
https://doi.org/10.1007/s10846-021-01333-1

Deep Reinforcement Learning for a Humanoid Robot Soccer Player

Isaac Jesus da Silva1 ·Danilo Hernani Perico1 · Thiago Pedro Donadon Homem2 ·
Reinaldo Augusto da Costa Bianchi1

Received: 29 September 2020 / Accepted: 27 January 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
This paper investigates the use of Deep Reinforcement Learning (DRL) applied to the humanoid robot soccer environment,
where a robot must learn from basic to complex skills while it interacts with the environment through images received by
its own camera. To do so, the Dueling Double DQN algorithm is used: it receives the images from the robot’s camera and
decides on which discrete action should be performed, such as walk forward, turn to the left or kick the ball. The first
experiments were performed in a robotic simulator in which the robot could learn, with DRL, three different tasks: to walk
towards the ball, to act like a penalty taker and to act like a goalkeeper. In the second experiment, the learning obtained in
the task to walk towards the ball was transferred to a real humanoid robot and a similar behavior could be observed, even
though the environment was not exactly the same when the domain was changed. Results showed that it is possible to use
DRL to learn tasks related to the role of a humanoid robot-soccer player, such as goalkeeper and penalty taker.

Keywords Deep reinforcement learning · Humanoid robots · Robot cognition · RoboCup soccer competition

1 Introduction

Many researches [1–4] have shown important improvements
in the development of robots that can act autonomously.
Generally, all these robots use software architectures
composed of several processes, where each process is
responsible for a specific task, such as object detection,
localization, path planning, decision making and so on.
However, the problem is that all those robot software must
be developed and configured by the researcher, and, in
some cases, it does not reach the optimal solution for the

� Isaac Jesus da Silva
isaacjesus@fei.edu.br

Danilo Hernani Perico
dperico@fei.edu.br

Thiago Pedro Donadon Homem
thiagohomem@ifsp.edu.br

Reinaldo Augusto da Costa Bianchi
rbianchi@fei.edu.br

1 FEI University Center, 3972-B Humberto de Alencar Castelo
Branco Ave., Assunção, São Bernardo do Campo,
SP, 09850-901, Brazil

2 Federal Institute of Education, Science and Technology of São
Paulo, 951 Mutinga Ave., Jardim Santo Elias, São Paulo,
SP, 05110-000, Brazil

task to be solved. Moreover, these complex architectures
need a several quantity of manual setup and synchronization
between processes.

A possible solution to replace or reduce the complexity
of all these kind of software architectures is the use of Rein-
forcement Learning or, more precisely, its enhanced version
- Deep Reinforcement Learning (explained in Section 2)
- thus the robot itself can learn the task assigned to it by
receiving rewards while it interacts with the environment.

Deep Reinforcement Learning algorithms has been
successfully applied in 3D games [5–10] allowing virtual
agents to learn how to take decisions in three-dimensional
environments from game images. Besides games, DRL has
been also used for the development of some cognitive tasks
in robotic agents [11–13], allowing the robots to learn tasks
such as object manipulation.

Thus, inspired by the learning applied for games and
cognitive robots, this paper aims to investigate the usage of
Deep Reinforcement Learning as a way of providing to the
robots the ability to learn tasks related to the humanoid robot
soccer domain just by observing the environment through
images from their own camera. As there are many possible
soccer player roles and positions on the field, two distinct
roles were chosen to be learned by the robot: goalkeeper
and penalty taker. Therefore, the objective of this work is to
empower a humanoid robot soccer with learning abilities, by
means of Deep Reinforcement Learning, thereby the robot
itself must be able to learn the best actions for performing

/ Published online: 26 June 2021

Journal of Intelligent & Robotic Systems (2021) 102: 69

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-021-01333-1&domain=pdf
http://orcid.org/0000-0002-5662-6593
mailto: isaacjesus@fei.edu.br
mailto: dperico@fei.edu.br
mailto: thiagohomem@ifsp.edu.br
mailto: rbianchi@fei.edu.br


a task, without the need of being manually programmed for
each process.

However, applying Deep Reinforcement Learning in real
robots is still a very hard task, since this kind of learning
needs a huge amount of steps, which means a lot of
interaction with the environment and, consequently, lots of
time, until some learning can be achieved.

An alternative is to perform the learning in a simulator
and reuse the learned model on a real robot. One main
advantage in the usage of a robotics simulator is the
possibility to perform the learning without damaging the
robots. Besides that, most simulators allow the acceleration
of the simulation, which saves time.

This paper is structured as follows: Section 2 provides the
basic concepts of Deep Reinforcement Learning. Section 3
depicts related work. Section 4 presents the proposal of this
research. Section 5 describes the experiments and results
in which: Section 5.2 the robot learns how to act as a
goalkeeper; Section 5.3 the robot learns how to act as a
penalty taker; and Section 5.4 the network weights learned
by the robot on simulator is transferred to a real robot.
Section 6 provides the conclusions.

2 Deep Reinforcement Learning

In reinforcement learning, the agent learns through inter-
action with the environment, receiving negative or positive
rewards, according to the actions taken. In this model, the
agent is expected to learn a policy that maximizes the reward
accumulated over time [14]. The reinforcement learning
problems are formalized as Markov Decision Processes. A
MDP is composed of a set of states s ∈ S, a set of actions
a ∈ A to each state s, a transition model P(s′|s, a) and
a reward function R(s, a, s′) [15], where: S is a set finite
of state; A is a set finite of action and a(s) are the actions
allowed for the state s; P(s′|s, a) or T (s, a, s′) is the transi-
tion function; R(s, a, s′) is the reward get s′ by performing
the action a being the state s other reward R(s′) only the
resulting state.

In deep reinforcement learning (in some models) the
states are represented by features extracted from the
images observed by the agent, for that, convolutional
neural networks are used to extract such features. Deep
Reinforcement Learning can learn policies directly from
high-dimensional inputs, being an approach that applies RL
from end to end [16].

In 2010 Lange, Sascha and Riedmiller [17] presented
a deep reinforcement learning algorithm using deep
autoencoders that learned action policies by mean purely
visual input. They tested the algorithm in a grid-world of
30x30 pixels, the agent must learn to reach the goal from
any position in the world, and the agent can visit any

position in the space of 30x30 pixels (the agent size is 5x5
pixels). This model uses the deep autoencoders to learn a
low dimensional representation of the input image, and the
reinforcement learning algorithm (NFQ [18]) learns from
state space provided by deep autoencoders. The difference
between DQN and the deep autoencoders with NFQ, is that
DQN updates the network weights by learning the relevant
features in relation to the actions taken and the reward
received, being an approach that applies RL from end to end
[16].

In 2013 researchers from DeepMind (now known as
Google DeepMind) released an article called Playing Atari
with Deep Reinforcement Learning in Arxiv1 [19]. They
presented a Deep Reinforcement Learning model that learns
the actions policies of a game using as input the game
images. They demonstrated that the computer was able to
learn to play some Atari games just from the raw frames of
the game, and receiving the reward by the game’s score. In
this article were tested seven Atari games.

In 2015, this same group (Google DeepMind researchers)
presented an article [16] showing that in Atari games
the Deep Reinforcement Learning model called Deep Q-
Network (DQN) outperformed all previous algorithms,
being able to outperform the level of a professional
human player in some games. The DQN differs from deep
autoencoders with NFQ for being an approach that applies
reinforcement learning end-to-end, directly from the visual
inputs [19]. DQN updates the network weights by learning
the relevant features in relation to the actions performed and
the reward received.

Volodymyr Mnih et al. [16, 19] have proposed new
algorithms based in the DQN aiming at the improvement
of the reduction of the training time [8, 20] and in the
game score performance [21, 22]. New applications for
deep reinforcement learning also arise such as in continuous
control [23], and also being applied to different games [5–
9]. For instance, Jaderberg et al. [7] use deep reinforcement
learning in a 3D maze game.

The DQN uses as input only the frames of the game,
and the output are the possible actions for the game. The
network is composed for some convolutional neural network
layers followed by two fully connected network layers, and
there is no layer of pooling.

y
DQN
j = rj + γ max

a
Q(sj+1, a; θ−

i ) (1)

where: sj+1 is the preprocessed last 4 frames (time steps
j + 1) of the video to represent the state; a is a set finite
of action; θ are the weights of the network; θ−

i = θi−1,
parameters from the previous iteration θi−1 are use to
optimising the loss function L(θi); r is the reward; γ is
the discount factor; For the update of weights θ , y

DQN
j is

1https://arxiv.org

69   Page 2 of 14 J Intell Robot Syst (2021) 102: 69

https://arxiv.org


the target for the evaluation the of network output. During
the interaction of the agent with the environment, in order
to maximize the accumulated reward over time, the agent
must select optimal value functions, satisfying the Bellman
Equation according to the Eq. 1.

L(θi) = 1

n

n∑

j

[
(y

DQN
j − Q(sj , aj ; θi))

2] (2)

To train the network by adjusting the weights values θ by
the back-propagation, is performed a gradient descent (3)
called RMSProp applied to L function for each iteration
i according to Eq. 2, where θ−

i = θi−1 and γ is the
discount factor. RMSProp adjusts step-size parameter for
each weight running average of its recent magnitude to
accelerates learning [24].

∇θi
L(θi) = (yDQN − Q(s, a; θi))∇θi

Q(s, a; θi) (3)

The agent uses a technique known as experience replay
to store experiences [25], therefore during the game all
experiments et =< st , at , rt , st+1 > are stored in a variable
called replay memory D = {e1, e2, . . . , en}.

2.1 Double DQN

Hasselt [26] presented an algorithm called Double Q-
learning to solve the problem of the Q-learning algorithm
that overestimates the Q value function under certain
conditions. So, researchers at Google [21] found that in
certain Atari games, this effect of overestimating the Q

value function occurs more sharply. Then, these researchers
created the Double DQN algorithm based on the algorithm
Double Q-learning [26]. With Double DQN in Atari games,
it was possible to increase the score in games compared
to DQN using the same parameter values, so Double DQN
presents better policies than DQN for Atari games [21].

2.2 Prioritized Experience Replay

In DQN, the use of experience replay stored in replay mem-
ory D allows agents to remember and reuse experiences
from the past. Experience replay can reduce the amount of
experience the agent needs to learn. However, the use of
these samples stored in replay memory D is being handled
in the same way, not being considered that the agent can
learn more of some transitions than others.

In the Schaul [20] article, researchers have developed a
method that can make learning from experience replay more
efficient, have developed a way of prioritizing experience,
thus reproducing important and efficient transitions more
often. The main goal of prioritized replay is the importance
of measuring each transition, assigning a priority to the
transition.

2.3 Dueling Double DQN

Wang, de Freitas and Lanctot [22] developed a deep
reinforcement learning architecture named Dueling Double
DQN (also called Dueling Network Architecture). This
architecture has two parallel networks of fully connected
neurons representing the value function V (s) and the
advantage function A(s, a), since the output combines these
two functions producing the state-action value function
Q(s, a) (Q(s, a) = V (s)+A(s, a)), but they share the same
layers of convolutional networks. The advantage function
specifies how good it is for the agent to perform an
action compared to other actions. The Dueling Network
Architecture is an enhancement of the Double DQN and
Prioritized Experience Replay algorithms without imposing
any changes to these algorithms.

3 RelatedWork

In the article of Tai and Liu [27], the authors used DQN
so that a mobile robot can learn to navigate an environment
by avoiding obstacles, these same authors previously
developed some work with Deep Learning in mobile robot
navigation [27–29]. The authors believed that it was the first
time that a mobile robot developed navigational capability
through deep end-to-end reinforcement learning using only
raw sensor information (without any pre-processing) [27].
In this case the sensor used was a kinect which supplies
camera data in RGB-D.

In the article of Lobos-Tsunekawa et al. [30], the authors
propose a map-less visual navigation system for biped
humanoid robots in robotic soccer. The authors use the Deep
Deterministic Policy Gradients (DDPG) algorithm, which
corresponds to an actor-critic DRL algorithm. The network
is composed by convolutional layers, fully connected layers
and Long Short-Term Memory (LSTM) layers.

In the article of Abreu et al. [31] the authors use the
Proximal Policy Optimization (PPO) algorithm to optimize
the skills of running and dribbling the ball, have the aim to
achieving natural gaits without sacrificing performance in
a humanoid robot soccer. They performed the experiment
in Simspark robot simulator to simulate a NAO humanoid
robot playing soccer. In this work they do not use the robot’s
camera, acting directly on the 20 joints of the robot.

Some works [11–13] demonstrated that a real manipula-
tive robot with deep reinforcement learning can learn some
object manipulation tasks or even open a door. In the article
of Gu et al. [13] demonstrated that with deep reinforcement
learning the robot can learn to perform tasks. The article
shows the manipulator robot learning to perform a com-
plex task, such as opening a door, without having to present
manual demonstrations or representations.

Page 3 of 14    69J Intell Robot Syst (2021) 102: 69



Some works with Deep Reinforcement Learning showed
the DRL ability to learn to play games in 3D environments
[5–9]. These works showed the DRL learning to make
decisions in three-dimensional environments from the game
images.

In the work of Michał Kempka et al. [5], the researchers
developed a version of the video game Doom called Viz-
Doom to be used as a platform for testing machine learning
algorithms in a game with a three-dimensional environment.
Doom is a first-person shooter. The researchers performed
two experiments with DRL: the first experiment, the agent
has to learn to shoot in the personages that appear; in the
second experiment, the agent has to learn to navigate in a
more complex maze.

In the work of Piotr Mirowski [9], the researchers tested
DRL in a 3D maze game, showing that the agent is able
to learn to navigate in the environment, even in conditions
where the location of the objective changes frequently. In
this work, the authors provide a detailed analysis of the
agent’s behavior and its ability to localizate itself, showing
that the agent learns the main navigation skills in this game.

4 Deep Reinforcement Learning
for a Humanoid Robot Soccer Player

In order to perform any task, most robots use systems
composed of several processes, such as: vision recognition
to detect objects; control process to perform actions;
localization system by which the robot itself can discover
where it is located; and decision process, responsible for
choosing the robot’s actions given the sensory system.
However, all these processes need manual and, sometimes,
empirical setup of their parameters to work as expected.
Furthermore, these processes must be synchronized, which
can be a very stressful and hard job. Figure 1 shows
two examples of software architecture for humanoid robots
inside the soccer domain. As it can be seen, CITBrains [32]
and RoboFEI [4] have several processes.

Thus, this paper proposes the usage of the Deep Rein-
forcement Learning approach to replace almost all the
processes the robot usually needs by only two: the DRL
process that will determine actions for the robot, encom-
passing skills related to the vision system, localization and
decision; and the control process to perform the chosen
actions. Figure 2 depicts the proposal, where the tasks are
learned by the interactions with the environment and only
two processes are needed: DRL process substitutes vision,
localization and decision processes.

The DRL shown in Fig. 2 has as input only the frames
x from the robot camera (environment observation). The
network output are the possible actions a to be performed,
where the types of actions are configured according to

Fig. 1 Examples of software architecture for humanoid robots. a
CITBrains [32]. b RoboFEI [4]

the role to be learned. The network implemented in this
model consists of some convolutional neural networks
layers followed by two fully-connected networks layers.

The convolutional neural networks layers are responsible
for learning the features that represent the states s of the
model. Therefore, the state st is considered as a sequence of
actions and observations (where in this domain each action
and observation is a step) st = x1, a1, x2, a2, x3, a3, . . . , xt ,
considering t as a finite time of these sequences (a sequence
of actions and observations is used so that the DRL learns
the dynamics of the environment). Thus, the model have a
large and finite Markov Decision Process (MDP) [33] in
which each sequence is a distinct state st .

The technique known as experience replay [25] is used
to store the agent’s experiences, so during the learning
the experiences et =< st , at , rt , st+1 > are stored in a
variable called replay memoryD = {e1, e2, . . . , en}. During
the learning are used small amounts of the experiences et

to prevent the network from moving to a local minimum,
these experiences are random selected from the experiences
stored in replay memory D.

69   Page 4 of 14 J Intell Robot Syst (2021) 102: 69



Fig. 2 Proposal of a new
approach where a DRL process
substitutes vision, localization
and decision processes

Table 1 Model architecture Dueling Double DQN

Layer Input Kernel Stride N. Kernels Output

Conv1 84x84xξ 8x8 4 32 20x20x32

Conv2 20x20x32 4x4 2 64 9x9x64

Conv3 9x9x64 3x3 1 64 7x7x64

fc1 7x7x64 512 512

fc2 512 a a

Fig. 3 Image from the simulated robot camera

Fig. 4 Input images 84x84

Page 5 of 14    69J Intell Robot Syst (2021) 102: 69



Fig. 5 Goalkeeper robot

In the learning process the DRL perform episodes until
it learns the proposed role (an episode consists of a
sequence of steps from the beginning to the end of the
task). The agent’s aim is learns through interaction with
the environment, receiving negative or positive rewards,
according to the actions taken, maximizes the reward
accumulated over time. The reward was modeled according
to the role that the robot must perform, where the rewards
will be presented in the Section 5.

More precisely, the focus of this research is to investigate
the usage of DRL in a humanoid robot soccer player, as
a way of providing to the robot the ability to learn tasks
just by observing the environment through images from its
own camera. Thereby, two different roles were chosen to be
learned by the robot in a robotic simulator: “to act like a
goalkeeper” and “to act like a penalty taker”. Besides, a case
study was performed where the robot is expected to learn
how to “walk towards the ball” in the simulator and, then,
the learned network weights are transferred to a real robot.

Inspired by the learning in 3D games (Section 3), the
DRL algorithm used in this research is the Dueling Double
DQN [22], where the algorithm is responsible for receiving

Fig. 6 Average steps per episode

Fig. 7 Percent of fails per 10000 steps

the images from the robot’s camera and for performing
one discrete action, such as walk forward, turn to the left,
kick the ball and so on. The set of actions vary depending
on the role that should be learned. As the robot execute
the actions and interacts with the environment, it receives
rewards. When the robot learns the whole policy of actions,
it learns how to perform a full given task.

One main difference between the domain of the 3D
games and the humanoid robot soccer environment is the
fact that games normally have deterministic actions, besides
having little variation in lighting and colors. On the other
hand, the humanoid robot soccer game is more stochastic,
even when executed in a simulator.

The Dueling Double DQN architecture used in this work
can be seen in Table 1. The input consists of ξ matrices
(images) of 84x84. It uses ξ sequential frames in order
to allow the capture of the environment’s dynamics. The
temporal difference between these images is τ ; therefore,
the network receives an image referring to the current
instant and ξ − 1 past images. The original camera image
(RGB format) is transformed into the YUV format, using
only the Y (luminance) channel (Images from Y channel

Fig. 8 Accumulated Reward

69   Page 6 of 14 J Intell Robot Syst (2021) 102: 69



Fig. 9 Scenario of running the penalty taker experiment

presents images in gray-scale), and resizing the frame to
84x84.

In this research two models of humanoid robots were
used: the real robot developed at the Centro Universitário
FEI and the simulated humanoid robot called DARwIn-OP
[34, 35] available on the Webots robot simulator.

5 Experiments and Results

This section presents three different experiments performed
with our DRL proposal model: 1) on simulator, the robot-
soccer learns to perform a goalkeeper role; 2) on simulator,
the robot-soccer learns to perform a penalty kick role and 3)
on simulator and with a real-robot, the robot-soccer learns
to walk towards the ball in the simulator and the network
weights learned on simulation were transferred to the real
robot-soccer.

5.1 Initial Considerations

Tests were performed on simulated and real robot-soccer
environments aiming to show that a DRL model is able to
substitute processes like Vision, Decision and Localization
(Fig. 1b). With these experiments we want to show that it
is possible for a DRL model to replace all those processes
(Fig. 2). Therefore, a single DRL process can replace three
processes: vision (responsable for objects detect); decision
(responsible for collects informations from the localization,
vision and communication processes and takes a decision
about what to do); localization (localization is in charge of
the self-localization of the robot in the field), and each of
these processes uses specific algorithms that are presented
in the article by Perico et al. [4].

Simulated experiments were conducted in the Webots
simulator2 [36]. Webots is a robotic simulator that offers
a three-dimensional virtual environment with physical
properties. The robot used in the simulator was the
DARwIn-OP humanoid robot [34, 35]. The environment
was setup like a soccer field. Both robot and environment
are available in the Webots simulator. The simulated
experiments used a white ball, white goal and the field
containing the dimensions of 9x6 meters according to the
rules3 of 2018 RoboCup humanoid league.

The real robot-soccer used in the experiments was
developed by Centro Universitário FEI, which have their
mechanics based on DARwIn-OP [37]. The robot has
49 cm of height, 3 Kg of weight, and 20 servo-motors
Dynamixel RX-28. As sensors, it uses an UM7 Ultra-
Miniature Orientation Sensor and a Logitech HD Pro
Webcam C920 (Full HD). And the computer used is an Intel
NUC4 Core i5-4250U, 8GB SDRAM, 120GB SDD [4, 38].
In order to increase the field of view of the camera and
eliminate the pan and tilt servo motors, the robot camera is
equipped with a fish-eye lens.

All the images are directly taken from the robot’s camera.
Then, images are reduced to 84x84 and converted to gray
scale color. All experiments use ξ = 4, so the network
receives an image referring to the current instant and 3 past
images. The temporal difference τ between the images was
300 milliseconds. Figure 3 shows a sequential robot camera
image and Fig. 4 shows the images as they are in the neural
network input layer.

The training phase was performed in an Intel i7-
7700HQ 2.8GHz computer, 32GB DDR4 2133MHZ of
RAM memory, 480GB of SSD, NVIDIA GeForce GTX
1060 6GB DDR5, running Linux Ubuntu 16.04. The
programming languages used were C++ and Python; DRL
models were implemented using TensorFlow,5 based on
Matthias Plappert’s source-code [39].

5.2 Learning to Act as a Goalkeeper

The aim of this experiment is to investigate whether a
humanoid robot, using the proposed DRL, can learn a
goalkeeper role.

An episode begins with the goalkeeper robot stopped in
the goal center, as shown in Fig. 5. The robot goalkeeper
must remain positioned in the goal area and check if there
are some ball around. Thus, as soon as the ball is detected
nearby, the robot must walk towards this ball, kick it away

2http://www.cyberbotics.com
3https://www.robocuphumanoid.org/materials/rules/
4http://www.intel.com/content/www/us/en/nuc/overview.html
5https://www.tensorflow.org

Page 7 of 14    69J Intell Robot Syst (2021) 102: 69

http://www.cyberbotics.com
https://www.robocuphumanoid.org/materials/rules/
http://www.intel.com/content/www/us/en/nuc/overview.html
https://www.tensorflow.org


Fig. 10 Accumulated Reward

from the goal and return to the goal area. The goalkeeper
robot must not jump or fall; consequently, it does not use
its hands. There are no opponent robots in this experiment
either.

The value of ε-greedy has been linearly decremented
from 1.0 to 0.1 in the first 1 million steps, then remains
0.1. The complete learning process consisted of 5 million
steps. At each step, a frame of the robot camera image is
read and, together with the last 3 frames, forms the input
of the Dueling Double DQN. The memory size D was
500000 steps and it always contains the most current frames,
following the FIFO (First In-First Out) rule.

The rewards range from −1 to 1 and it was given as
follows:

• 1.0: when the robot kicks the ball forward or to the side,
and when the robot returns to the goal after kicking the
ball;

• 0.5: when the Euclidean distance between the robot
and the ball becomes smaller than the previous state,
and when the Euclidean distance between the robot and

the goal becomes smaller than the previous state (after
kicked the ball);

• −0.1: when the robot stay in the same position;
• −0.5: when the robot is facing the goal; not the field as

expected;
• −1.0: to all other situations.

This experiment was made considering the robot can
perform 7 actions: turn left; turn right; walk forward; kick
right (kick with the right leg); kick left (kick with the left
leg); walk backward; do nothing.

The graph in Fig. 6 shows the progress of the learning.
The graph shows the average steps per episode for each
10000 steps, with 400 being the maximum number of steps
per episode. The red line shows the robot learning to reach
the ball, while the blue line shows the learning of the
complete task. The graph of Fig. 7 shows the percentage
of failures that occurred for each 10000 steps. In this
experiment, the failure means that the robot did not reach
the aim, the aim is to go to the ball to kick it, and go back to
the goal. Figure 8 shows the accumulated reward overtime.

Fig. 11 Average steps and percentage of failures per 10000 steps. a Steps per Episode. b Percentage of failures per 10000 steps

69   Page 8 of 14 J Intell Robot Syst (2021) 102: 69



Fig. 12 Percentage of Scored Goals per 10000 steps

It is possible to notice that the Dueling Double DQN was
able to maximize the rewards.

The test was performed with the network learned after
the learning process. In the test, were performed 10000
episodes, where the agent failed only in 23 of 10000
episodes, with 99.77% of success.

This experiment showed that with Deep Reinforcement
Learning a humanoid robot was able to learn the role of a
goalkeeper robot, where the robot just kicks the ball away
from the goal area and returns to the center of the goal.
The experiment was performed in the Webots simulator
running 5 million of steps, and the simulation was run in
accelerated mode, accelerating 10 to 20 times. The source
code is available at: https://github.com/Isaac25silva/DRL
goalkeeper.

5.3 Learning to Act as a Penalty Taker

The aim of this experiment is to investigate whether a robot-
soccer, running our proposal, can learn to act as a penalty
taker.

Figure 9 shows an example of the experiment, where
the episode begins with the ball random positioned near to
the penalty mark. The humanoid robot-soccer must learn to
reach the ball and kick the ball through the goal, aiming to
maximize the number of scored goals. The experiment was
performed on the simulator, considering one penalty taker
robot and no other opponent (defenders or goalkeeper).

The ε-greedy value has been exponentially decremented
according to Eq. 4:

ε − greedy(x) = (1 − a)

e( 1
b

2ex)
+ a, (4)

where: a is the minimum exploration value; b is the number
of steps to reach the minimum exploration value; x is the
step the agent is on. We considered b = 4 million steps in
order to avoid a fast decay.

The reward range from -0.1 to 1 and it was given as
follows:

• 1.0: when the robot reaches the ball and kicks the ball
through the goal, scoring a goal;

• −0.01: when the robot reaches the ball and kicks the
ball;

• −0.03: when the Euclidean distance between the robot
and the ball becomes smaller than the previous state;

• −0.05: when the robot stay in the same position;
• −0.1: to all other situations.

The robot can perform 9 actions: turn left; turn right;
walk forward; kick right (kick with the right leg), kick left
(kick with the left leg); walk backward; do nothing; turn left
around the ball; turn right around the ball. These last two
actions may the robot to position itself facing to the goal
when it comes close to the ball.

Figure 10 shows the graph of accumulated reward
overtime. It is possible to notice that the proposed DRL
model was able to maximize the rewards. The graph in
Fig. 11.a shows the progress of the learning, in which robot
learns to reach and kick the ball. The graph show the average
steps per episode for every 10000 steps, with 400 being
the maximum number of steps per episode. The graph in
Fig. 11.b shows the percentage of failures occurred for each
10000 steps, this is, the robot did not score the goal.

The graph in Fig. 12 shows that during the learning
process, the percentage of scored goals was above 70%. The
test phase, performed with 10000 episodes, the agent scored
8694 of goals of 10000 episodes, with 86.9% of success.

5.4 Transferring the NetworkWeights Learned
on Simulator to a Real Robot

The experiment in this section aims to show that, despite
some restrictions, it is possible to transfer the network
weights learned in a simulator to a real-robot. This becomes
interesting since performing a DRL training on a real
humanoid robot is something infeasible due the amount
of necessary steps to learn. We propose to perform the
entire learning process (training) on a simulator and then, to
transfer the network weights to the real-robot, performing
the test phase. Dueling Double DQN algorithm [22] was
implemented on Webots simulator and it was used to train
and test the experiment of this section.

In this experiment, the robot must walk through the ball
and reach it. An episode begins with the ball randomly
positioned near to the robot, within the field of view of the
robot and the episode ends when the robot reaches the ball
or when it performs a maximum number of steps and the
robot does not reach the ball.

The value of ε-greedy has been linearly decremented
from 1.0 to 0.1 in the first 1 million steps, then remains 0.1.

Page 9 of 14    69J Intell Robot Syst (2021) 102: 69

https://github.com/Isaac25silva/DRL_goalkeeper
https://github.com/Isaac25silva/DRL_goalkeeper


Fig. 13 Example of image
captured from real robot’s
camera and simulated robot’s
camera. a Real Robot. b
Simulation

The complete learning process consisted of 2.5 million steps
and the memory size D considered was 500000 steps.

The rewards range from 1 to −1 and it was given as
follows:

• 1.0: when the robot reaches the ball;
• −0.3: when the Euclidean distance between the robot

and the ball becomes smaller than the previous state;
• −0.5: when the robot stay in the same position;
• −1.0 to another situations.

This experiment was made considering the robot can
perform five actions: turn left; turn right; walk forward;
walk backward; do nothing. Performing the experiment on
an Intel NUC (the computer used on the humanoid robot),
the inference time was about 15 milliseconds and the fastest
action performed by the robot is about 300 milliseconds.
Considering this, in the simulator the time 300 milliseconds
was fixed to the robot perform an action.

As can be shown in Fig. 13, comparing the images
captured from the robot’s camera in the simulator and
those captured from the real robot’s camera, there are small
differences that may be considered during the learning
phase. For instance, the color, lightning and texture of the
field, and the color and size of the ball. These kinds of
variations were inserted into the simulator (in the images the
robot gets) during the learning process.

It should be noted that the successful of this experiment
was only possible respecting these premises:

Fig. 14 Accumulated reward

– Variations on lighting, texture, and color of the field
and ball: the images captured by the simulated robot’s
camera may have similar characteristics of images
captured by the real robot’s camera;

– Variations on size of ball and distortions of the camera
lens: the ball of the virtual images may be distorted to
look similar to the ball of real images.

– Same frame size relation: the size of frames must have
the same relation in both environments (simulated and
real) to avoid different distortion of the objects when
performing simulated and real tests.

Figure 14 shows that the DRL algorithm was able to
maximize the accumulated reward over time during the
learning process. The graph in Fig. 15.a shows progress
of the learning, in which robot learns to reach the ball.
The graph shows the average steps per episode for every
10000 steps, and 200 being the maximum number of steps
per episode. Figure 15.b shows the percentage of failures
occurred for each 10000 steps, this is, the robot does not
reach the ball. As can be seen, the graph decreases the
percentage of failures to zero.

Aiming to test the transfer of the network weights to
the real robot, the ball was positioned in three different
positions, as shown in Fig. 16, and the robot should walk
and reach the ball. These are: the ball positioned on the left
and in front of the robot (Fig. 16a); the ball positioned in
the center and in front of the robot (Fig. 16b); and the ball
positioned on the right and in front of the robot (Fig. 16c).

Table 2 shows the results of performing the experiment
on simulation and with real robot, with the ball positioned
in three different positions. It was performed 30 episodes
for each position and the results are an average and standard
deviation of steps per episode performed by the robots on
simulated and real environment. Two failures were observed
when the ball was positioned at the left or at right and
in front of the real robot. These failures occurred at the
beginning of the episode. The robot performed an action that
made him lose the ball in his field of view.

Figure 17 shows the steps performed by the real robot
in one of the experiment samples, where the ball was
positioned at the right and in front of the robot. Figure 17.a
shows the beginning of the episode, Fig. 17b shows that the

69   Page 10 of 14 J Intell Robot Syst (2021) 102: 69



Fig. 15 Average steps and percentage of failures per 10000 steps in simulation. a Steps per Episode. b Failures per 10000 steps

Fig. 16 Three different positions of the ball that the robot should walk and reach. a Left. b Center. c Right

Table 2 Steps per episode

Ball position Real robot Simulated

Mean σ Failures Mean σ Failures

Center 15.7 7.74 0 9.90 0.88 0

Right 16.6 6.06 2 21.4 2.75 0

Left 19.2 6.65 2 18.1 2.01 0

Fig. 17 Sequence of steps of the robot, where the ball was positioned at the right and in front of the robot

Page 11 of 14    69J Intell Robot Syst (2021) 102: 69



robot performed a turn to right action, Fig. 17c to Fig. 17g
the robot performed actions of walk forward, and Fig. 17h
shows that the robot reaches the ball. The video is available
at https://youtu.be/GN9Qa6ydzQU.

This experiment showed that it is possible to perform the
learning process in the simulator and transfer the weights of
the network to a real robot. However, it is not an immediate
transfer and some premises must be considered during the
learning process.

The source code of this experiment is available on
GitHub.6

5.5 Discussion

The main difference observed on experiments presented on
Sections 5.2 and 5.3 is that the goalkeeper behavior learns
easier than a penalty taker behavior. This is because in
the goalkeeper problem the agent needs only to follow a
sequence of actions to reach the goal. In the penalty taker
problem, the main goal (score goals) is presented only in the
last step, wherein the last step, the robot receives a reward
for scoring or not the goal, and this reward must be spread
to the other states. The rewards lead the robot to learn a
sequence of actions to reach the ball and to position itself in
a way that can score a goal.

Finally, the experiment presented on Section 5.4 differs
from others while it aims to transfer the network weights
learned on simulation to a real robot. This is not a trivial
task and differences between virtual and real images may be
considered during the training phase.

6 Conclusions

This paper shows that a robot using deep reinforcement
learning algorithms is able to learn tasks by only observing
the images of the environment, acquired from its own
camera. The results show that the robot learned tasks related
to the role of a robot-soccer player, such as goalkeeper
and penalty taker. Simulation becomes necessary since the
learning process requires the robot to perform and repeat
the task thousands of times. As this is not feasible using a
real robot, this article investigated and showed that a learned
model can be reused on a real robot.

Performing the transfer of network weights learned on
simulator to a real robot is possible and the real robot is
able to perform the tasks as well as simulated. However,
the differences of color and lighting on simulated and
real images may be considered during the training phase,
allowing the transfer.

6https://github.com/Isaac25silva/DRLtransfer.git

One of the future works is to perform Deep Reinforce-
ment Learning in other tasks of a soccer player robot such
as: player learning when to keep possession of the ball or
make a pass; attacker learning when to kick the ball into the
goal. And also perform the experiment of transferring the
weights from the simulator to the real robot of these players.

Acknowledgments This study was financed in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior -
Brasil (CAPES) - Finance Code 001.

Author Contributions

– Conceptualization: I. J. da Silva; D. H. Perico; T. P. D. Homem;
R. A. C. Bianchi

– Methodology: I. J. da Silva; D. H. Perico; T. P. D. Homem; R. A.
C. Bianchi

– Software: I. J. da Silva
– Investigation: I. J. da Silva
– Formal Analysis: I. J. da Silva; D. H. Perico; T. P. D. Homem; R.

A. C. Bianchi
– Validation: I. J. da Silva; D. H. Perico; T. P. D. Homem; R. A. C.

Bianchi
– Data curation: I. J. da Silva
– Writing – original draft: I. J. da Silva; D. H. Perico; T. P. D.

Homem
– Writing – review & editing: I. J. da Silva; D. H. Perico; T. P. D.

Homem; R. A. C. Bianchi
– Visualization: I. J. da Silva; D. H. Perico; T. P. D. Homem; R. A.

C. Bianchi
– Resources: I. J. da Silva
– Funding acquisition: I. J. da Silva
– Project administration: R. A. C. Bianchi
– Supervision: R. A. C. Bianchi

Funding This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) –
Finance Code 001.

Availability of data and materials The scripts utilized in the exper-
iments presented in this paper are available at https://github.com/
Isaac25silva/DRL goalkeeper and https://github.com/Isaac25silva/
DRLtransfer.git.

Declarations
Competing interests The authors declare that they have no conflict of
interest.

References

1. Kim, S., Kim, M., Lee, J., Hwang, S., Chae, J., Park, B., Cho, H.,
Sim, J., Jung, J., Lee, H., et al.: Approach of team Snu to the Darpa
robotics challenge finals. In: 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), pp. 777–784.
IEEE (2015)

2. Lim, J., Lee, I., Shim, I., Jung, H., Joe, H.M., Bae, H., Sim, O.,
Oh, J., Jung, T., Shin, S., et al.: Robot system of drc-hubo+ and
control strategy of team kaist in darpa robotics challenge finals.
Journal of Field Robotics 34(4), 802–829 (2017)

69   Page 12 of 14 J Intell Robot Syst (2021) 102: 69

https://youtu.be/GN9Qa6ydzQU
https://github.com/Isaac25silva/DRLtransfer.git
https://github.com/Isaac25silva/DRL_goalkeeper
https://github.com/Isaac25silva/DRL_goalkeeper
https://github.com/Isaac25silva/DRLtransfer.git
https://github.com/Isaac25silva/DRLtransfer.git


3. Jumel, F., Saraydaryan, J., Leber, R., Matignon, L., Lombardi,
E., Wolf, C., Simonin, O.: Context aware robot architecture,
application to the robocup@ home challenge. In: Robocup
Symposium (2018)

4. Perico, D.H., Silva, I.J., Vilão, C.O. JR., Homem, T.P.D., Destro,
R.C., Tonidandel, F., Bianchi, R.A.C.: Newton: a high level
control humanoid robot for the robocup soccer kidsize league. In:
Robotics, pp. 53–73. Springer (2014)

5. Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaśkowski,
W.: Vizdoom: a doom-based ai research platform for visual
reinforcement learning. arXiv:1605.02097 (2016)

6. Lample, G., Chaplot, D.S.: Playing fps games with deep
reinforcement learning. arXiv:1609.05521 (2016)

7. Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo,
J.Z., Silver, D., Kavukcuoglu, K.: Reinforcement learning with
unsupervised auxiliary tasks. arXiv:1611.05397 (2016)

8. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P.,
Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods
for deep reinforcement learning. arXiv:1602.01783 (2016)

9. Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A.,
Banino, A., Denil, M., Goroshin, R., Sifre, L., Kavukcuoglu,
K., et al.: Learning to navigate in complex environments.
arXiv:1611.03673 (2016)

10. Justesen, N., Bontrager, P., Togelius, J., Risi, S.: Deep learning for
video game playing. IEEE Transactions on Games (2019)

11. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of
deep visuomotor policies. arXiv:1504.00702 (2015)

12. Yahya, A., Li, A., Kalakrishnan, M., Chebotar, Y., Levine,
S.: Collective robot reinforcement learning with distributed
asynchronous guided policy search. arXiv:1610.00673 (2016)

13. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement
learning for robotic manipulation with asynchronous off-policy
updates. arXiv:1610.00633 (2016)

14. Mitchell, T.M. Machine Learning, 1st edn. McGraw-Hill, Inc.,
New York (1997)

15. Russell, S.J., Norvig, P. Artificial Intelligence: a Modern
Approach, 3rd edn. Prentice Hall, Upper Saddle River (2010)

16. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland,
A.K., Ostrovski, G., et al.: Human-level control through deep
reinforcement learning. Nature 518(7540), 529–533 (2015)

17. Lange, S., Riedmiller, M.A.: Deep learning of visual control
policies. In: ESANN. Citeseer (2010)

18. Riedmiller, M.: Neural fitted q iteration-first experiences with a
data efficient neural reinforcement learning method. In: ECML,
vol. 3720, pp. 317–328. Springer (2005)

19. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D., Riedmiller, M.: Playing atari with deep
reinforcement learning. arXiv:1312.5602 (2013)

20. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized
experience replay. arXiv:1511.05952 (2015)

21. Hasselt, H.V., Guez, A., Silver, D.: Deep reinforcement learning
with double q-learning. arXiv:1509.06461 (2015)

22. Wang, Z., de Freitas, N., Lanctot, M.: Dueling network
architectures for deep reinforcement learning. arXiv:1511.06581
(2016)

23. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D., Wierstra. D.: Continuous control with deep
reinforcement learning. arXiv:1509.02971 (2015)

24. Sutton, R.S., Barto, A.G. Reinforcement Learning: an Introduc-
tion, 2nd edn. MIT Press, Cambridge (2017). in progress - draft
edition

25. Lin, L.-J.: Reinforcement Learning for Robots Using Neural
Networks. Technical report, Carnegie-Mellon Univ Pittsburgh PA
School of Computer Science (1993)

26. Hasselt, H.V.: Double q-learning. In: Advances in Neural
Information Processing Systems, pp. 2613–2621 (2010)

27. Tai, L., Liu, M.: Towards cognitive exploration through deep
reinforcement learning for mobile robots. arXiv:1610.01733
(2016)

28. Tai, L., Li, S., Liu, M.: A deep-network solution towards
model-less obstacle avoidance. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2759–
2764. IEEE (2016)

29. Tai, L., Liu, M.: Mobile robots exploration through cnn-based
reinforcement learning. Robotics and Biomimetics 3(1), 24 (2016)

30. Lobos-Tsunekawa, K., Leiva, F., Ruiz-del-Solar, J.: Visual
navigation for biped humanoid robots using deep reinforcement
learning. IEEE Robotics and Automation Letters 3(4), 3247–3254
(2018)

31. Abreu, M., Lau, N., Sousa, A., Reis, L.P.: Learning low level skills
from scratch for humanoid robot soccer using deep reinforcement
learning. In: 2019 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), pp. 1–8. IEEE
(2019)

32. Team description paper: Citbrains (kid size league) (2017)
33. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic

Dynamic Programming. Wiley, New York (2014)
34. Ha, I., Tamura, Y., Asama, H., Han, J., Hong, D.W.: Development

of open humanoid platform darwin-op. In: SICE Annual
Conference 2011, pp. 2178–2181 (2011)

35. Ha, I., Tamura, Y., Asama, H.: Development of open platform
humanoid robot darwin-op. Adv. Robot. 27(3), 223–232 (2013)

36. Michel, O.: Webots: professional mobile robot simulation. Journal
of Advanced Robotics Systems 1(1), 39–42 (2004)

37. Ha, I., Tamura, Y., Asama, H., Han, J., Hong, D.W.: Development
of open humanoid platform darwin-op. In: SICE Annual
Conference 2011, pp. 2178–2181. IEEE (2011)

38. Perico, D.H., Silva, I.J., Vilão, C.O., Homem, T.P.D., Destro,
R.C., Tonidandel, F., Bianchi, R.A.C.: Hardware and software
aspects of the design and assembly of a new humanoid robot for
robocup soccer. In: 2014 Joint Conference on Robotics: SBR-
LARS Robotics Symposium and Robocontrol, pp. 73–78 (2014)

39. Matthias Plappert. keras-rl. https://github.com/matthiasplappert/
keras-rl (2016)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Isaac Jesus da Silva received his Bachelor’s degree, Master’s degree
and PhD degree in Electrical Engineering from University Center
FEI. He is currently an Adjunct Professor at University Center FEI.
He researches in the following areas: Deep Learning applied to
autonomous robots, Robot Soccer, Mobile Robots, Computer Vision
and Humanoid Robots Control.

Danilo Hernani Perico received his Bachelor’s degree (2009),
Master’s degree (2012) and PhD degree (2017) in Electrical
Engineering from University Center FEI. He is currently Assistant
Professor at the University Center FEI in São Bernardo do Campo,
Brazil. He researches in the following areas: Robotics, Artificial
Intelligence, Machine Learning, Knowledge Representation, Spatial
Reasoning and Computer Vision.

Page 13 of 14    69J Intell Robot Syst (2021) 102: 69

http://arxiv.org/abs/1605.02097
http://arxiv.org/abs/1609.05521
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1611.03673
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1610.00673
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1610.01733
https://github.com/matthiasplappert/keras-rl
https://github.com/matthiasplappert/keras-rl


Thiago Pedro Donadon Homem holds a Doctorate in Electrical
Engineering from the University Center FEI (2018). He is currently
Associate Professor at the Federal Institute of Education, Science
and Technology of São Paulo in São Paulo, Brazil. He researches
in the following areas: Robotics, Artificial Intelligence and Machine
Learning.

Reinaldo Augusto da Costa Bianchi holds a Doctorate in Electrical
Engineering from the University of Sao Paulo (2004). He held a
internship at the Institute of Investigation en Intelligencia Artificial,
Barcelona, Catalunya, Spain. He is currently Full Professor at the
University Center FEI in São Bernardo do Campo, Brazil. He
researches in the following areas: Robotics, Artificial Intelligence,
Computer Vision, Machine Learning and Multi-Agent Systems.

69   Page 14 of 14 J Intell Robot Syst (2021) 102: 69


	Deep Reinforcement Learning for a Humanoid Robot Soccer Player
	Abstract
	Introduction
	Deep Reinforcement Learning
	Double DQN
	Prioritized Experience Replay
	Dueling Double DQN

	Related Work
	Deep Reinforcement Learning for a Humanoid Robot Soccer Player
	Experiments and Results
	Initial Considerations
	Learning to Act as a Goalkeeper
	Learning to Act as a Penalty Taker
	Transferring the Network Weights Learned on Simulator to a Real Robot
	Discussion

	Conclusions
	Declarations
	References


