robots often need to be manually reallocated to
initialize an experiment.

– Hardware damage is probable due to the exploratory
nature of these algorithms.

– Experience is limited by real-time execution while si-
mulation may run much faster than real-time in power-
ful hardware.

– Experience is also limited by the number of physical
robots available, whereas many simulations may run in
parallel.

In Soccer 3D, motion control has a huge impact on the
team’s ability. One of the main causes is that humanoid
robot control is one of the hardest problems in robotics.
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Therefore, there are huge gaps regarding motion skills
between teams. Moreover, high-level behaviors are strongly
dependent on strong low-level skills: good strategy plans are
of no use if the agents are not able to execute them robustly.

In fact, the underactuated, nonlinear, and high dimen-
sional dynamics of a humanoid robot with many degrees of
freedom, such as the Nao, poses great challenges to state-
of-the-art control techniques [6]. Most works have tackled
humanoid robot walking and researchers were successful
in developing controllers based on the Zero Moment Point
(ZMP) concept and reduced-order dynamic models, such
as the linear inverted pendulum model [7]. However, these
algorithms restrict the robot to operate under a small region
of its dynamics to avoid breaking the assumptions of the
simplified models [8, 9].

Recent advances in machine learning have allowed
model-free deep reinforcement learning (DRL) algorithms
to learn humanoid robot motions on data directly sampled
from a high-fidelity simulator. Since there is no need to
consider an explicit mathematical model, these techniques
can better exploit the humanoid robot dynamics and learn
faster locomotion skills. In Soccer 3D, teams have recently
explored model-free DRL to develop running motions [10,
11], opening new research directions.

This article contributes by enhancing the methodology
proposed by Abrel et al. [12] for learning a running pol-
icy in the Soccer 3D domain. To the best of our knowl-
edge, the learned policy obtained in this work yields the
fastest running motion in Soccer 3D, surpassing the previ-
ous state-of-the-art top speed reported in [12]. Furthermore,
our approach also reduces training time in comparison to
[12]. For a more comprehensive comparison between the
methods, please refer to Section 3. Our methodology uses
model-free DRL through the Proximal Policy Optimization
(PPO) [13] algorithm, to learn the policy from no prior
knowledge. The state vector used as input to the neural net-
work encompasses raw sensor measurements from the Nao
robot and quantities obtainable from state estimate techni-
ques. Moreover, we also contribute by investigating a tech-
nique to encourage symmetry in the sagittal plane based on
ideas by Abdolhosseini et al. [14], which was not handled
in [12]. Finally, we evaluate how incentivizing symmetry
impacts the running performance.

We highlight to the reader that this is an extended version
of the conference paper [15]. We expanded Sections 2
and 3, and added many text enhancements throughout the
paper. Moreover, Sections 4.5 and 5.5 are completely new
as they are related to our attempt in solving a problem not
addressed in our previous paper, namely the asymmetry
observed in the resulting motions. We tackled this problem
by encouraging symmetric motions through modifications
to the dataset, as suggested in [14].

The remainder of this work is organized as follows.
Section 2 provides theoretical background. Section 3 pre-
sents related work. In Section 4, we explain the methodol-
ogy used in this work. Furthermore, Section 5 presents sim-
ulation results to validate our approach. Finally, Section 6
concludes and shares our ideas for future work.

2 Background

Reinforcement Learning (RL) is learning what to do – how
to map situations to actions – so as to maximize a numerical
reward signal. The learner is not told which actions to take,
but instead must discover which actions yield the most
reward by trying them [16].

RL is a subfield of Machine Learning that studies how
an agent interacts with an environment receiving rewards.
However, of all the forms of machine learning, reinforce-
ment learning is the closest to the kind of learning that
humans and other animals do, and many of the core algo-
rithms of reinforcement learning were originally inspired by
biological learning systems [16].

In RL, a behavior is learned through the interaction with
the environment. An agent tries to maximize some reward
and, consequently, learns to maps which action should be
taken given its own observations of the external world.
Thereby, the agent does not have access to any data source
or experience, it learns directly from its interactions with the
environment.

2.1 Markov Decision Processes

We consider the problem of learning a running motion as a
Markov Decision Process (MDP). A Markov Decision Pro-
cess is a mathematical formalization of sequential decision-
making, where actions influence immediate rewards and
subsequent situations, or states, and, through those, future
rewards [16]. A MDP, is a tuple M = (S,A,P, r, ρ0, γ, T ),
where:

– S is a state space.
– A is an action space.
– P : S × A × S → R+ is a transition probability

distribution.
– r : S × A → [−rbound, +rbound ] is a bounded reward

function.
– ρ0 : S → R+ is an initial state distribution.
– γ ∈ [0, 1] is a discount factor.
– T is the length of the finite horizon.

During policy optimization, we typically optimize a
policy πθ : S × A → R+, parameterized by θ , with the
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objective of maximizing the cumulative reward throughout
the episode:

max
θ

Eτ

[ T∑
t=0

γ t r(st , at )
]
, (1)

where τ denotes the trajectory, s0 ∼ ρ0(s0), at ∼ πθ (at |
st ), and st+1 ∼ P(st+1 | st , at ).

2.2 Policy Gradients

In Policy Gradient (PG) methods, the objective is to learn
a parameterized policy that directly selects an action from
the state space. We address policy learning in continuous
action spaces. During training, such methods compute an
estimate of the policy gradient and use it in an optimization
algorithm, usually a stochastic gradient ascent algorithm.

Considering the cumulative reward as our objective func-
tion, we can derive the following equation for estimating the
gradient [13]:

ĝ = Et

[∇θ log πθ (at | st )Ât

]
, (2)

where Ât corresponds to an estimator of the advantage func-
tion. Therefore, in PG algorithms, we basically collect some
roll-outs from the current policy, estimate an advantage
function using the received rewards and then estimate a
policy gradient w.r.t the parameters θ , and finally update
such parameters.

The major advantage is that the method is completely
model-free, i.e., the gradient itself does not depend on the
dynamics that governs the environment. In some applica-
tions, it is possible to represent the environment perfectly.
However, in many others, including this work, knowing a
sufficient representation of the environment’s dynamics
would be too complicated and error-prone. Thereby, the
choice for model-free algorithms.

Nevertheless, applying such gradient directly will not
result in a good policy because the estimation is very noisy,
resulting in catastrophic updates that slow learning [16].
This obstacle can be quite challenging in environments with
long horizons or high-dimensional action spaces.

2.3 Advantage Function and the GAE Algorithm

To estimate the gradient using Eq. 2, we need to first com-
pute an estimator of the advantage function Ât . In practice,
one may use the temporal-difference (TD) error to estimate
the advantage function:

δt
πθ

= r(st ) + γ V̂ (st+1) − V̂ (st ), (3)

where V̂ is an estimate of Vπθ
. This is possible because the

temporal-difference error estimates the advantage function
without bias when V̂ (s) = Vπθ

(s) :

Eπθ
[δt

πθ
| st , a] = Eπθ

[r(st ) + γVπθ
(st+1)] − Vπθ

(st ) (4)

= Qπθ
(st , a) − Vπθ

(st ) (5)

= Aπθ
(st , a). (6)

However, there is no guarantee that the condition V̂ (s) =
Vπθ

(s) holds. Thus, this estimate method induces bias. To
solve this problem, we may define the advantage estimator
in terms of discounted temporal-difference errors of higher
orders:

Â(1)
πθ

(st , a) = δt
πθ

, (7)

Â(2)
πθ

(st , a) = δt
πθ

+ γ δt+1
πθ

, (8)

Â(3)
πθ

(st , a) = δt
πθ

+ γ δt+1
πθ

+ γ 2δt+2
πθ

, (9)

Â(k)
πθ

(st , a) = δt
πθ

+ γ δt+1
πθ

+ γ 2δt+2
πθ

+ · · · + γ kδt+k
πθ

, (10)

where the δt+k
πθ

is the TD error of k steps [16]. The
Generalized Advantage Estimator (GAE) is defined as the
exponentially-weighted average of these higher order errors
[17]. We introduce the λ factor, which is related to how
many steps will effectively be considered in the estimate. In
mathematical terms:

ÂGAE(γ,λ)
πθ

(st , a) = (1 − λ)

×
(
Â(1)

πθ
(st , a)+λÂ(2)

πθ
(st , a) + λ2Â(3)

πθ
(st , a) + · · ·

)
(11)

=
∞∑

k=0

(γ λ)kδt+k
πθ

(12)

GAE with λ = 0 is the case of Eq. 3 that can induce bias.
On the other side, GAE with λ = 1 does not induce bias
regardless of the accuracy of V̂ (s), but has high variance.
Therefore, GAE with 0 ≤ λ ≤ 1 makes a compromise
between bias and variance, controlled by λ [17]. The
complete mathematical demonstration from Eqs. 11 to 12
can be found in [17].

2.4 Proximal Policy Optimization

Proximal Policy Optimization is a on-policy algorithm
which tries to take the biggest possible improvement
step on a policy using the current experience, without
moving so far from the current policy. The problem
with large improvements in policy is that it can cause a
catastrophic loss of performance. PPO is a family of first-
order methods that take into account a few considerations
to keep new policies close to old. It alternates between
sampling data through interaction with the environment, and
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optimizing a “surrogate” objective function using stochastic
gradient ascent [13]. It takes some benefits of trust region
optimization in terms of reliability and stability by defining
a “clipped” surrogate objective:

L(θ) = Et

[
min(rt (θ)Ât , clip(rt (θ), 1−ε, 1+ε)Ât )

]
, (13)

where ε is a clip hyperparameter, and rt (θ) is the probability
ratio defined in Equation 14:

rt (θ) = πθ (at | st )

πθold
(at | st )

, (14)

where θold represents the parameter vector of the old policy.
In this way, the clip function avoids excessively large policy
updates and reduces the problem of catastrophic steps. We
use an actor-critic style of PPO, where we also predict
the value function and use it to estimate the advantage
function through the Generalized Advantage Estimation
(GAE) algorithm [18]. The actor and the critic roles
are implemented through two different neural networks,
respectively.

Finally, we use an implementation for PPO [19] that
collects data from multiple parallel actors and synchronize
them by applying an average of computed gradients into a
unified policy representation (neural network).

3 RelatedWorks

Research in RoboCup has a long history of applying
optimization and machine learning for developing high-
level behaviors or low-level skills [5, 9, 20–25]. These
techniques require exploration of the state space in search of
optimal solutions. Therefore, they are even more interesting
in simulated leagues where simulation permits automatic
execution of many well-controlled experiments [4, 5].

In Soccer 3D, a very successful approach for motion
design uses metaheuristic optimization algorithms for
tuning parameters used to describe a movement. The most
common and straightforward way to describe a motion is
through the so-called keyframes, which define a sequence
of target robot poses (complete descriptions of joint angles)
together with the time interval between these poses [9].
However, other motion descriptions were also explored.

Maximo et al. define joint trajectories through periodic
functions whose parameters are optimized through Particle
Swarm Optimization (PSO) [4]. Urieli et al. used the opti-
mization of individual skills in Soccer 3D as a benchmark
for optimization algorithms, such as Genetic Algorithms,
Hill Climbing, Cross-Entropy Method, and Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [26].
The authors concluded that CMA-ES showed the best
performance in this domain. This and subsequent works

by the same research group had a huge influence in the
Soccer 3D community, as most teams devised to CMA-ES
to optimize skills.

MacAlpine et al. optimized parameters of a model-
based omnidirectional humanoid walking engine using
CMA-ES [27]. The resulting gait is considered the main
element responsible for the remarkable performance team
UT Austin Villa had in RoboCup 2011, where it won all
24 games scoring a total of 136 goals without conceding
none. A similar approach was used to optimize keyframes
sampled from other teams in [24]. Then, the same ideas
were used to learn 19 behaviors which were optimized to
work well together using an overlapping layered learning
paradigm [28]. Dorer used Genetic Algorithms to teach
an Nao robot endowed with toes to kick the ball 30%
better than the regular robot could [29]. Reinforcement
learning (RL) has been an active area of research for many
years [16]. RL is a branch of machine learning suited
for sequential decision-making problems, such as those
found in robot motion control. However, classical tabular
RL methods, such as SARSA and Q-Learning, suffer from
the curse of dimensionality due to the need of maintaining
a value function table [16]. Therefore, they were only able
to solve toy problems, such as grid worlds and multi-armed
bandits [16].

Function approximators were used to mitigate this scala-
bility problem [16], but researchers struggled with con-
vergence problems when using neural networks in RL for
many years. Major breakthroughs introduced by the Deep
Q-Networks work, namely experience replay and target net-
work, stabilized Q-Learning with deep neural networks as
function approximators, giving rise to the field of deep
reinforcement learning (DRL) [30].

Recent DRL algorithms for continuous control tasks are
based on policy gradients [16], an alternative RL formula-
tion that permit continuous state and action spaces. Some
of the most famous methods in this class are Advantage
Actor-Critic (A2C) [31], Sample Efficient Actor-Critic with
Experience Replay (ACER) [32], Deep Deterministic Pol-
icy Gradients (DDPG), Trust Region Policy Optimization
(TRPO) [33], and Proximal Policy Optimization (PPO)
[13].

These algorithms yield remarkable performance in conti-
nuous control tasks. Heess et al. applied PPO to teach a hu-
manoid model to run and execute parkour movements in a
simulated environment [34]. Nevertheless, the learned mo-
tions look unnatural. Peng et al. [35] used the same learning
algorithm but with modifications to the reward function
and some strategies to improve the training procedure. This
work encourages the learning to mimic reference motions,
which results in more human-like behaviors. Since huma-
noid locomotion skills learned through DRL are often asym-
metric, Peng et al. recently proposed strategies to incentive
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learning of asymmetric locomotion [14]. Experimental
results demonstrate that state-of-the-art DRL algorithms
greatly outperform metaheuristic optimization techniques,
such as CMA-ES, in control tasks in terms of sample
efficiency [13, 18].

Motivated by the success of DRL, the robot soccer
community has been experimenting with these algorithms.
MacAlpine and Stone optimized a kicking motion using the
Trust Region Policy Optimization (TRPO) algorithm [25].
The authors verified that adding more parameters to the kick
optimization improves the optimized kick performance.
Nevertheless, they were unable to scale CMA-ES to more
than a few hundred parameters, whereas DRL is often
used to optimize policies with thousands or millions of
parameters. Luckeciano extended this work by proposing
a learning method where imitation learning is used to
first capture a kick motion seed, which is then optimized
through PPO [15, 36]. Many different RL approaches were
tried and imitation learning proved essential to obtain high-
performance kick motions in this setting. An extension
to this method used meta-learning through the Bottom-
Up Meta-Policy Search (BUMPS) algorithm to generalize
specialized policies trained by RL for kicking to specific
distances to a policy that precisely kicks to any desired
distance within a range [20].

Regarding running motions in Soccer 3D, Fischer and
Dorer [10] applied a modified version of the method
presented in [29], based on Genetic Algorithms, to learn
a running behavior from scratch using the Nao agent with
toe joints. Furthermore, Abrel et al. achieved an incredible
running motion by learning from scratch with PPO [12].
To the best of our knowledge, they have the state-of-the-art
running skill in terms of top speed in Soccer 3D, which is
reported as 2.5 m/s in their paper. They use a state space
containing a global time step counter, the global torso’s
height and orientation, the joint positions, the acceleration
and angular velocity measured by the inertial measurement
unit (IMU), and feet force sensor readings. They also
include numeric differentiation of some of these quantities.
The action space consists of commanded joint positions.
Finally, they use a simple reward signal that incentives the
robot to run as fast as possible in the forward direction.

This work is an extended version of a conference paper
[15], which enhances a previous work by Abrel et al. on the
same subject [12]. We also use PPO with the same action
space and optimization task. Nonetheless, we enhance their
approach by expanding the state space (by adding the
center of mass’ coordinates at each time step), tuning
PPO’s hyperparameters for the task, and changing how the
policy roll-outs are collected. Opposed to [12], our method
does not rely on any modification to Simspark [37], the
Soccer 3D simulation server. Our methodology generates
a running motion which surpasses the state-of-the-art top

sprint speed reported in [12] by approximately 50%, while
reducing the training time at the same time. Furthermore, in
comparison to this previous work [12], we also contribute
by presenting alternative formulations which generate more
natural running gaits.

Interestingly, we have been previously working on run-
ning policies with little success. However, we were boot-
strapping our policies with our control-based omnidirec-
tional walking engine [38] through imitation learning.
Counter-intuitively, in opposition to the kicking motion,
learning from scratch yields better running motions, which
is an interesting insight we have drawn from [12].

4Methodology

In this section, we provide details about our methodology:
the formulation of running motion as an MDP; the
description of the optimization tasks used to obtain our
final policy and how we evaluate it; and the configuration
regarding the PPO training.

4.1 Domain Description

The RoboCup 3D simulation environment is based on
SimSpark [39], a generic physical multi-agent system simu-
lator. SimSpark uses the Open Dynamics Engine (ODE)
library for its realistic simulation of rigid body dynamics
with collision detection and friction. The Nao robot has a
height of approximately 57 cm and weights 4.5 kilograms.

The agent sends speed commands to the simulator and
receives perceptual data. Each robot has 22 joints with
sensors and actuators, and the monitoring/control of such
joints happens at each cycle (20 ms). Visual information is
obtained by the agent in periods of 60 ms through noisy
measurements of the distance and angle to objects within
a restricted vision cone of 120 degrees. The agent also
receives noisy data from sensors: gyroscope, accelerometer,
and feet pressure. Communication between agents and the
server happens at the frequency of 50 Hz [40].

The coordinate system of the field is defined with origin
in the center of the soccer field, with the x-axis pointing to
the opponent’s goal and the y-axis pointing to the left of
someone oriented to the opponent’s goal.

4.2 MDP Description

In this work, we aim to obtain a policy that provides run-
ning skills for a humanoid robot in the RoboCup 3D Soccer
Simulation environment. This policy uses sensor data to
infer a state for the robot and map it to possible joint posi-
tions at each time step, to make the robot run with maximum
forward velocity, while being stable enough. To achieve
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such an objective, we need to model each component of the
MDP.

4.2.1 State Space

We modeled the state space with the features reported in
Table 1. We aim that, through optimization, the policy
learns about the dynamics to perform running with enough
stability by using such low-level information.

We start by creating counters to model temporal cor-
relation. First, a general counter to explicit the sequen-
tial decision-making nature of the problem, which also
improves velocity [12]. Secondly, there are counters, one for
each foot, which explicit the motion period of each leg as
helpful features to incentive symmetry.

The actual joint’s values are also part of the observation
since we would like to obtain a running motion with actions
in the joint space. Torso’s height, orientation, velocity,
acceleration, and center of mass position aim to provide
useful information regarding the robot’s kinematics. The
feet force data is related to the center of pressure, which
indicates stability.

Finally, we noticed that only the sensor data from the
current time step is not enough to model the whole dynamics
of this problem. In fact, this is a partially observed setting.
Therefore, we need to compute features that represent the
recent past, such as the rate of change of each feature. We
obtain them by applying first-order numeric differentiation.

4.2.2 Action Space

In terms of action space, we use the same indirect approach
described by Abrel et al. [12]. We firstly bound the neural
network’s output to the interval [−1, 1]. We then linearly
project this space onto the joint space, considering the range
of possible values for each joint. Finally, we use these
target angles θ

target
i and the current angles θcurrent

i for each
joint i to compute the commanded angular speed ωt

i of
each actuator, using a proportional controller with constant

Fig. 1 Initial robot’s joints configuration

Kp = 7 s−1, as presented in Eq. 15, where the quantities
are given in the International System of Units (SI). We also
saturate the speed of each joint using the limits provided in
Simspark’s documentation [37].

ωt
i = Kp

(
θ

target
i − θcurrent

i

)
. (15)

4.2.3 Reward Function, Episode Horizon and Initial State
Distribution

We consider different reward functions depending on the
optimization task. We opted to shape it as simple as
possible, to evaluate the efficiency of the RL optimization.
In other words, we would like to validate if this formulation
can obtain good locomotion skills from a high-level reward
function (such as the speed in the global x-axis). Similarly,
the episode horizon is also task-dependent. Both aspects
will be described minutely in the next section.

In terms of initial state distribution, we considered the
initial robot’s joints configuration that enables the robot
to start upright and easily explore bipedal balance and
locomotion (see Fig. 1).

Table 1 State Space

Feature Description Size

General Counter A counter that increments at each time step 1

Left/Right Foot Counter A counter that restarts when the left/right foot touches the ground and increments at each time step 2

Joints’ Values Nao Joints, except neck yaw and pitch 20

Torso’s Height and Orientation The height (relative to ground) and yaw orientation of Nao’s torso at the moment 2

Center of Mass The coordinates of the center of mass at each time step 3

Torso’s Velocity Torso’s angular velocity provided by the gyroscope sensor 3

Torso’s Acceleration Torso’s acceleration provided by the accelerometer sensor 3

Left/Right Foot Pressure Data The force and origin coordinates computed by left/right foot pressure feet sensors 12

Rate of Change The rate of change w.r.t to the last time step of each feature previously described, except for the counters 43
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4.3 Optimization Task and Evaluation

To achieve a sprint motion that runs as fast as possible,
we create two similar optimization tasks. In both cases,
we started the robot at (−14, 0) using the initial joints’
configuration previously described. The reward is just the
forward distance traveled w.r.t. the last time step.

In Task I, the policy does not have any prior knowledge,
thus we use Early Termination [35] by finishing the episode
when the robot falls. This technique helps in two ways:
first, it avoids to collect data from a bad terminal state,
which the robot is not able to recover itself; second, we
explicitly reinforce the agent to keep going forward as long
as possible, obtaining more reward. Additionally, we also
finish this task when the robot reaches the finish line placed
at x = 14, which avoids that the agent crashes into the goal
post.

Task II is very similar to the first one, but we consider
a fixed episode length of 400 time steps instead of a finish
line. In the first task, when the policy is able to achieve
the finish line without fall, it starts trying to obtain reward
by improving its forward velocity, but it also reduces the
episode length and therefore the cumulative reward. A fixed
horizon, on the other hand, will avoid this trade-off. We also
maintained the Early Termination in case of agent fall.

We evaluate policies by two factors. First, we measure
how fast the robot can run by computing its forward velo-
city. Secondly, how reliable and stable is such locomotion
skill, by using the information about angle deviation from
the global x-axis direction, once that this is the reference
line which the agent should align with. The results reported
in the next section will use such metrics during and after
training.

4.4 Hyperparameters and Training Procedure

For training, we used a distributed version of PPO [19],
with few modifications. The code is available in github1.
This distributed variant parallelize agents as MPI processes.
The learning updates happen synchronously as a reduce
operation among all gradient estimations from each agent.
We trained in a cluster of Intel Xeon scalable processors,
using Intel DevCloud [41], with 19 worker nodes collecting
data and a head node running the PPO algorithm.

Each experiment collected 200M time steps, during
approximately 20 hours in the described setup. In terms of
hyperparameters, we opted to use a set that is very similar
to other benchmark environments for locomotion skills,
presented in Table 2. However, we highlight the importance

1https://github.com/alexandremuzio/baselines/tree/neural-engine-
dynamics

Table 2 PPO Hyperparameters

Hyperparameter Value

Timesteps per actor batch 4096

Clip parameter 0.1

Entropy Coefficient 0.0

Optimization epochs 10

Learning rate 0.0001

Batch size 64

Discount factor 0.99

GAE λ 0.95

Learning rate decay No decay

of hyperparameter search as future work, since PPO is very
sensitive to them [36].

For neural network architecture, we used the same
model for both actor and critic, composed of 2-layer dense
networks with 64 neurons and hyperbolic tangent as non-
linear activation. We initialize weights with a simple normal
distribution with unit variance.

4.5 Symmetry

Healthy human gaits are usually symmetric [14]. Never-
theless, the methodology described so far produces high
performance motions but with visible asymmetries. As
demonstrated in [14], by encouraging symmetric motion,
the learning may converge to more human-like motion poli-
cies. Therefore, we aim to induce motion symmetry and
evaluate its final impact on the learning process.

In formal terms, two trajectories may be defined as
symmetric if for each state-action tuple (st , at , rt ) from one
trajectory, the corresponding symmetric state-action tuple is
given by (ψs(st ), ψa(at ), rt ) for the other trajectory. ψs :
S → S is a bijective function which associates each state to
its mirrored counterpart. Similarly, ψa : A → A associates
each action to its mirrored counterpart.

A symmetric policy produces a mirrored action when
given a mirrored state as input. Formally, we can define a
symmetric policy to be one where, for all states s ∈ S, the
policy follows the property described in Eq. 16.

π(ψs(s)) = ψa(π(s)), ∀ s ∈ S (16)

Abdolhosseini et al. [14] describes four methods for en-
forcing symmetry: using data augmentation, auxiliary los-
ses, a time-indexed motion phase, or an architecture-based
method. As an initial attempt in stimulating symmetry,
we avoided the time-indexed motion phase method as it
involves modifying the environment and the architecture-
based method as it requires changing the neural network
architecture. The other methods can be implemented
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directly in the learning algorithm, without changing the
learning task or the neural network architecture.

Finally, we discarded the auxiliary loss method as it
involves the addition of an extra hyperparameter. Our goal
was to slightly encourage symmetry making no change in
the optimization task, the neural network architecture, or the
hyperparameters.

Thus, we opted for the data augmentation technique. In
this approach, each trajectory tuple is duplicated, mirrored,
then added as a valid experience tuple along with the
original.

Formally, let τ = (s1, a1, r1, . . . , sT ) be a trajec-
tory sampled from the environment. Next, we compute
the mirrored trajectory of τ , i.e. τsym = (ψs(s1),

ψa(a1), r1, . . . , ψs(sT )). Both τ and τsym are added to the
roll-out memory buffer for learning. Notice that the rewards,
r1, ..., rT −1 are the same in both τ and τsym. Algorithm 1
shows the modification to the backbone of the Proximal
Policy Optimization algorithm [13] in order to achieve a
running policy which is more symmetric. Differences from
the standard PPO algorithm are marked in blue.

Algorithm 1 PPO Algorithm with Data Augmentation to
Incentivize Symmetry.

while stopping criteria not met do
foreach agent do

Sample τ : run policy πθold
for T timesteps

Compute τsym = (ψs(s1), ψa(a1), r1, ..., ψs(sT ), ψa(aT ), rT )

τ ← τ ∪ τsym

Estimate Ât using truncated GAE algorithm
end for
Apply ∇LCLIP+S(θ) to policy network and ∇LV F (φ) to value

function network (parameterized by φ) using the Adam algorithm
θold ← θ

end while

4.5.1 Symmetry in the Sagittal Plane

As mentioned in Section 1, the achieved policy lacks
similarity with the natural human gait. The running motion
does not present symmetry in the sagittal plane, as expected
for a humanoid gait. Thus, we will investigate the effects of
enforcing mirrored actions in the sagittal plane to achieve
a more natural gait. In consequence, we have to define
functions ψs : R

89 → R
89 and ψa : R

20 → R
20 to

mirror our states and actions, respectively. From now, we
will describe the transformation of each observation and
action into its mirrored version.

– Joint’s values
As mentioned, the agent has 22 joints. The two neck

joints (pitch and yaw) are not used as observations
and actions since their impact on a running motion
is negligible. The other 20 joints have to be mirrored

Table 3 Joint symmetry

Joint Value After Applying Symmetry

Left Shoulder Pitch Right Shoulder Pitch

Left Shoulder Yaw - Right Shoulder Yaw

Left Arm Roll - Right Arm Roll

Left Arm Yaw - Right Arm Yaw

Right Shoulder Pitch Left Shoulder Pitch

Right Shoulder Yaw - Left Shoulder Yaw

Right Arm Roll - Left Arm Roll

Right Arm Yaw - Left Arm Yaw

Left Hip Yaw Pitch - Right Hip Yaw Pitch

Left Hip Roll - Right Hip Roll

Left Hip Pitch Right Hip Pitch

Left Knee Pitch Right Knee Pitch

Left Foot Pitch Right Foot Pitch

Left Foot Roll - Right Foot Roll

Right Hip Yaw Pitch - Left Hip Yaw Pitch

Right Hip Roll - Left Hip Roll

Right Hip Pitch Left Hip Pitch

Right Knee Pitch Left Knee Pitch

Right Foot Pitch Left Foot Pitch

Right Foot Roll - Left Foot Roll

Bold is used to indicate the joints where the symmetry operation also
changes the signal

z

y

x

Fig. 2 Coordinate system representation
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Table 4 Observation symmetry
Observation Mirrored observation

Center of Mass Y - Center of Mass Y
Torso Angular Velocity X - Torso Angular Velocity X
Torso Angular Velocity Z - Torso Angular Velocity Z
Torso Acceleration Y - Torso Acceleration Y
Left Foot Pressure Data Origin X Right Foot Pressure Data Origin X

Left Foot Pressure Data Origin Y - Right Foot Pressure Data Origin Y
Left Foot Pressure Data Origin Z Right Foot Pressure Data Origin Z

Right Foot Pressure Data Origin X Left Foot Pressure Data Origin X

Right Foot Pressure Data Origin Y - Left Foot Pressure Data Origin Y
Right Foot Pressure Data Origin Z Left Foot Pressure Data Origin Z

Left Foot Pressure Data Force X Right Foot Pressure Data Force X

Left Foot Pressure Data Force Y - Right Foot Pressure Data Force Y
Left Foot Pressure Data Force Z Right Foot Pressure Data Force Z

Right Foot Pressure Data Force X Left Foot Pressure Data Force X

Right Foot Pressure Data Force Y - Left Foot Pressure Data Force Y
Right Foot Pressure Data Force Z Left Foot Pressure Data Force Z

Right Foot Counter Left Foot Counter

Left Foot Counter Right Foot Counter

Bold is used to indicate the observations where the symmetry operation also changes the signal

in the sagittal plane. Intuitively, the symmetry occurs
by exchanging the right joints by their left side coun-
terparts and vice versa. Besides that, the yaw and roll
joints must have their values inverted. Table 3 describes
the application of ψs and ψa for each joint. Notice that
a minus signal is used to indicate that a value needs to
be inverted. The coordinate system convention is shown
in Fig. 2.

– General Counter
As a simple counter, its value is the same for

symmetric states.
– Left/Right Foot Counter

The values for left and right are exchanged.
– Torso’s Height and Orientation

Those values are the same for symmetric states.
Notice that only the torso’s yaw orientation is used here.

– Center of Mass
As the coordinates CoM = [xCoM, yCoM, zCoM ]T

are calculated relatively to the agent’s local coordinate

system, we invert the value of the y coordinate. Hence,
ψ(CoM) = [xCoM, −yCoM, zCoM ]T .

– Torso’s Angular Velocity
The torso’s angular velocity has a component in each

axis, i.e., ω = [ωx ωy ωz]T . As the sagittal plane is
defined as the plane XZ (see Fig. 2), in order to mirror
the torso’s angular velocity, we invert the values of the x

and z components, while the y component remains the
same, i. e., ψ(ω) = [−ωx ωy − ωz]T .

– Torso’s Acceleration
The torso’s linear acceleration also has a component

in each axis, i.e., a = [ax ay az]T . As it is a linear
measure, we only invert the y component, i. e., ψ(a) =
[ax − ay az]T .

– Left/Right Foot Pressure Data
Again, we exchange the values between the left and

right feet. We also invert the value of the y coordinate
of the data computed by each pressure sensor.

– Rate of Change

Fig. 3 Reward curves from
sprint tasks
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Fig. 4 Forward speed evaluation from a given starting line. All
statistics were collected from 1,000 episodes

Each rate of change follows the same rule as its
original observation.

Table 4 summarizes the mirrored representation of each
observation. The joints are already represented in Table 3.
The observations that remain constant in symmetric states
are not represented for the sake of conciseness.

The code that applies symmetry to actions and observa-
tions is open source.2

4.5.2 Code Implementation

To learn the movement policy, we modified PPO’s imple-
mentation from OpenAI Baselines [19]. With slight modi-
fications, available in gitlab3, we incremented the previous
PPO’s implementation with the data augmentation step,
right after the trajectory sampling and before the optimiza-
tion step.

As consequence, we produce experiments without chan-
ges in the MDP (neither the states nor the actions were
changed) or in the optimization task. Hence, we could eva-
luate the individual impact of the data augmentation in the
learning process, as the other major components were not
altered. Also, the hyperparameters were the same described
in Table 2, used for the previous experiments.

2https://gitlab.com/itandroids/open-projects/baselines/-/blob/run-policy-
symmetry/baselines/ppo1/symmetry.py
3https://gitlab.com/itandroids/open-projects/baselines/-/tree/run-policy-
symmetry

Fig. 5 Plot from the trajectories followed by the agent in 100 episodes

5 Results and Discussion

In this section, we present the results regarding our metho-
dology during training and evaluation, in the light of the
metrics previously described: how fast the robot can run
(forward velocity) and how reliable and stable is such loco-
motion skill, as mentioned in Section 4.3.

In terms of reproducibility, we open source all the
training logs (in Tensorboard [42] format), evaluation data,
and scripts that computed the following results, as well
as the trained models.4 We also present some videos to
illustrate the locomotion skill.

Although we are not able to release the whole agent code
(due to competition reasons), we released the portion that
corresponds to the training agent, which details the whole
MDP implementation.5

5.1 Training Procedure

Figures 3a and b present the reward curves from both
training procedures, each of them with 200M time steps.
These data were collected using one training actor. We also
highlight the state-of-the-art forward speed reported inside
the Soccer 3D environment.

Using the training setup previously described, we use
approximately 20.5 and 18.5 hours for training tasks I
and II, respectively. The first task achieved the previous
best speed between episodes 25,000 and 30,000, which

4https://drive.google.com/open?id=1wDEWSQv48qEM8Q17ydPQsrL
M7sbtxtwz
5https://github.com/luckeciano/humanoid-run-ppo
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Fig. 6 Sequential frames illustrating the running motion from the best reported results, in terms of forward speed

corresponds to approximately 72M time steps. This shows
improvement, in terms of sample efficiency, considering
the results reported in [12] (i.e. we reduce the number of
samples needed to achieve the same performance). We also
observed that approximately 4 hours of training is enough
for the agent to cross the whole soccer field.

5.2 Speed Evaluation

Figure 4 presents the data regarding speed evaluation. We
collected them by reproducing the running motion during
1,000 episodes of sprint task I, using the deterministic
policy after both training tasks. We present the average and
maximum velocities across all episodes. Finally, we also
show the 95% bootstrap confidence interval, symbolized by
the blue shaded area.

Accordingly to Fig. 4, we report a top speed of 3.91 m/s,
which surpasses the best velocity reported in the Soccer
3D environment by approximately 50.3%. The standard
deviation for this top speed is 0.07 m/s. Furthermore, we
observe a small confidence interval, which reinforces the
reliability of the presented metric.

5.3 Reliability and robustness

We also present results about the reliability and robust-
ness of the running motion. We evaluate them by plot-
ting the followed trajectories and evaluating the final
deviation.

Figure 5 shows the trajectories followed by the agent
in 100 episodes. We preferred not to plot all 1,000
episodes for the sake of readability. Nevertheless, we report
the mean of final deviation across all 1,000 collected
episodes: 1.52 degrees (from the x-axis), with a standard
deviation of 1.27 degrees. We did not employ any additional
compensation regarding the agent’s pose to reduce this
deviation.

In the worst cases presented in the Fig. 5, there is a devia-
tion of approximately 2.5 meters, that we do not conceive
as harmful considering the length of the trajectory and the
game conditions in the RoboCup 3D Soccer Simulation
environment. Furthermore, we consider that such deviation
can be reduced by applying compensation using the agent’s
pose as feedback.

5.4 Human Similarity

Finally, we need to present qualitatively ideas about how
similar the running motion is in comparison to humans. As
previously stated, we released videos about the motion.6

We observed that, although the running motion has fast
locomotion skills, the agent’s torso is not completely erect,
being less human-like.

We then reproduced all training procedures previously
described but constraining the minimum robot torso’s height
to 0.33 m (in contrast to 0.27 m). We implemented this
constraint as the condition that triggers Early Termination:
if the torso height is less than this minimum value, the
episode ends. It resulted in a more human-like motion, at
the cost of some stability (the robot falls in more episodes)
and forward velocity (top speed of 3.81 m/s). Figures 6 and
7 present both motions as sequences of frames. We also
released all data and plots from both motions, to provide a
further comparison between them.

5.5 Symmetry Experiments

The first experiments with data augmentation failed in the
primary goal: the agent was not able to learn to run through
the entire field. It learned to walk, but it fell after some
steps. As can be observed in Fig. 8, the reward of the
learning process with data augmentation does not reach the
same level achieved by the experiment without symmetry
incentive and with the same setup.

We believe that the problem is that by augmenting the
data, we break the on-policy property assumed by the PPO
algorithm to encourage symmetry. Abdolhosseini et al. [14]
argued that one drawback of using this approach is that the
mirrored tuples are not strictly on-policy, because at the
training time the policy is not guaranteed to be symmetric
at all. As consequence, the probability of sampling
actionψa(π(s)) from π(ψs(s)) could be low, effectively
corresponding to an off-policy action [14].

By comparing the reward evolution from the current
experiment with the previous one, we observed that initially
both experiments present similar progress, although they

6https://youtu.be/FLkVNh I3UA
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Fig. 7 Sequential frames illustrating the erect running motion, which is more similar to human locomotion

diverge over time, see Fig. 8. Inspired by that empirical
observation, we choose a strategy to enforce symmetry
without compromising the success of the learning process.
We decided to split our training into two phases: a small
pre-training phase and the proper training phase.

Those phases can be regular, i.e., without data augmen-
tation or with data augmentation to encourage symmetry.
A priori, we had no intuition on which would be the best
strategy: first pre-train regular and then train with symme-
try incentive or the contrary. Therefore, we run experiments
with the two possibilities. We call the version with a pre-
training phase without data augmentation as PtRTS: Pre-
training Regular and Training with Symmetry. Moreover,
the experiment with the pre-training phase without data aug-
mentation is called PtSTR: Pre-training with Symmetry
and Training Regular, as described in Table 5.

We ran PtRTS and PtSTR for the robot’s torso height of
0.33 m and 0.27 m. The results were quite interesting: in
both experiments, PtRTS failed as can be seen in Fig. 9,
while the PtSTR could achieve the desired behavior of run-
ning through the soccer field. We also noticed an impro-
vement in the gait of the agent, mostly in the experiment of
height 0.27 m. The previous policy achieved with a torso’s
height of 0.33 m was more human-like, thus the gain with
the data augmentation was not as impressive as in the case

Fig. 8 In blue: reward evolution with data augmentation. In
orange: reward evolution for the regular formulation, without data
augmentation. Each curve shows the mean (darker color) and the
95% bootstrapped confidence interval (lighter color) from 4 training
sessions repeated in the same conditions

of height 0.27 m. The results and comparisons from our
symmetry experiments can be seen at the video.7

As can be observed, the best policy achieved without
symmetry incentive produces a movement in which the right
leg is put in front of the left leg and the running motion
recalls a gallop, see Fig. 10. Meanwhile, the policy achieved
with symmetry incentive present similar actions for the
left and right, therefore the gait is more natural as can be
observed in Fig. 11.

The small pre-training phase (45,000 environment time-
steps) encouraging symmetry through data augmentation
was capable of producing a much more natural gait move-
ment which presents symmetry in the sagittal plane. This
strategy was mandatory to the success of the experiment
as the initial experiment was only able to produce a move-
ment policy without symmetry and the initial symmetry
experiment was not able to produce a stable running motion.

6 Conclusions and FutureWork

In this work, we showed a methodology based on Deep
Reinforcement Learning to learn running skills without
prior knowledge. We used the Proximal Policy Optimization
algorithm to learn a neural network policy whose inputs are
related to the robot’s dynamics. The results show that the
learned motion is able to surpass the previous top forward
speed in Soccer 3D by approximately 50.3%, considering
the results reported in a previous work [12], assumed as
state-of-the-art. Moreover, the running gait is learned in few
hours.

We consider that this large margin from previous state-of-
the-art is mostly due to our improvements in the observation
space. We empirically found that providing the center of
mass was very important to improve learning efficiency and
asymptotic performance. This information helps to balance
the agent during the exploration of a high performing policy.
Additionally, the torso height and the imposed constraints
are crucial to not exploit sub-optimal policies where the
agent does not stand up in early stages of training.

We also share some insights we extracted from our
experiments. Adding the torso’s height and the center of
mass to the state space are very important for speeding

7https://youtu.be/QPqrY1OK-No
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Table 5 Symmetry
experiments Pre-training Training Name

Regular With data augmentation PtRTS

With data augmentation Regular PtSTR

Fig. 9 Sequential frames illustrating the running motion from PtRTS. Notice that the agent is able to perform some steps, but it falls down

Fig. 10 Sequential frames illustrating the running motion from the best reported results. Notice that the right leg is always in front of the left leg

Fig. 11 Sequential frames illustrating the running motion from PtSTR, which is more similar to human locomotion. Notice that in the first and
eighth frames the left leg is much more in front of the right leg. On the other hand, in the fifth frame the right leg is much more in the front of the
left leg
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up training and obtaining faster motions. Moreover, using
many parallel actors in PPO improves gradient estimation,
avoiding optimization steps in bad directions.

We also found that PPO is very sensitive to hyperparam-
eters tuning. Distinct sets of hyperparameters result in very
different policies. Furthermore, The resulting gait is also
very sensitive to hyperparameters related to the agent, such
as the minimum height of the torso and the proportional gain
of the joints’ controllers. Finally, we noticed that incentiviz-
ing symmetry yielded a more natural running gait, but with
lower top speed.

We envision paths for future investigation. A curriculum
learning approach may be applied to obtain high-level beha-
viors that emerges from this running policy, such as naviga-
tion and ball conduction skills. A possible path could invol-
ve starting with the trained running policy and changing the
task objective to have the agent navigate to a given pose or
conduct the ball. We also intend to integrate this running
skill with the soccer agent behavior. This would require
transition motions to start and stop running when needed,
which could also be obtained through deep reinforcement
learning.

We could learn other low-level skills using a similar me-
thodology, such as kicking and getting up motions. In this
regard, the reward signal need to be changed to account for
the new task. We could also try other methods to encourage
symmetric motions, such as another ones described by
Abdolhosseini et al. [14].
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