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Abstract
We propose an evaluation framework that emulates poor image exposure conditions, low-range image sensors, lossy
compression, as well as noise types which are common in robot vision. We present a rigorous evaluation of the robustness
of several high-level image recognition models and investigate their performance under distinct image distortions. On one
hand, F1 score shows that the majority of CNN models are slightly affected by mild exposure, strong compression, and
Poisson Noise. On the other hand, there is a large decrease in precision and accuracy in extreme misexposure, impulse
noise, or signal-dependent noise. Using the proposed framework, we obtain a detailed evaluation of a variety of traditional
image distortions, typically found in robotics and automated systems pipelines, provides insights and guidance for further
development. We propose a pipeline-based approach to mitigate the adverse effects of image distortions by including an
image pre-processing step which intends to estimate the proper exposure and reduce noise artifacts. Moreover, we explore
the impacts of the image distortions on the segmentation task, a task that plays a primary role in autonomous navigation,
obstacle avoidance, object picking and other robotics tasks.

Keywords Image enhancement · Image restoration · Deep neural networks

1 Introduction

Vision has become a catalyst in the implementation of robo-
tics automated systems that rely on environment perception.
Among the practical applications of this hardware-software
associations are biometric surveillance systems [23], auto-
mated visual inspections [37, 49], object tracking [45, 58,
69], environment mapping [5], the domestic and assistive
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robots [22, 39], field robotics [62, 63], and autonomous
cars [2, 26]. Moreover, vision-based perception has also
proved valuable in diverse robotics and autonomous sys-
tems, being used for visual servoing [65], obstacle detection
and avoidance in unmanned vehicles [6, 7, 12, 35], localiza-
tion and mapping [15], navigation [56], distance estimation
[11], loop closure [41], and picking and grasping robots
[24, 33, 34, 40]. The vision part in these tasks, as well as
in other machine vision tasks, is often provided by con-
volutional neural networks (CNNs). However, researchers
have shown CNNs to be vulnerable to image distortion and
manipulation, which may undermine the reliability of CNN-
based systems in autonomous, vision-based, and robotic
applications.

Amidst the recent development of Convolutional Neural
Networks (CNN), such as DenseNet [21], Inception-v3 [53],
Inception-v4 and Inception-ResNet-v2 [52], MobileNetV1
[19], MobileNet-v2 [46], NASNet [71], NASNetMobile
[71], ResNet [17] ResNet-v2 [18], ResNeXt [64], VGG
[48], and Xception [4], it becomes evident that the advan-
cements accomplished within the classifications based on
Deep Learning (DL) have reached the level of near-human
accuracy in numerous datasets.
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When it comes to the improvement of machine learning-
based models, vast and assorted datasets are fundamental.
Many learning-based image recognition systems advance
in order to boost its precision within one of the following
datasets: Imagenet ILSVRC15 [44], MS-COCO [32], Open
Images [29], AVA [14, 30], KITTI [13], CIFAR [28], and
PASCAL VOC [9]. Although nowadays the quantification
and generalization of a prepared model’s efficacy is custom-
arily evaluated by its aptitude on a given test set. The afore-
mentioned datasets are the baseline for the development of a
multitude of the current classification models, contributing
with a true touchstone for the comparison and assessment of
distinct models.

The effectiveness of such evaluation, however, is a
reason of concern for researchers as DL-based systems
expanded to be the standard in perception for robotics. This
is evidenced in how Osherov et al. [38] investigated the
consequences of partial occlusion in the performance of
a trained image classification network model. Recht et al.
[42] also suggested that the over-adjustment of DL-based
classifiers to increase the precision of predictions in test sets
may render the system incapable of generalizing to images
marginally more difficult than the ones offered in the initial
test sets.

Another source of worry for researchers over the robust-
ness of DL based classifiers is what is called adversarial
perturbations - minor alterations that are intended to change
the classifier’s estimations. Szegedy et al. [54] points out
that deep networks are surprisingly vulnerable to such per-
turbations. Even though they are hardly perceptible to the
human eye, adversarial perturbations are enough to cause a
deep network’s decision to switch. This has been observed
in later studies [10, 25], which have brought on similar
results for classification and segmentation tasks.

The accuracy of image recognition models, despite the
thorough exploration, still presents a limitation that often
goes unnoticed, and that difficulty is the question if CNNs
are ready to classify images that do not display proper expo-
sure, noise levels, or over-compression. Whereas such cir-
cumstances prove to be common in any vision-based pipe-
line, their effects on the final predictions’ performance have
not been inspected meticulously. The research on this topic
has become increasingly relevant since the accident with an
autonomous car in development by Uber Technologies Inc.,
which has been thoughtfully discussed by Kohli et al. [26].
High contrast and overexposure due to shadows and strong
sunlight has also been reported as critical for self-driving
cars by Zhang et al. [69] and Wang et al. [61].

This paper aims to both offer a methodology and a theo-
retical framework to support the investigation on the impact
of image distortions on image recognition models and to
evaluate the robustness of an image recognition model’s
using a comprehensive set of images against common

distortions. We extend a previous publication from Steffens
et al. [51] which provided a short insight on the impacts of
image distortions in image recognition models. In this pa-
per, we expand the discussion on how damaged images im-
pact a series of classifier performance metrics. We also in-
clude a set of new image recognition models which have ob-
tained outstanding results over the last years. Furthermore,
we also deepen the discussion on the main novelties intro-
duced by each of these models and how they can impact
their resilience under non-ideal image conditions. We be-
lieve the methodology can be consistently applied to vali-
date a wide range of vision-based applications.

2 Background Theory

In order to assess the resilience of diverse DL-image
recognition models, we propose the use of synthetically
generated sets of images in conditions of over-compression,
noise, overexposure, and underexposure. The classification
models were used as originally proposed, i. e. they were
used with identical sets of weights, input shapes, and
pooling layers provided by their authors. The models were
previously prepared in order to cope with the ImageNet
ILSRVC Challenge [44].

The ILSRVC Challenge rules establish that each recog-
nition model should output a list of, at most, five categories
arranged by confidence for each image. The virtue of such
classification is judged by the label that corresponds the best
to the ground truth label given to the image, which permits
an algorithm to identify more than one object within an
image without being penalized if one identified object was
there but not included in the ground truth.

2.1 Distortions

Figure 1 shows the effects of diverse distortions applied to
the images in order to evaluate the robustness of distinct
image classifiers towards bad exposure and noise. The
details about the image distortions and how they occur in
real world applications is are discussed bellow. We have
released a Python implementation of each of the distortions
described in this section on Github, in the https://git.io/
JUgIz repository.

2.1.1 JPEG Over-compression

JPEG (Joint Photographic Experts Group) compression
usually results in block artifact and high-frequency aliasing,
also known as mosquito noise, due to its mild cosine trans-
formation (DCT), which is block-wise [55]. The tests were
proceeded with input images in a high JPEG compression
ratio, with the quality Q = 15, a loss of detail that is
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Fig. 1 Example of the image distortions applied in the evaluation of
the robustness of CNN-based image recognition models: a Original
image, b JPEG over-compression, b Additive White Gaussian Noise,

d Salt & Pepper Noise, e Speckle Noise, f Poisson Noise, g Gamma
1
2 , h Gamma 1

4 , i Gamma 1
8 , j Gamma 2, k Gamma 4, l Gamma 8, m

Truncation Q1, and n Truncation Q3

common in any machine vision pipeline with unstable or
limited bandwidth.

2.1.2 Additive White Gaussian Noise (AWGN)

AWGN is a noise added randomly to the image with
normal distribution as the probability density function [27].
A standard deviation value of σ = 23.55 was, in this
case, used to cause a decline in the quality of the image.
Additive White Gaussian Noise models are widely used in
the literature provide a coarse approximation of real sensor
noise [1].

2.1.3 Salt & Pepper Noise (S&P)

S&P is an impulse noise with the same salt-and-pepper
probability on a pixel, where the salt is a bright pixel (with
255 pixel value) and the pepper is a dark pixel (with 0 pixel
value), with a probability per pixel of P [47]. Within the
scope of the tests hereby described, P was valued in 0.3. In
real applications, this kind of distortion is most commonly
related to a malfunctioning of a camera’s sensor cell, which
generates dead pixels.

2.1.4 Speckle Noise

Speckle noise is originated from coherent processing of
back-scattered signals from multiple distributed points [57],
as a product of environmental conditions on the imaging
sensor during the acquisition of an image. The Speckle
Noise of an image I can be expressed as Î = I + (n × I ),
where n is a uniform noise with mean μ = 0 and variance
σ 2 = 1. This type of noise is commonplace in medical
images, SAR (Synthetic Aperture Radar) images, and active
Radar images [36].

2.1.5 Poisson Noise

Poisson Noise also known as shot noise, this noise occurs
due to fluctuations in electrical currents that are due to

chance arrivals of electrons to an anode [59]. It is correlated
with the pixel values in the input image. Poisson noise is
often assumed to be inherent to virtually all images on some
level [67].

2.1.6 Gamma Power Transformation

Gamma Power Transformation constitutes a nonlinear
operation utilized to encode or decode luminance values
in image systems [55]. One of its usages is to adjust or
compensate certain luminance levels in images. The images
are emulated under and overexposed as Î = I γ . The power
transformation is followed by a min-max normalization,
which is necessary in order to adjust the pixel values into
a valid representation range. This, results in data loss for
either light or dark regions, depending on γ < 1 or γ > 1,
respectively, therefore emulating the typical poor exposure
conditions in mobile robotics.

2.1.7 Quantile-based Truncation

Quantile-based Truncation is used to mimic underexposure
when pixels are truncate on Q1, and overexposure when the
pixels are truncate on Q3, imitating the quality of the image
captured by the cheaper imaging sensors with low dynamic
range - considering that Q1 and Q3 are the first and third
quartile of an image’s pixel’s distribution.

2.2 Image-Recognition and SegmentationModels

This paper proposes a methodology to evaluate the
effects of image degradation on image recognition tasks.
The proposal is applied to evaluate the adjustment
of CNN based classification models for the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). To
classify objects presented in an image is the purpose
of Image classification models. Over the years, Deep
Learning grew into the standard way of solving image
classification problems. The ILSRVC Challenge made it
so that the models’ architecture shifted to attain the best
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classification accuracy, within the numbers of parameters in
the network.

2.2.1 VGG

Proposed by Simonyan et al. [48], VGG has achieved both
first and second places in the ILSVRC-2014, mainly be-
cause, as it has been proven, the increase on the depth of the
network (i.e. stack more layers) in combination with small
(3×3) convolution filters, ends up meaning great improve-
ment over previously tried methods. While VGG requires a
big amount of computational resources because of its large
width of convolutional layers, VGG secured its place as
one of the most widely used systems for feature extrac-
tion in perceptual, style, and contextual loss applications.
It has been integrated into the training strategies of various
image-to-image translation deep learning models.

2.2.2 ResNet

Proposed by He et al. [17], the ResNet model has obtained
first place in the ILSVRC-2015. The authors explicitly
reformulate the layers as learning residual functions regar-
ding the layer inputs, instead of learning unreferenced
functions (residual module). By doing so, the model is able
to avoid both the vanishing gradient problem, as well as the
degradation problem in optimization. In terms of structure,
the model is composed mostly of 3 × 3 convolutions and
average pooling layers.

2.2.3 Inception-v3

Proposed by Szegedy et al. [53], the Inception-v3 model pre-
sents factorized convolutions and aggressive regularization,
scaling up the network’s efficient and improving accuracy.
The Inception module uses convolutions of different sizes
to capture details at varied scales (5 × 5, 3 × 3, 1 × 1).

2.2.4 Inception-ResNet-v2

Proposed by Szegedy et al. [52], the Inception-ResNet-v2
shows that combining an inception’s uniform simplified ar-
chitecture with residual connections and more inception
modules than [53], accelerates the training and achieve bet-
ters accuracy results.

2.2.5 DenseNet

Proposed by Huang et al. [21], DenseNet is a model based
on [17] where each layer obtains additional inputs from
all preceding layers and passes on its own feature-maps to

all subsequent layers instead of the element-wise addition
between the input and the output of a layer.

2.2.6 Xception

Proposed by Chollet et al. [4], the Xception network is
inspired by the inception’s architectures having skip con-
nections and modified depth-wise separable convolutions as
an improvement.

2.2.7 MobileNetV1

Proposed by Howard et al. [19], MobileNetV1 is a CNN with
depthwise separable convolutions between the regular con-
volutions layers. Hence, the parameters and multiply-add ope-
rations are considerably reduced, which is suitable for mobi-
le devices, or any devices with low computational power.

2.2.8 MobileNetV2

Proposed by Sandler et al. [46], MobileNetV2 network has
a residual block with a stride of 1 and a block with a stride
of 2 for downsizing, outperforming [19].

2.2.9 NASNet

Proposed by Zoph et al. [71], NASNet is a model that
utilizes the information acquired on a small dataset over a
big one searching for the best convolutional layer on the first
one. The authors also propose ScheduledDropPath
regularization technique, which significantly improves the
model’s generalization.

2.2.10 Mask-RCNN

Proposed by He et al. [16], Mask-RCNN is a model for
instance segmentation (i.e. to find instances of a countable
object in the scene). Its goal is to distinguish each instance
of each object within the image at the pixel level. This
model is based on FPN (Feature Pyramid Networks for
Object Detection) by [31] which improves its hability for
detecting objects at different scales. Mask-RCNN consists
of two stages. First, it generates proposals about the regions
where there might be an object. Second, it predicts the
class of the object, creates a bounding box and generates
a mask in pixel level of the object based on the first stage
proposal. The two stages are connected to the backbone
structure.

Table 1 provides details concerning release dates,
network size, input image resolution, and Top-1 validation
accuracy attained by every model, in accordance with
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Table 1 Classification Models
Considered in the experiments.
Top-1 validation accuracy
according to the official reports

Model Year Size Parameters Top-1 Resolution

VGG-16 [48] 2014 528 MB 138,357,544 0,71 224

ResNet50 [17] 2016 98 MB 25,636,712 0,75 224

Inception-v3 [53] 2016 92 MB 23,851,784 0,78 299

Inception-ResNet-v2 [52] 2017 215 MB 55,873,736 0,80 299

DenseNet201 [21] 2017 80 MB 20,242,984 0,77 224

Xception [4] 2017 88 MB 22,910,480 0,79 299

MobileNetV1 [19] 2017 16 MB 4,253,864 0,70 224

MobileNetV2 [46] 2018 14 MB 3,538,984 0,71 224

NASNetLarge [71] 2018 343 MB 88,949,818 0,83 331

NASNetMobile [71] 2018 23 MB 5,326,716 0,74 224

the official reports.1 Due to pre-processing, deep learning
framework optimization, and float points precision utilized
during inference, the actual accuracy may vary. As to avoid
the interference of these variables, we rerun the inference
on the original validation set under the same conditions
as all other distorted images. Nonetheless, the evaluation
methodology can also be applied to any model and dataset
for image-recognition or segmentation tasks.

3 Problem Statement andMethodology

Autonomous robotics often rely on visual perception of
the environment to perform their tasks. Visual perception
includes instance segmentation, semantic image segmenta-
tion, pan-optic segmentation, depth-estimation and classi-
fication. Vision based feedback has been extensively used
for interaction for mapping and navigation, human robot
interaction, and robot environment interaction.

3.1 Problem

The robustness of these vision based models against
commonly occurring image distortions and noises has not
yet been properly addressed. The development of machine
vision systems often focuses only on maximizing the accu-
racy of the model on one set of samples, disregarding condi-
tions which can significantly impact autonomous systems in
real applications.

1Updated state-of-the-art results are available at https://paperswithcode.
com/sota/image-classification-on-imagenet. Challenge winners for
each edition can be found at http://www.image-net.org/challenges/
LSVRC/2017/results, http://www.image-net.org/challenges/LSVRC/
2016/results, http://www.image-net.org/challenges/LSVRC/2015/results,
and http://www.image-net.org/challenges/LSVRC/2014/results.

Considering that the majority of modern autonomous
systems rely on CNNs to extract information from the
environment, it is necessary to establish a practical approach
to asses the performance degradation linked to basic image
distortions. Furthermore, we notice that most most CNN
models used for classification and segmentation nowadays
share the same building blocks.

Our research intends to answer the following questions: i.
What are the impacts of image distortions on popular CNN
architectures?, ii. Which distortions are the most critical for
robot vision?, iii. Can we build better pipelines to make
robot vision less vulnerable towards ill exposure and noise?,
and iv. Do the same distortions impact different robot vision
tasks?

3.2 Methodology

First, we assess the impacts of common image distortions
on popular CNN architectures. This evaluation is performed
on object recognition, considering this field has been
fully explored over the last decade, with many recognition
models achieving near-human accuracy. Moreover, these
models also set the directions in the development of other
vision tasks and are, therefore, a good measure of the overall
performance of vision perception for robotics.

The assessment of the robustness of relevant image
recognition models in the literature is as follows. A detailed
evaluation of the robustness of state-of-the-art image recog-
nition networks for common distortion of images was per-
formed, with metrics calculated on the ILSRVC ImageNet
Challenge validation sub-set.

1. The images are individually inserted through the Python
Scikit-Image [60] library within the parameters of 8-bit
unsigned integer data type, where all files are stored as
compressed JPEG format, with variations in image size
and ratio.
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2. The input image goes through a distortion process,
following the description in Section 2.1. While noise
is usually linked to the sensor and electronics used for
image acquisition, compression is often a mandatory re-
quirement to preserve the frame rate and storage space.
Badly exposed images are usually linked to sensors
with a limited dynamic range or poor selection of lens
aperture, exposure time, or gain, even in auto-adjusted
acquisition setups.

3. The images were resized and cropped to the constraints
accepted by the model, moment when a first-order
spline interpolation is used. Gaussian filter at σ = s−1

2
was used as an anti-aliasing method for downscaling the
images, s being the scaling factor. If the model required
so, further specific image transformations were done to
adapt the input and data representation.

4. The image is finally ready to be inserted as input to the
system, and, once the inference proceeds, the results are
then stored for further evaluation.

5. This evaluation judges a few of the most popular evalua-
tion metrics: Top-1 Accuracy, Top-5 Accuracy, and F1-
Score. Taking into consideration the number of true
instances for each label, a weighted average with only
Top-1 results is used for Precision, Recall, and F1-
Score.

Then, taking in account the results obtained in the first
set of experiments, we explore the relationship between
accuracy and noise severity. This assessment is performed
considering the noise types that have shown to be critical
for all recognition models. Thus, we include a study with
the simplest model and with the distortions (using variable
parameters).

After that, we investigate an alternative robot vision
pipeline. In order to minimize the undesirable impacts of
noise and miss-exposure, we modify the traditional pipeline
by introducing an image restoration step, which operates in
the RGB colorspace, after the image has already been com-
pressed and transmitted. The restoration takes place imme-
diately before the object recognition algorithm so that the
pipeline can be easily applied to other vision tasks without
requiring further adaptations or hardware customization. We
add two image pre-processing steps to deal with ill-exposure
and noise.

Finally, in order to investigate if the findings from the
assessment on the object recognition task also hold for dis-
tinct applications of perception in robotics, we investigate
how noise and inadequate exposure affect instance segmen-
tation. Segmentation models are frequently applied for tasks
such as object picking, obstacle detection and avoidance,
autonomous navigation, and human-robot interaction. The-
se systems often share the same basic building blocks that
have show successful with CNN based object recognition

models [7, 15, 24, 34, 35, 41, 56, 69]. As these models rely
on the same set of techniques and popular architectures, we
expect them to show the same strengths and weaknesses as
the object recognition CNN models.

4 Experiments and Results

This Section is organized in four subsections accord-
ing to the objectives outlined in the methodology.
The results shown in Section 4.1, Section 4.2, and
Section 4.3 take into account the results obtained on
the Imagenet ILSRVC Validation subset. This subset
consists of 50,000 images from 1000 distinct cate-
gories. The samples are evenly distributed so that each
category presents exactly 50 images. This limits the false-
negative (FN) predictions per class to the number of samples
in it. It is necessary to stress, that the Top-1 Accu-
racy rendered by the appraised models are not identical to
the results in the official reports. The aforementioned dis-
tinction arises from the software used for image process-
ing, image resizing interpolation strategies, image cropping
strategies, or perhaps even float-point precision. Nonethe-
less, the procedure is the same for all evaluated models.
Section 4.4 exemplifies the issues with image distortions on
the instance segmentation task, which aims to distinguish
each instance of each object within the image. Segmen-
tation is an ordinary function for intelligent robotics and
automation.

4.1 Impacts of Image Damage on Object Recognition

For each evaluated model, we present tabulated results
which include Top-1, and Top-5 accuracy, as well as the F1-
Score. We also discuss the box-plots for false-positives (FP)
and false-negatives (FN), which provide insight into the
effects the image distortion has on each class. Table 2 sum-
marizes the results for all models evaluated. We highlight
each result in the presented tables according to the follo-
wing strategy. Results for undamaged images are shown in
black. Conditions that worsened the accuracy by up to 10%
are marked in green (low impact). Conditions that wors-
ened the performance of the model by any value between
10% and 30% are shown in orange (moderate impact). Con-
ditions that worsened the network outcomes by more than
30% are shown in red (critical impact). This scale allows for
fast visualization of the models’ robustness in the light of its
original performance.

The results achieved by the VGG-16 [48] model,
when confronted with a myriad of distortions show that
the model performed with noticeable robustness under
moderate ill exposure (γ = [ 1

2 ; 1
4 ; 2; 4], Overexposure

Q3, Underexposure Q1), heavy compression, Gaussian
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and Poisson Noise, when it came to the classification
accuracy. Salt and Pepper and Speckle Noise, however,
culminated in an intense decrease in the classifier’s accuracy
and precision. Considering the F1-Score, given by F1 =
2 × Precision×T op1

Precision+T op1 , which provides a good assessment of
both false positives and false negatives, we can quickly
identify the distortions that have a critical impact. When the
predictions of the VGG-16 model on the original images are
compared to predictions on damaged images, we notice that
Gamma transformation with γ = [ 1

8 ; 8], S&P and Speckle
Noise, more than halved the performance of the classifier.

Resnet shows to be robust against mild exposure varia-
tions (γ = [ 1

2 ; 2]) and Poisson Noise. Pixel value trun-
cation, otherwise, shows to have a higher impact dropping
Top-1 accuracy levels from 0.668 to 0.603, for truncation
in the bright part, and 0.593, for truncation in the darker pix-
els. Compression, coarse miss-exposure, Gaussian Noise,
impulse Noise, and Speckle Noise also result in a dramatic
decrease in all metrics considered for this evaluation. We
notice the same patterns observed for the VGG-16 network.
Mild misexposure generated through power transformation
γ = [ 1

2 , 2] and quantile-wise truncation are the distortions
with the least impact the classifiers’ performance. Poisson
Noise and over-compression also have a mild impact on
the results. Signal independent noise results in most images
being miss-classified in a few categories, as shown by the
distribution of FPs and FNs. Harsh power transformation
with γ = 1

4 , 1
8 , 4, 8 also result in expressive impacts.

As for Inception-v3 [53] image recognition model, we
notice that it performs close to the official reports in our
setup for the image without any distortion. Taking into
account the F1-Score, which provides a good visualization
of both false positives and false negatives, we observe that
this model is less affected by image distortions than the
aforementioned VGG-16 and Resnet50. The worst perfor-
mance is observed when the images include Speckle Noise
and S&P Noise, followed by images severely damaged due
to synthetic miss-exposure generated using Gamma power
transformation.

Inception-ResNet-v2’s achieved a performance that can
(25%), and Poisson Noise. Lossy image compression and
gross Gaussian Noise, show to have a moderate impact.
The robustness towards Gaussian Noise is expected, once
it is a data augmentation strategy often used during model
training. Gross miss-exposure generated through power
transformations with γ = [ 1

4 ; 1
8 ; 4; 8], however, has shown

to have expressive impact in the classification accuracy. The
metrics show a mirrored effect, displaying similar results for
both dark and bright images. None of the above, however,
seems to affect classification accuracy as much as the
impulse noise and Speckle Noise.

The results concerning Xception’s network [4], show
that this network is also susceptible to common image

distortions. This model obtains a good level of robustness
when submitted to Gamma power transformations with γ =
[ 1

2 ; 1
4 ; 2; 4], quantile-based truncation with both Q1 and Q3,

Gaussian and Poisson Noise. Distortions more intense than
γ = [ 1

8 ; 8], Speckle Noise, and S&P Noise, however, have
a non-negligible negative impact on the accuracy.

The MobileNetV1 [19] model is influenced by distinct
distortions. The network is one of the smallest among
all models considered in this study, using only 4,253,864
trainable parameters against 138,357,544 in VGG-16. It is
necessary to remark that, even on images with no applied
distortion, the model displays lower accuracy than the level
reported in the official reports (summarized in Tab. 1).
Not unlike the major part of the evaluated models, S&P
and Speckle Noise culminate in significant considerable
decay. This information becomes particularly relevant when
confronted with the fact that these distortions are usually
linked to the first steps of any vision pipeline.

The results obtained by MobileNetV2 [46] indicate that
this model has a lower performance than its predecessor.
Only the original images, γ = 2, quantile-wise truncated
images, and images affected by Poisson Noise resulted in
Top-1 accuracy higher than 0.5. Image compression, power
transformation, and noise resulted in expressive accuracy
drops. As in other evaluated models, S&P and Speckle
Noise show to have a significant impact on the image recog-
nition quality. In terms of trainable parameters, Mobile-
NetV2 is the smallest image classification model considered
in the present study.

Finally, Table 2 also shows the results for NASNet
models. These models use cells found through optimized
Network Architecture Search (NAS) where distinct network
components are evaluated in order to design the best
performing network architecture. NASNetLarge [71] takes
an input image with 331×331px resolution. NASNetLarge
is the second largest model considered in the present
study with 88,949,818 trainable parameters, compared to
138,357,544 trainable parameters in VGG-16. It is also the
model that offers the best accuracy and F1-Score among all
models considered in this study.

We find NASNetLarge to be robust against a wide range
of ill exposure levels, as well as lossy compression, gross
Gaussian and Poisson Noise. Nevertheless, it also suffers
with S&P and Speckle Noise. As observe in Inception-
ResNet-v2 [53], NASNetLarge also presents results that are
not symmetric for under-exposure and over-exposure. Both
on γ power transformed images and quantile-wise truncated
samples, we notice that under-exposed images degrade the
predictors’ performance more than over-exposed images.
Poisson Noise, mild miss-exposure, and Gaussian Noise
show little impact.

NASNetMobile [71], which constitutes a smaller ver-
sion (in terms of trainable parameters) of NASNet, takes
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RGB images up to 224 × 224px as input. In comparison
to its larger version, this model predictably presents inferior
results under significant miss-exposure conditions, S&P and
Speckle Noise, whilst mild under-exposure and overexpo-
sure, as well as Poisson Noise, apparently have a small
effect on the image recognition accuracy and precision.

Overall, we observe that the image recognition models
that obtained the highest accuracy in the original set of ima-
ges, also obtain the best results when applied on the images
that were distorted and manipulated. In a per distortion
analysis, we notice that the ranking of the best performing
models rarely switch positions. Exceptions to this condition
are limited to extreme miss-exposure obtained through
Gamma power transformation with γ = [ 1

8 ; 8], Salt and
Pepper Noise, and Speckle Noise. Nevertheless, under these
conditions the accuracy obtained by some of the models
renders them useless for practical applications.

The impact of the distortions are, in general, associated
with the number of trainable weights in the network. NAS-
NetLarge, as shown in Fig. 2, performs better than every
other model evaluated in this study, regardless of the distor-
tion applied to the input image. Inception-ResNet-v2 and
Xception are slightly less robust. Those were the three mod-
els to show the best performance among the models pre-
sented in this paper.

Therefore, larger models hold better against distortions.
The number of weights’ importance is evidenced when
taking into consideration the condition observed with NAS-
NetMobile and NASNetLarge, which have identical base
cells (architecture), but a great difference when it comes to

the number of weights - although VGG-16, the largest mo-
del taken into account, provides us with a counter-example.
Released in 2014, VGG-16 displays the lowest robust-
ness of all the models considered in this study. That is to
show that improvements such as residual blocks and sepa-
rable convolutions combined with 1 × 1 2D convolutions,
also granted a significant improvement to the classification
models.

4.2 Noise Levels Versus Accuracy

We investigate the relationship between accuracy and noise
intensity, taking into account the findings obtained in the
first set of experiments. For this evaluation we explore the
types of noise that have show strong decay all object recog-
nition models. Due to its age and wide adoption on other
visual perception, as well as being one of the simplest mod-
els (in terms of techniques and performance improvement
tricks) we have chosen to work with VGG-16 [48].

Salt & Pepper and Speckle Noise have shown critical
impact in the object recognition accuracy for all CNN mod-
els considered. Both are linked to sensor issues, ampli-
fier issues, and, under certain conditions, to the physics of
the amplifier itself. Salt & Pepper originates from defects on
the sensor array which makes pixels become permanently
on or permanently off. Speckle Noise is granular interfer-
ence that is inherent to many image acquisition systems,
such as the ones used in active radar, synthetic aperture radar
(SAR), medical ultrasound and optical tomography. Speckle
Noise is especially critical when the signal is sensitive to

Fig. 2 Comparative Top-1
accuracy between image
recognition models under
evaluation
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Table 3 Impact of noise severity on the Top-1 Accuracy

Distortion level Top-1 Top-5 F1-Score

Original – 0.612 0.838 0.609

Salt & Pepper 0.05 0.436 0.671 0.439

0.10 0.332 0.553 0.340

0.15 0.263 0.464 0.275

0.20 0.212 0.393 0.225

0.25 0.173 0.336 0.186

Speckle 0.2 0.497 0.732 0.495

0.4 0.307 0.519 0.315

0.6 0.181 0.348 0.192

0.8 0.115 0.243 0.125

1.0 0.081 0.181 0.088

small variations, affecting the image representation in both
spacial and spectral domains.

Table 3 shows the impacts of different levels of image
distortion on the VGG-16 [48] model. We follow the same
coloring scheme throughout the whole paper considering
the impact over the original image set, that is, low impact
(≤ 10%), moderate impact (> 10 and ≤ 30%), and critical
impact (> 30%).

For Salt & Pepper the amount of noise is defined as
the proportion of pixels that are affected by noise. The
amount of noise starts from 5% and goes up to 25%. We
notice that at 5% the impacts on Top-1 Accuracy, Top-5
Accuracy and F1-Score are moderate. Anything higher than
that results in critical impact considering that the prediction
quality reduces to levels where an automated system would
be unable to make reliable decisions. As the amount of noise
increases we observe a further drop in the object recognition
task which finally leads to levels were the object recognition
system fails more often than it succeeds. The F1-Score
provides a clear indication of both poor precision and poor
recall.

For Speckle Noise, the amount of noise is controlled by
the variance (S2). While S2 = 1 is a value commonly used
to simulate Speckle Noise, we have tested with smaller S2

values, in a strategy that is similar to the one used by Ren
et al. [43]. Five sets of images with different speckle
intensities were generated. The corresponding variances are
0.2, 0.4, 0.6, 0.8, and 1.0. A variance S2 = 0.2 results
in a moderate impact on the object recognition accuracy.
Anything beyond this level of noise results in critical
impact, dropping the prediction quality by more 30% in
relation to the original non-distorted image set.

The results shown in Table 3 indicate that both Salt
& Pepper and Speckle Noise are critical for robot vision.
Robots and autonomous systems that rely on visual data
to interact with the environment could become unreliable
even under small amounts of noise. The development

of robust algorithms requires further investigation on the
mitigation of the impacts, CNN training strategies, as well
as redundancy systems.

4.3 An Alternative Vision Pipeline

In order to recover miss-exposed images, we implemented
the image restore model ReExposeNet [50] into the pipeline
for image recognition. This model is intended to estimate
the radiance of an inappropriately exposed image, a process
that involves restoring and enhancing non-clipped pixels to
improve visibility and color accuracy, as well as restoration
strategies for regions where the signal has been clipped.
It can synthesize large clipped parts in high-resolution
images. ReExposeNet is a one-size-fits-all approach that
can be continuously extended to a wide variety of levels of
image miss-exposure. We used the model as released by its
authors, without further fine-tuning.

To mitigate the noise damage we used the DnCNN-3
[68] denoising model. DnCNN-3 relies on residual learning
and batch normalization to speed up the training process
as well as boost the denoising performance. Zhang et al.
claims to provide a single DnCNN model to tackle several
general image denoising tasks, such as blind Gaussian
denoising, single image super-resolution, and JPEG image
deblocking. This model can be efficiently implemented to
use GPU computing, which makes it suitable for real-time
applications.

We chose to explore how the restoration pipeline impacts
the VGG-16 [48] model. As shown in Section 4.1 VGG-
16 [48] is highly susceptible to image distortion. Except for
Poisson Noise, all image distortions resulted in an accuracy
drop larger than 10% for this model. Table 4 compares the

Table 4 Top-1 Accuracy for VGG on distorted and restored images

Classification Model [48]

Original Images 0.612

Gamma 8 0.175

Gamma 8 Restored 0.429

Gamma 1/8 0.236

Gamma 1/8 Restored 0.618

Gauss 0.508

Gauss Restored 0.497

Poisson 0.586

Poisson Restored 0.445

S&P 0.143

S&P Restored 0.141

Speckle 0.081

Speckle Restored 0.091
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impact of damaged images and the effects of restoration on
the VGG-16 [48] model.

The restoration pipeline provides an expressive gain
under extreme miss-exposure. For extreme under-exposure,
simulated via Gamma Power Transformation with γ = 8,
the model pipeline approach is able to improve the Top-1
Accuracy from 0.175 up to 0.429. For extreme under-
exposure, simulated via Gamma Power Transformation with
γ = 1

8 , the pipeline approach was able to restore the object
recognition accuracy from 0.236 up to 0.618. It is interesting
to notice that this 0.618 Top-1 Accuracy is higher than the
0.612 accuracy obtained on the original image set.

For noisy images we notice that the inclusion of the
denoising model actually worsened the results on both
AWGN, Poisson Noise, and Salt & Pepper. For Speckle
Noise, the restoration offered a small improvement. The
differences between the Top-1 Accuracy obtained by VGG-
16 for the noisy images and their restored counterparts are
marginal. Although the restored images look better to the
human eye, the object recognition models are unable to
benefit from this visual improvement.

From these initial tests with a pipeline approach we can
tell that, on one hand, the miss-exposure problem can be
minimized by the use of image enhancement methods. The
exposure enhancement model provides an expressive gain in
conditions where pixels are clipped by both saturation and
under-exposure. On the other hand, the image noise problem
poses a more challenging task, where the denoising methods
were unable to lead the object recognition model to better
accuracy levels. Nevertheless, further investigation using a
broad set of state-of-the-art denoising algorithms is needed
to provide definitive evidence.

4.4 Experiments on Instance Segmentation

Other applications of perception for robotics, autonomous
systems and machine perception may present similar degra-
dation in accuracy when subjected to image degradation
from noise or inadequate exposure. Object picking, local-
ization and mapping, navigation, loop closure, obstacle
avoidance, harvesting robots, and human-robot interaction
systems often share the same basic building blocks with
deep learning based image classifiers [7, 15, 24, 34, 35, 41,
56, 69]. In order to further understand how these common
image distortions may impact autonomous and robotic sys-
tems, we explored how these affect instance segmentation.

In the instance segmentation task, the goal is to distin-
guish each instance of each object within the image at the
pixel level. We evaluate how Mask-RCNN [16], a model
designed to efficiently detect objects in an image while si-
multaneously generating a segmentation mask for each ins-
tance, performs under non-ideal conditions.

The visual results for instance segmentation of an urban
scene using the Mask-RCNN model are shown in Fig. 3.
This image shows a high contrast scene which represents
practical and plausible situation in autonomous outdoor
navigation. Overall, we notice a significant impact on the
outcomes, especially under severe miss-exposure conditions
and noise. We are able to identify the occurrence of
both false-positives and false-negatives. Considering an
hypothetical autonomous driving system, FPs and FNs,
such as the ones shown in by this sample, may result in
malfunctioning, insufficient data to take actions, or even in
autonomous decisions that put lives in risk.

In order appearance Fig. 3 shows a properly exposed
image of the scene (Fig. 3a); the instance segmen-
tation results on the original image (Fig. 3b), JPEG over-
compressed image (Fig. 3c), image affected by AWGN
(Fig. 3d), image affected by Salt & Pepper Noise (Fig. 3e),
image affected by Speckle Noise (Fig. 3f), image affected
by Poisson Noise (Fig. 3g), image affected by Gamma 1

2
(Fig. 3h), image affected by Gamma 1

4 (Fig. 3i), image
affected by Gamma 1

8 (Fig. 3j), image affected by Gamma
2 (Fig. 3k), image affected by Gamma 4 (Fig. 3l), image
affected by Gamma 8 distortion (Fig. 3m), image affected
by Truncation Q1 (Fig. 3n), image affected by and Trun-
cation Q3 (o). Each color represents one class label, defined
as follows: lime represents a person; light blue represents a
bicycle; gray represents a chair; yellow represents a potted
plant; rose represents a vase; hot pink represents a umbrella;
purple represents backpack; seafoam green represents a car;
and white represents skis.

Figure 3b shows that, on the original image, Mask-
RCNN is able to properly identify people, bicycles and
traffic signs. In this condition, the autonomous system could
rely on the segmentation results to perform localization,
mapping and obstacle avoidance. JPEG over-compression,
shown in Fig. 3c, shows no impact on the predictions.
Additive White Gaussian Noise , shown in Fig. 3d, renders
the application useless. The same holds for Fig. 3l and m
which show underexposure generated by Gamma Power
transformation with γ = [4; 8]. In Fig. 3k, which shows
underexposure generated by γ = 2, we see that the amount
of objects detected is significantly reduced.

Most of the image distortions result in an expressive
increase in false-negatives. Going further, in Fig. 3f, i, and j,
we observe that Mask-RCNN results in false-positives,
including instances of objects like chair, backpack, vase,
potted plants and skis. The severity of the impacts on robots
and autonomous applications that rely on these systems is
certainly up for discussion.

Many recent advancements in robotics rely on visual
perception of the environment. Robotics and automation,
human-robot interaction, human-machine interfaces and in-
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Fig. 3 Impact of the image distortions on a segmentation task:
a Input Image, b Segmentation on the original image, c JPEG over-
compression, d Additive white Gaussian Noise, e Salt & Pepper Noise,
f Speckle Noise, g Poisson Noise, h Gamma 1

2 , i Gamma 1
4 , j Gamma

1
8 , k Gamma 2, l Gamma 4, m Gamma 8, n Truncation Q1, and o

Truncation Q3. Class labels are as follows: lime - person; light blue -
bicycle; gray - chair; yellow - potted plant; white - potted plant; rose
- vase; hot pink - umbrella; purple - clothes; seafoam green - car; and
white - skis
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teraction, social and service robotics, medical robotics, un-
manned systems, autonomous systems, cyber physical
systems, and other related fields have benefited from the
advancements in machine vision that are provided by deep
neural networks. The findings in this experiment show
that commonplace distortions may lead these systems to
become unreliable or even hazardous. We therefore believe
it offers a unique perspective in building high-confidence
systems and emphasizes the importance of redundancy,
as well as multi-modality sensors, including sound based
sensors, depth sensors, and active sensors. Furthermore, we
also believe that image pre-processing techniques and better
image sensors also play a significant role for image based
perception and could be applied to make these systems more
reliable.

5 Discussion

First, the results obtained in the noise impact assessment
raise a few questions regarding the practical applications
of the image recognition models for vision-based tasks. All
models are critically impacted by, at least, one type of dis-
tortion. While most object recognition models are little af-
fected by mild mis-exposure or pixel truncation, harsh mis-
exposure resulted in significant performance deprecation.

Gaussian Noise and Poisson Noise, as well as JPEG
compression artifacts, have shown little impact on most
object recognition models or on the segmentation model.
Salt & Pepper and Speckle Noise, otherwise, have shown
to be critical, even in small amounts. This behavior shows
that further developments have to be done to improve the
robustness of robot vision systems, especially considering
that these are commonly occurring noise types that originate
from sensor defects and faulty electronics. The current state-
of-the-art in visual perception lacks robustness towards
these distortions. Furthermore, we find that even small
amounts of Salt & Pepper and Speckle Noise result in
critical impact.

Corroborating common belief we observe that, when it
comes to the reliability of deep-learning based models for
vision tasks under non-ideal conditions, larger and newer
models perform better. The inability to generalize to new
sets of data has been explored before by Rech et al.
[42], whom theorized on the potential causes for accuracy
drops, and Fawsi et al. [10] whom performed an analysis
of classifiers’ robustness towards adversarial perturbations.
Nonetheless, our results come to show that even simple and
common image distortions are potential sources of error.

We have also explored an alternative robot vision pipe-
line, designed to mitigate mis-exposure and noise. We pro-
pose a modular approach that can be included in any robot
vision pipeline that relies on visual perception using the

visible spectrum of light. The initial results on the pipelined
approach for under-exposed and over-exposed images are
encouraging, proven that the restoration stage provides an
expressive gain in the prediction accuracy. Otherwise, for
noisy images, the proposed pipeline approach was able to
offer only marginal gains. Nevertheless, we believe this
approach could receive more attention in future work to
explore alternative restoration models or even design resto-
ration models that are more adequate for CNN based vision.

Finally, we show that same distortions that impact object
recognition also impact other robot vision tasks. This was
expected, considering that most object recognition is the
most mature vision task at the present time. State-of-the-
art segmentation models such as [3, 8, 20, 66, 70] mostly
reuse components, building blocks, network architectures
and model adjustment strategies that have already shown
successful in other tasks.

6 Conclusion

This paper is associated with the assessment of CNN models
for image recognition in real visual tasks. We propose a
methodology to generate distorted images which replicate
the effects observed in real applications and apply a wide
set of metrics for classification. A comprehensive set of
experiments was run in order to estimate the steadiness
of modern Deep-Learning image recognition models when
confronted with some of the most usual image distortions.
The analysis was made taking into account a vast set
of classifiers that had outstanding accuracy within the
ImageNet Large Scale Visual Recognition Competition
(ILSVRC), investigating the effects brought by poor
exposure and over-compression, both usually connected to a
low bandwidth and communication bottlenecks. The results
of signal-dependent noise - often connected to film-grain
and Speckle Noise - and signal-independent noise - often
result from the physics of amplifiers and flaws on the sensor
- are also examined.

The procedure presented in this paper is clear, simple,
and reproducible. It can be used as a framework to appraise
the performance of any image-based model in the fields
of robotics and automation. The data is provided by
a combination of classifier metrics, which evaluate the
sensitivity, specificity, and robustness of the classification
models according to the image distortions applied to the
input. These offer a reliable representation of the model’s
capacity in real applications when used in conjunction with
one another. The code to reproduce the results shown here
is available at https://git.io/JUgIz.

Many relevant research topics arise from the assessment
framework and the experimental results presented in this
paper. In future work, one particularly fruitful avenue
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for more investigation is to target task-aware adversarial
perturbations to assess the robustness of deep neural
networks more deeply. We believe this provides a relevant
contribution both to academy and industry, especially
when considering the growing popularity of technology
that is based on visual scene understanding and labeling.
Moreover, it would be relevant to analyze which features
are being learned by the different models and how the
distortions are affecting each one of them. This may indicate
which models can be used for specific applications or which
ones can be combined in an ensemble learning approach in
order to increase the final accuracy.

We show that current image-recognition CNN models
are significantly impacted by gross misexposure, such
as the ones obtained by γ = [ 1

4 , 1
8 , 4, 8]. In general,

recent and large models are less affected. We find that the
majority of the recognition models are little affected by
mild misexposure or truncated pixel values. The same holds
for Poisson and Additive White Gaussian Noise also show
minimal impact on the accuracy of most evaluated models.
Over-compression using the JPEG algorithm does not seem
to impact the recognition models. Otherwise, all models
have shown to be vulnerable to distortions originated from
signal independent noise such as Speckle and Salt & Pepper.

As discussed before, vision is at the core of many recent
advancements in robotics and autonomous systems. While
the severity of false-positives and false-negatives in these
systems depends on the role the perception plays in each
task, it is undeniably relevant. The results we have obtained
while applying our evaluation framework on several state-
of-the-art classifiers show that commonplace image distor-
tions may lead these systems to become unreliable, which
in turn may lead to malfunctioning systems, premature wear
of, ill controlled systems and even risk of accidents. We
therefore believe this work offers a unique perspective in
building high-confidence systems and emphasizes the im-
portance of redundancy, as well as multi-modality sensors,
including sound based sensors, depth sensors, and active
sensors. Furthermore, we also believe that image pre-pro-
cessing techniques and better image sensors also play a
significant role for image based perception and could be
applied to make these systems more reliable.
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