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Abstract

This work provides a deeper comparison between two path planning algorithms, the Dynamic Visibility Graph A Star
(DVG+A*) and Rapidly—exploring Random Trees (RRT), when applied in a high dimension and dynamic environment,
which is the RoboCup Small Size League. The algorithms were compared under two different perspectives. In the first
analysis, the algorithms were evaluated according to its computational time, path length and path safety in a static
environment. Afterwards, they were evaluated regarding the accumulated computational time, number of recalculated paths,
total navigation time and number of collisions in a dynamic environment. The static environment results have shown that the
DVG+A* has a better overall performance than RRT, except for the path safety, however, some ideas on how to improve this
were discussed. In the dynamic environment the algorithms performed similarly and with a high number of collisions during
the experiments. Thus, showing the importance of using an obstacle avoidance algorithm combined with the path planner. In
conclusion, the results obtained showed that both algorithms aren’t suitable for highly dynamic and cluttered environments,
however, due how sparse the obstacles are in the SSL, they can still be used with some care. Regarding static environments,
the DVG+A* has shown the best results.

Keywords Path planning - A star - Dynamic visibility graph - Rapidly-exploring random trees - RoboCup small-size league

1 Introduction to reach this goal, the robots must play a soccer match

while attending to a set of rules similar to human soccer.

Path planning algorithms are a common topic of interest
in the robotics scenario, which is understandable, due
to the fact that generating a global optimal path is
something considered a NP-Hard problem [19]. Regarding
this complexity, the Small Size League (SSL) category
provides a great environment to develop and compare
different path planning and obstacle avoidance techniques.
The SSL is a category of the RoboCup Competition which
aims to develop multi-agent intelligent systems. In order
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Therefore, the teams must develop many types of skills for
the robots, e.g., motion control, path planning and obstacle
avoidance, object tracking (mainly for the ball), multi-agent
coordination and others.

The reason for the SSL being a challenging environment,
especially for path planning, is due to the fact that it is
the category that has one of the most dynamic interactions
between robots of the whole RoboCup competition,
where the robots can reach a velocity up to more than
2.5 m/s and the ball can reach a maximum velocity
of 6.5 m/s. Therefore, there has always been a lot
of research in the path planning area for this league
[7,20,23, 34].

The robots used in the competition are omnidirectional
robots, as illustrated in Fig. 1 for instance. Due to
the mechanical construction of its wheels, these robots
are capable of moving independently in all of its axis
(X, Y, and ). This feature allows some simplifications in
the path planning task, which, makes it a little easier when
compared to planning a path for a non-holonomic robot,
such as a car-like robot.
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Fig. 1 Robot used in the SSL

In the most competitive division of the league there are
8 robots in each team, playing in a 12 x 9 m field. Beyond
that, due to the fast paced game play, the target point of
a robot may change even before the robot has reached it.
Furthermore, as seen on [22], there are rules which aim to
penalize the collisions between robots, thus, making even
more necessary the use of a good path planning algorithm.
Given those characteristics of the league, a good path
planning algorithm has to offer the best trade-off between
computational time, path length, path safety, navigation
time and number of collisions.

In a more general description, the challenges involved
in the SSL environment for a path planning algorithm are:
a dynamic environment with relatively sparse obstacles,
where, most of them have a practically unpredictable
behavior, there are also several constraints, e.g., minimum
computational time and path length, least amount of
collisions possible, or even none collisions at all, a
reasonable path smoothness, to allow a fast and smooth
movement of the robots, and, some kind of coordination
between the paths of the same team, so that the robots don’t
interfere with the current play. All of these characteristics
make the path planning task very complex, due to not having
a precise prediction of the position of the opponent robots in
a time window greater than one second, and the possibility
that their trajectory may change in a short period of time.
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This paper is an extended version of [24], which com-
pares both Dynamic Visibility Graph A Star (DVG+A*) and
Rapidly-exploring Random Trees (RRT) [15] algorithms in
the SSL environment. However, its main analysis doesn’t
get into many details when considering a dynamic envi-
ronment. Therefore, this paper shall provide an updated
analysis of the performance of both algorithms, but, it will
also analyze them regarding its obstacle avoidance capabil-
ities, which is a key feature on a environment as dynamic
as the SSL. At last, more details on the use of the DVG are
provided.

2 Related Work

The use of path planning algorithms is a common topic of
research in the league, almost every year there is at least
one publication on ways to improve the performance of
an already known algorithm or a completely new approach
on solving this kind of problem. By analyzing the Team
Description Papers (TDP) and Extended TDP (ETDP) of
some teams in the league, [20, 21] shows that the RRT is
a common object of discussion and many teams have been
using custom path planning algorithms. Even outside the
SSL environment, RRT based approaches seem to provide
great results when applied to high dimensional or dynamic
environments [28-30]. Therefore, the RRT algorithm was
chosen to be compared against the DVG+A*.

In [34] it is possible to see that the team uses an
RRT variant called Bidirectional Multi-Bridge ERRT. In
summary, this algorithm is an improvement of the RRT-
Connect [14]. This algorithm was a product of a whole PhD
thesis, more details can be seen on [8].

There’s also an algorithm described in [23] as an
alternative to RRT. It recursively tries to connect the goal
and start point. When a collision is detected it inserts
an intermediate point to avoid it. This algorithm works
similarly as the RRT with the exception that it possess a
strong goal bias, which guides the algorithm exploration,
and consequently, lowers the computational time. Although
the RRT algorithm can also be biased towards the goal
state, this must be done with care [26]. According to [15],
by inserting a strong goal bias in the RRT algorithm, it
may impact the algorithm completeness, specially in local
minimums, similarly to what happens in potential field
based algorithms.

In the ETDP of the MRL team [21] there’s an example
of a completely customized path planning algorithm. It
consists of using several curves, such as polynomial, sines,
cosines and straight lines, to create a path. The algorithm
checks if the path has any collisions with the objects and
then an optimization procedure is run to determine the best
path.
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Outside of the SSL environment there’s also some
studies investigating the performance of A* and RRT based
algorithms. In [5] there’s a comparison using A* and the
RRT-Connect, which is a variation of the original RRT.
In this study, the author analyzed the path length of the
algorithms and it showed that the path length from the A*
was shorter than the one generated by RRT-Connect. The
RRT-Connect is basically the original algorithm with a tree
growing from the start and goal points.

Another study that compares the path length and
computational time from A* and RRT is [25]. In this
study the author compares the original A*, 6%, AA*, RRT
and dynamic domain bi directional RRT in many different
situations, e.g., variable blocked cells, a maze and others.
Although the A* was able to generate the shortest path in
most of the situations, it was the one that had the highest
computational time.

Another example of performance comparison between
A* and RRT algorithms can be seen in [6], this study
shows that the A* is capable of outperforming RRT in
most of the scenarios proposed by the author, both in
computational time and path length. Thus, showing that
A* provides a better performance in comparison to RRT
when in a low dimension environment, which in this case,
is composed by 10 cells of 1 m?. When comparing this
study against [25], it can be seen that the major difference
is the increased environment dimension, i.e., the grid size
in the latter varies between 100 x 100, 500 x 500 and
1000 x 1000 cells, therefore, by having an environment
with higher dimension, the A* algorithm takes more time to
explore the environment and find a path.

The work seen on [19] does a very thorough comparison
among two A* and RRT based algorithms, the Memory
Efficient A* (MEA*) and Rapidly-exploring Random
Trees Star-Adjustable Bounds (RRT*-AB). The main
improvement of MEA* over A* is the reduced memory
consumption by only adding the lowest cost neighbors to
the open list. As for the RRT*-AB, its convergence rate
is considerably improved by only sampling a region of
the total search space. Also, just like RRT Star (RRT*)
it is capable of achieving optimal paths as the number of
iterations approach infinity. A more detailed description of
these algorithms can be seen on [19].

Although most of the previous references are related
to the SSL league, there are many other examples in the
state of the art for path planning algorithms in dynamic
environments, specially for robotic manipulators [30],
unmanned aerial vehicles (UAV) [16] and others [2, 27].

The work seen on [30] proposes a new variation of the
RRT algorithm, which is called Smoothly RRT (S-RRT). In
this work, the author used a robotic manipulator and the tests
evaluated the path planning algorithms both in static and
dynamic environments. The proposed algorithm improves

both convergence speed, and smoothness of the original
RRT. The first is achieved by changing the extend step of the
original algorithm, the author proposes that the algorithm
must extend the tree towards the target position until it finds
a collision, only then, the algorithm will randomly extend
the tree. Also, in the random extension, there is a probability
to extend specifically the node closest to the target position.
As noted by the author, it is utterly important to keep at least
some part of the randomness of the algorithm in order to
maintain its completeness. At last, the second improvement
was achieved by using three post processing steps in the
path found. The first is to remove unnecessary nodes in the
path, whilst not causing any collisions, then, it is evaluated
if there aren’t any sharp angles in the path (angles smaller
than «,,;,), if there are, an additional node is added to the
path in a way that the respective angle gets bigger. Finally,
the last step is to smooth the angles in the path by using a K-
order B spline. The results obtained by the author show that
the S-RRT is capable of outperforming RRT and one of its
variants both in computational time and path smoothness.
Moreover, in the dynamic tests, the S-RRT was capable of
successfully avoiding the dynamic obstacle. However, it is
important to keep in mind that the proposed dynamic test is
much more simple and predictable, when compared to the
SSL environment. In the experiment made there were only
one static and one dynamic obstacle, and the latter didn’t
interfere drastically in the path.

The work seen on [27] also seems quite interesting, first,
the author brings into attention that the task of finding a
path for a non-holonomic robot in a dynamic environment
can be interpreted as a 4D problem (x, y, 0, time),
therefore, making it extremely complex to find a path.
Even though non-holonomic robots are not the case in
the SSL, this approach can be valid for future works.
To address this problem, the author proposes the use of
adaptive dimensionality techniques (AD). The objetive of
this technique is that, in the cases where one, or more,
dimensions are not important, they can be ignored in the
process of finding a solution. In this case, since there are
some regions where the robot must move in a straight, the
6 dimension can be ignored, and when there is practically
no possibility that a collision might occur, then the time
dimension can be ignored. The author compared this AD
approach against a 4D A*, and the results show that the AD
was much more efficient than 4D A*. But, in order to use the
AD, the author makes the assumption that the trajectories
of the obstacles are previously known, and that all obstacles
move with constant speed, both of these are practically
the opposite of what happens in the SSL. However,
the need to consider the time dimension might be an
important parameter in future path planning algorithms for
the SSL environment. Furthermore, due to the holonomic
properties of the SSL robots, the planning problem is
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reduced to a 3D problem, involving only the x, y and time
dimensions.

At last, [2] proposes a whole new algorithm for dynamic
cluttered environments using Voronoi Diagrams (VD) and
Computational Geometry Techniques (CGT). In this work,
the author uses the position, velocity, acceleration and
direction of the obstacles to determine if there is a
risk of collision. The studied environment is composed
of static and dynamic obstacles, which, the latter has
a completely unpredictable behavior, i.e., its position,
velocity, acceleration and direction are randomly generated,
also, both obstacles, and robot, follow non-holonomic
kinematics just like a car-robot. Regarding the collision
avoidance, the author proposes many different rules that
evaluate if there is a high, or a low, risk of collision, from
which side of the path the collision might happen and the
distance that the obstacle is from the controlled robot. Along
with these rules, it is also defined which action should be
taken in order to avoid the collision. Note that, if in any
case, the obstacle gets closer than a critical distance, a local
reactive collision avoidance algorithm is used. The steps of
the path planning algorithm are the following: it calculates
the roadmap using VD, then, A* is used to find a global path
and cubic splines are used to smooth the result. After this, in
the presence of a new obstacle, the algorithm checks which
rule is applied in that condition, then, it creates a rectangular
region that contains the robot and the obstacle, this region
delimits the section of the path that needs to be replanned.
These steps are repeated until the target position is reached.
Although there aren’t any results regarding the number of
collisions that might have occurred, if any occurred, the
results shown demonstrate that this approach is capable
of successfully avoiding dynamic obstacles. The author
compared the algorithm against both RRT and A*, and in the
comparison, the proposed algorithm performed much better
regarding the considered metrics. A few important points in
this work are: the use of VD, which could be an interesting
improvement over the DVG used in the present work, due
to the fact that a VD tends to be as distant as possible from
the obstacles, which is the opposite of what happens in the
DVG. The second point is the use of pre determined rules
that guide which action the algorithm should take to adjust
its current path in order to avoid collisions. This is certainly
more useful than simply replanning the whole path, which
is the action taken by A* and RRT.

As seen previously, the literature has some good
examples of comparisons and improvements using the
A* and RRT families in dynamic, cluttered and/or
unpredictable environments. However, there aren’t many
studies related to applying or comparing these algorithms on
the SSL, or some environment with similar characteristics,
such as, highly unpredictable and holonomic obstacles.
The researches in the SSL community regarding the
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path planning problem are mostly focused on alternative
algorithms or improvements to the already existing ones,
there ain’t many comparisons regarding what is a better
choice for the SSL environment or what may be challenges
of applying them in this environment. Therefore, the work
presented in this paper will provide such comparison,
and, a special attention will be given when it comes to
using the studied algorithms in a environment with the
dynamic characteristics of the SSL. The experiments made
aimed to test the algorithms on a dynamic environment,
where practically all of the obstacles are moving with the
same velocity as the controlled robot and no information
about them is used. This way, not only the computational
performance parameters, such as, computational time and
path length, are evaluated, but also the navigation capability
of the algorithms in a constantly changing environment.

3 Dynamic Visibility Graph A Star - DVG+A*

When analyzing some recent research on the A* based path
planners [6, 19], it is noticeable that in most cases the
algorithm is used with a grid based state space to represent
the environment. Although this approach can be applied in
many domains, the grid maps require a trade-off between
grid resolution and memory consumption, consequently,
a high resolution grid also causes the search algorithm
to run slower, due to the higher complexity. In the SSL
environment it is important that the path generated yield a
good precision, while also maintaining a low computational
time. Therefore, a grid based representation might not be the
best choice in this scenario.

There are some grid based A* variations which focus on
reducing the memory consumption, such as the MEA* [19].
However, according to the author, due to using a grid map,
the MEA* can only outperform sampling based algorithms,
such as the RRT, in low dimension search spaces.

By doing some simple math, it can be seen that, for a
12 x 9 m field, with 50 mm of resolution for the grid,
which is the size of the smallest object (the ball), the grid
map would end up with 43200 cells, or, a 240 x 180 map.
Therefore, using grid maps in the SSL is not a good choice
for the A* algorithm.

Alternatively, [13] provides a study on applying a
visibility graph as a map of the environment. However,
the results show that the computational time to build the
visibility graph is the major drawback of the algorithm. In
some of the tests made by the author, the computational
time reached the order of a few minutes. The reason for this
is mostly due to the process of connecting the vertexes of
the objects that are considered in the graph, even though
many of the connected obstacles may not be used when
finding a feasible path. With that in mind, the DVG [12]
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was chosen as the environment representation for the A*
algorithm. The choice was based on the fact that the DVG
provides a better computational time due to the pruning
of unnecessary obstacles. More details about the DVG are
discussed in Section 3.1.

Note that there are some techniques which focus on
improving the performance of grid maps, i.e., to reduce its
memory consumption, hence, reducing the computational
time to explore the map. These techniques are know as
multi resolution grids, or, multi scale grids. This technique
has already been explored within the league and can be
seen on [17]. In this case, the author proposes that a grid
map is divided into many different layers, which, each
layer has an increased resolution, therefore, the areas close
to the obstacles shall use layers with a greater resolution
(smaller cells), and free space regions shall use layers with
a lower resolution (larger cells), this way, the total memory
consumption of the grid is reduced, whilst maintaining the
precision needed to safely avoid obstacles. Outside of the
SSL there’s also some recent research on this topic with
some experiments on 2D and 3D environments [9]. In this
work, the author uses a multi resolution map combined
with multiple weighted A* searches. This is a quite more
complex implementation, but, it could lead to good results in
the SSL, specially due to it having a lot of free space in the
environment. Therefore, this is certainly a topic of research
to be considered for future works.

3.1 Dynamic Visibility Graph - DVG

According to [12], the DVG has few different characteristics
when compared to a common visibility graph [31]. Instead
of considering every obstacle in the environment, it will
only consider those that are in an active region, which is
the main improvement achieved by the DVG. The main idea
behind the active region is that the shortest path between
points A and B is the straight line that connects both
of them. However, when there are obstacles involved, the
shortest path shall be the one that is tangent to the obstacles
which intercept the line AB. That is the general concept
involved in the DVG, for more details see [12]. Although the
concept is simple, by pruning unnecessary objects it greatly
improves the computational time required to build the graph
when compared to a common visibility graph [12].

In summary, the graph generated by DVG represents
every vertex the robot can travel to and is in the region that
contains the shortest path. On Fig. 2 there is an example of
the DVG generated to take the robot O to the center of the
field, the purple lines represent possible paths the robot can
take.

All objects were modeled as a polygon which is defined
by a radius r and an angle 6, which are the radius of the
circumscribed circle and the angle between each vertex,

Fig.2 DVG created to take robot 0 to the center of the field

respectively. The values of » and 6 used in this study
are:

Taily = 240 mm

—  Topponent = 240 mm
- Ipa = 300 mm

- 0§ =45°

Due to the previously mentioned characteristics of the
robots of the SSL, the robot orientation can be ignored in the
path planning step, hence, the dimension of the state space
is R2.

As a simplification, the process of finding the active
region is a little different from what can be seen on [12]. In
this work, the active region is determined as follows: given
the start and goal points, S and G, respectively, the active
region is the rectangle that is parallel to the segment SG, has
a width of 2d4r and a length of ISG||. The value of dag
used throughout all tests is 1 m. This simplifies significantly
the process of finding the active region, therefore, the only
process that is computationally expensive is to connect
all the possible vertexes of the obstacles in the active
region. Note that this simplification reduces even further the
number of considered obstacles, thus, depending on the size
of the these obstacles, it might affect the search algorithm
completeness, it could define an active region where there
were no valid paths inside that region and the only valid
path would need to go outside of it, for instance. In the
SSL environment this isn’t a problem, since all objects have
the same size it is practically impossible that no path exists
inside the active region.

Another concern pointed out by [8], is that a visibility
graph, in general, will have performance issues when the
number of obstacles involved grows. This happens due to
the high cost of connecting the vertexes of the objects.
However, it can be improved by reducing the number of
vertexes that each object has, or, by connecting only the
tangent lines that connect two objects. The approach taken
to solve this problem was to only connect vertexes which the
distance between them is greater than the distance between
the center of each object, i.e. dyerrexes = deenters- When
the objects have the same radius/size, this mathematically
results in connecting the tangent lines between them.

In order to verify the impact of this improvement, a
simple test was made, it consisted of generating a path using

@ Springer



58 Page6o0f 20

JIntell Robot Syst (2021) 101: 58

the DVG+A* in a situation where there were a significant
amount of connected vertexes, in this test, 200 samples
were collected. The physical setup for this test, i.e., robot
placement, as well as the visual result can be seen on Fig. 3.
The difference in the number of vertexes connected can be
clearly seen when no limit at all is applied (top figure), and,
when limiting the length of the connections between objects
(bottom figure). In Table 1, the mean, standard deviation
(o), minimum and maximum values for the computational
time and path length achieved by the DVG+A* are shown.

By analyzing the results it can be seen that, in general,
this change was capable of reducing the computational time
by roughly 50% at the expense of increasing the path length
by a little more than 6%, which is expected, since the state
space was reduced.

Another way to minimize the effect of multiple obstacles
in the active region is to group the objects that are close to
each other, an example of that can be seen on Fig. 4. The
grouping works by detecting which objects are close to each
other by a given distance dg04p, and then, all those within
the same group are replaced by another object, which, its
center is the geometric center of the group, and the radius is
such that it contains all objects plus the r value of the object
which is further away from the center of the group.

The effects of this optimization were tested under the
worst case scenario for the DVG+A* (see Section 5) and
the comparison between the computational time, path length
and path safety can be seen on Table 2, just like the others
tests, there were 200 samples collected. Also, Fig. 5 shows
the difference between grouping and not grouping close
obstacles, visually it looks like the path length doesn’t
change dramatically, this can be confirmed by analyzing
Table 2.

Table 2 also shows that there is a slight improvement
(approximately 15%) in the path safety, which is expected,
due to the increased size of the polygons for larger groups,
leading to a greater distance between the robots from the
group and the path.

Fig. 3 Difference when limiting the number of connections between
objects. The purple lines are the DVG, the red lines represent the A*
path, the blue and dark green lines are the pre and post processed RRT
paths, respectively. The light green lines are the RRT Tree
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Table 1 Difference in computational time and path length

Time [ms] Path Length [m]
Without Limit ~ With Limit ~ Without Limit ~ With Limit
Mean  6.65 3.14 6.72 7.15
o 4.47 2.37 0 0
Min 2.92 1.31 6.72 7.15
Max 22.78 12.97 6.72 7.15

Even though this change greatly improved the compu-
tational time of the DVG+A*, some further investigation
done with the logs from the games of the last year compe-
tition from both league divisions, showed that, in general,
the robots in a SSL game tend to stay dispersed over the
field, i.e., most of the time there aren’t groups of robots big-
ger than two or three robots closer than dgroup = 500 mm
or even dgroup = 1500 mm. Considering the results shown
in Table 3, it is possible to conclude that groups of robots
larger than two or three robots are difficult to happen during
a match. Therefore, in the SSL environment the grouping
technique wouldn’t drastically increase the performance of
the DVG+A¥*, but, it still is a feasible solution to improve
the worst case scenario of the algorithm.

Although groups greater than four robots seem to occur,
as seen on Table 3, they usually only happen at the very
beginning of the match, while teams are still doing some
final preparations, thus, the robots are just sitting side by
side. Also, the amount of such large groups where only
detected in roughly around 3.23% of the total log frames
analyzed.

At last, it is important to note that, the grouping isn’t
applied unconditionally, if the resulting obstacle group
contains the start or goal points within its region, the group
will not be built and the robots that would compose it, will
be treated normally. This condition is important to not affect
the completeness of the algorithm, otherwise, there may be
some cases where a path exists, but, due to the obstacle
grouping it may not be found by the algorithm.

Still regarding the completeness of the algorithm, the
object radius (rairy, Fopponent OF Thair) is greater than the
radius of the real object, this increased radius is a safety

Active Region

Fig.4 Obstacle grouping to reduce the number of objects that need to
be connected inside the active region



JIntell Robot Syst (2021) 101: 58

Page70f20 58

Table 2 Computational time, path length and path safety comparison when using obstacle grouping inside the active region of the DVG

Time [ms] Path Length [m] Path Safety [m]

No Grouping Grouped No Grouping Grouped No Grouping Grouped
Mean 7.39 1.53 8.27 8.24 8.60 9.53
o 4.67 0.35 0.00 0.00 0.00 0.00
Min 3.63 0.31 8.27 8.24 8.60 9.53
Max 22.04 2.48 8.27 8.24 8.60 9.53

offset to avoid collisions. Hence, one may note that this
could also cause, at least the goal point to be obstructed by
another robot. In order to avoid this situation, the following
special condition is used when analyzing which vertexes to
connect with the goal point: if the line that connects a given
vertex and the goal point doesn’t intersect, or gets closer
than the robot radius, to the center of the obstacle, then,
the connection can be made. An example of this happens
when two robots are disputing the ball, as illustrated in
Fig. 6, in this case, both nodes N; and N, can be safely
connected to the goal position, even though D; = 0, it
doesn’t intersect the obstacle. In conclusion, although the
representation might not be completely accurate regarding
the free space, the algorithm should always have a solution
to find.

3.2 A*

The A* [10] is an improvement over the Dijkstra algorithm
[4], it has a heuristic function that guides the algorithm to
reach the goal faster. And, just like the Dijkstra algorithm,
it is capable of finding the shortest path within the explored
graph. The algorithm uses an evaluation function, which,
can be seen in Eq. 1.

fs) =g(s, Sprev)‘i‘h(s’ sgoal) (D

Where, g(s, Sprev) is the cost to move from the previous
state (S prev) to the actual state (), £ (s, sgoar) is the heuristic
function, a common heuristic used is the euclidean distance,

Fig. 5 Difference when grouping close obstacles. In the upper image
the obstacles aren’t grouped, in the lower image they are grouped. The
red path is the A* path, the purple lines are the DVG, the blue and dark
green paths are the pre and post processed RRT paths, the light green
lines are the RRT Tree

and f(s) is the evaluation value of the current state (a state
is a position that the robot can go to).
The A* algorithm has three basic steps:

1. Expand the neighbors of the current state and calculate
the f(s) for them;

2. Add the neighbors to the open list;

3. Retrieve the state with the lowest f(s) from the open
list and add it to the closed list;

When the goal state gets added to the open list, or, the
open list is empty, the algorithm finishes. Then, it is only
necessary to retrieve the final path from the closed list if one
was found. This last step can be greatly improved by using
a linked list.

4 Rapidly-exploring Random Trees — RRT

As seen previously, the RRT is a widely used algorithm in
the league, mostly due to its simplicity and that it doesn’t
require a representation of the environment (map), which,
A* needs. There are many variations of this algorithm [7,
14, 19, 28], but the one used in this study is the original
version.

The RRT algorithm also has three basic steps:

1. Create a random point (P,4;,4) in the search space;

2. Find the closest tree vertex (Pejpse) t0 Prand;

3. Extend the tree from Pgyse to Pryng in a given fixed
distance, A, if there are no obstacles in the path.

Table 3 Mean, standard deviation and maximum values of the robot
group size during a SSL match

dgroup Group Size Log1 Log2 Log3 Log 4
Mean 1.20 1.27 1.08 1.32

500 mm o 0.76 0.61 0.36 0.66
Max 8.00 7.00 5.00 4.00
Mean 1.44 1.43 1.22 1.76

1500 mm o 1.16 1.04 0.65 1.84
Max 14.00 9.00 8.00 15.00
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Fig.6 Special condition example

These steps repeat until the maximum number of
iterations, NN, is reached, or, the tree reaches a minimum
distance from the goal, dgoq. In Fig. 7 there’s an example
of this process, the red points are the RRT tree vertexes.

After a path is found, a post processing algorithm is
applied to make the RRT path more smooth. The algorithm
used can be seen on Algorithm 1, and it is quite simple.
The algorithm prunes unnecessary points while not causing
any collisions. When analyzing any figure with the pre and
post processed paths the effect of this algorithm can be seen
on Fig. 3. This step substantially reduces the raggedness of
the path, however, there are more elaborate techniques to
accomplish this task [32]. Also, there are some cases where
the presented algorithm might leave right angles in the path,
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Fig.7 Example of an RRT step
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Fig.8 Computational time variation due to the leaf size changes

which can be hard for the robot to follow. In general, due
to the holonomic properties of the robot, this algorithm is
enough to generate a feasible path.

Algorithm 1 Path post processing.
Input : The path generated by RRT
Output: The post processed path
Data: i < 0;

Data: n < size (rrtPath) -1;
ppPath.clear();
ppPath.append(rrt Path[n]);

while n > 0 do

while collision (rrtPath[i], rrtPath[n]) do
i+ -+
end
ppPath.prepend(rrtPath[i]);
n<1i,
i < 0;
end
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5
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Fig.9 Path length variation due to the leaf size changes
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Fig. 10 Example of how the path safety is calculated

By using the RRT algorithm, a famous computing
problem must be addressed, which is the nearest neighbor
search. This procedure happens in the RRT’s process of
finding the vertex P.,s.. The KD-Tree is a data structure
that provides a great solution to this problem. It can be
seen on [7] that the use of a KD-Tree greatly decreases
RRT computational time when compared to a non KD-Tree
approach. In this work, the nanoflann library [3] was used to
implement the KD-Tree. The reason for it is the simplicity
to use and that only one parameter needs tunning, which is
the leaf size. The leaf size represents how many leafs are
grouped in each KD-Tree branch, this parameter influences
the time needed to build the tree index and the search time,
i.e., the greater the leaf size, the longer a search may be, but,
the time to build the index is lower, and when the leaf size
is lower, the opposite happens [3].

To better adapt the leaf size to this application, some tests
were made with five intermediate values for it, which are
5, 10, 20, 200 and 500. The results regarding computational
time and path length can be seen on Figs. 8 and 9, Section 6
explains in details the components of a box plot.

By analyzing Figs. 8 and 9 it can be seen that the path
length and computational time doesn’t change considerably
with the leaf size, except for the leaf size of 20. In this case,
the computational time obtained seems to be some kind of

Fig. 11 Worst case scenario for the DVG+A* algorithm. The purple
lines are the DVG, the red lines represent the A* path, the blue and
dark green lines are the pre and post processed RRT paths, respectively

anomaly. According to [3], the performance of the KD-Tree
depends heavily on the application. Therefore, by analyzing
some benchmarks available in [3], it can be seen that
this kind of variation is possible within a 95% confidence
interval, hence, this could be the normal behavior of the
KD-Tree for this application.

Consequently, the leaf size of 5 was chosen due to having
the lowest maximum computational time, and the constants
for RRT are:

— A =360 mm;
dgoar = 360 mm;
- N =2500;

5 Methodology

The algorithms were programmed using C++ in Qt
framework. The code was compiled in release mode to
improve its performance. The hardware used to make all the
simulations is an Intel i7-9750H@4.5GHz on Ubuntu 20.04
LTS 64 bits.

Regarding the experiments, both algorithms were tested
under two different perspectives with multiple test setups,
where, 200 samples were collected for each test. In the
second perspective, one sample is counted once the robot
leaves the initial position and arrives at its destiny. As for the
first perspective, each calculated path count as one sample.

The first perspective will test the algorithms in a static
environment. The parameters used in the comparison are:
computational time, path length and path safety. The path
safety, in this case, is defined as: given a path P, the path
safety is the sum of the perpendicular distances between
the considered objects, O,, n = {0...j} and the path P.
Figure 10 exemplifies this, the orange lines represent the
distance from the opponents to the blue path P.

The setups proposed in the first perspective aims
to explore what are the worst case scenarios for both
algorithms, as well as showing how they perform in some
common situations that may happen during an SSL game.
With that in mind, four scenarios were developed and they
are described below.

Figure 11 exemplifies the first test scenario, which is
the worst case scenario for the DVG+A* algorithm. As
previously mentioned, the process of generating the DVG
is the most critical part when generating a path, thus, by
placing all possible obstacles in the active region without
grouping them, it is expected that this configuration results
in the highest computational time for the DVG+A*.

Figure 12 exemplifies the second scenario, i.e., worst
case scenario for the RRT algorithm. This setup can be
considered as such due to having a narrow passage before
reaching the goal point, and, having a considerable distance
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Fig. 12 Worst case scenario for the RRT algorithm. The light green
lines are the RRT tree, the dark blue and dark green lines are the
pre and post-processed RRT paths, respectively, the red line is the
DVG+A* path and the purple lines are the DVG

between the start and goal points. These characteristics
make it harder for the RRT to find a path due to the fact
that it doesn’t have any kind of heuristic or bias to guide
the exploration. Therefore, it is expected that the algorithm
explores practically the whole environment before finding a
path, thus, making the computational time in this case to be
higher.

The third scenario proposes a mix between the worst
case scenarios for both algorithms, i.e., it has a considerable
amount of obstacles in the path and the distance between the
start and goal points is not short. This can be seen on Fig. 13.

The last scenario exemplifies a common in-game
situation, which is positioning during a game stoppage. In
this case, the rules define that the robots need to keep a
distance of at least 0.5m from the ball (illustrated by the
yellow circle). This can be seen on Fig. 14.

On the second perspective, the algorithms were evaluated
according to their ability to navigate the robot through a
dynamic environment, i.e., the obstacles that were stationary
are now moving through the path. The parameters that were
measured are:

Fig. 13 Mixed scenario for the RRT and DVG+A* algorithms. The
light green lines are the RRT tree, the dark blue and dark green lines
are the pre and post-processed RRT paths, respectively, the red line is
the DVG+A* path and the purple lines are the DVG
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Fig. 14 Positioning during a game stoppage. The light green lines are
the RRT tree, the dark blue and dark green lines are the pre and post-
processed RRT paths, respectively, the red line is the DVG+A¥* path
and the purple lines are the DVG

— Accumulated Computational Time: is the sum of the
cost of all paths that had to be generated until reaching
the goal position, measured in milliseconds.

— Paths Recalculated: is the total number of times a
previous path was invalid and had to be replanned.

— Navigation Time: is the total amount of time between
leaving the start position and reaching the goal position,
measured in seconds.

— Number of Collisions: is the number of times the robot
collided with any obstacle.

Regarding the number of paths recalculated, a path is
considered invalid whenever an obstacle crosses it, when
that happens the whole path is discarded and replanned. To
define when an obstacle crosses the path, there is a threshold
distance of 90 mm, which is the radius of the robot. It is
important to note that this analysis doesn’t take into account
any kind of dynamic parameter, e.g., it doesn’t detect if there
is a robot moving in the direction of the path and might
cross it in the future. Therefore, even though a new path
would only need a minor change in the invalid path, the
whole algorithm needs to run again. That happens for both
DVG+A* and RRT.

There were two different scenarios built to test the
algorithms in the dynamic perspective, the difference
between them is basically how many obstacles are in the
path between the start and goal points and how much
overlap there is between the obstacles trajectories and the
start to goal line. Figures 15 and 16 shows the most and
less crowded environments, respectively. The start and goal
points for the robot are defined by the red horizontal line.

6 Results

In this section, the results of the previously defined tests are
presented. Firstly, the tables containing the statistical results
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Fig. 15 Dynamic test with 7 moving obstacles. Each color represents
the path of a dynamic obstacle. The red line represents the start and
goal points of the algorithm

will be presented and discussed. After that, each parameters
will also be analyzed graphically using box plots, which, the
lower bound of the box represents the 25 ¢/ percentile (g1),
the upper bound of the box represents the 75 th percentile
(g3), the whiskers represents the most extreme samples that
aren’t considered outliers, e.g., a sample s is considered
as such if s > g3 + 1.5(q3 — ¢q1). The median and mean
values are represented by the green and red horizontal lines,
respectively, and the outliers are the black circles.

6.1 Static Environment Perspective

The first test to be analyzed is the DVG+A* worst case
scenario. The results can be seen on Table 4, and, just as
expected, the average computational time for the DVG+A*
was almost four times higher than RRT, this clearly shows
that an environment with lots of obstacles causes the
computational of time algorithm to increase considerably.
Regarding the path length, the results are also according to
the expected, although RRT was able to find some paths
shorter than DVG+A*, on average they performed pretty
similarly. It is also noticeable that the standard deviation for
the path length and safety are zero, this happens due to both

~
|/

Fig. 16 Dynamic test with 5 moving obstacles. Each color represents
the path of a dynamic obstacle. The red line represents the start and
goal points of the algorithm

Table4 Results for the worst case scenario of the DVG+A* algorithm

Time [ms] Path Length [m] Path Safety [m]

DVG+A* RRT DVG+A* RRT DVG+A* RRT

Mean 6.50 1.52 758 7.93 7.84 10.96
o 4.55 1.66  0.00 0.43 0.00 3.10
Min 341 0.13 758 6.93 7.84 2.41
Max  26.07 12.85 17.58 9.14 7.84 16.37

DVG and A* being deterministic algorithms, thus, given the
same inputs, the results must be the same, therefore, for the
static tests the DVG+A* always calculates the same path.

One interesting observation to make is that, because the
DVG limits the configuration space for the A* search, the
shortest path within the graph may not, and in general isn’t,
the global shortest path. This effect also happens when using
grid maps and [18] provides an important analysis of it.

Table 5 shows the results for the RRT worst case
scenario. By analyzing the data it is clear that the
algorithm did struggle with the proposed configuration, its
maximum computational time was approximately 41.7%
higher than the maximum computational time of the
DVG+A* in Table 4. Moreover, the path length also
increased significantly, it wasn’t able to find any paths
shorter than DVG+A*, and, the average difference grew
from 4.06% in Table 4 to 12.7%. This shows that, when in a
more constrained environment, the RRT algorithm suffers a
significant performance decrease. Regarding the path safety,
the algorithm successfully kept a greater distance from the
objects when compared to the DVG+A*.

Throughout some preliminary testing it was observed
that the total computational cost was lower if the RRT
algorithm was allowed to run longer instead of restarting
it. Because of that, during the RRT worst case scenario,
the maximum number of iterations (N) was increased,
from 2500 to 5000, to guarantee that the algorithm would
be capable of finding the path. The maximum number of
iterations during the test was 4513, and it took on average
1300 iterations to find a path.

The results for the mixed scenario can be seen on Table 6.
It is interesting to see that apart from the maximum values

Table 5 Results for the worst case scenario of the RRT algorithm

Time [ms] Path Length [m] Path Safety [m]

DVG+A* RRT DVG+A* RRT DVG+A* RRT

Mean 1.38 8.86 1294 1458 442 6.40
o 0.71 6.10  0.00 0.23 0.00 0.41
Min  0.37 1.00 1294 1398 442 5.14
Max  4.53 3695 1294 1579 442 8.37

@ Springer



58 Page 12 0f 20

JIntell Robot Syst (2021) 101: 58

Table 6 Results for the mixed case scenario

Time [ms] Path Length [m] Path Safety [m]

DVG+A* RRT DVG+A* RRT DVG+A* RRT

Mean 0.94 1.13 9.02 9.41 1.65 4.29
o 0.70 1.29  0.00 0.50 0.00 1.78
Min 045 0.16 9.02 8.36 1.65 1.03
Max 475 8.76  9.02 11.13  1.65 9.13

and the path safety, the algorithms performed very similarly.
The average computational time of RRT was only 0.2 ms
higher than DVG+A*, and the path length was 4.6% longer.
The major differences were in the maximum computational
time, which was 84.4% higher for RRT, and the path safety,
which, RRT maintained more than the double of the distance
that DVG+A* kept.

At last, Table 7 shows the results for the stoppage
scenario. In this setup, the RRT algorithm struggled more
than on the mixed scenario. The average computational
time for RRT was 97.4% higher than DVG+A*, also, the
maximum value more than tripled. The path length also was
considerably higher, on average it was 20% longer and the
maximum values almost doubled. One possible reason for
these results is that the goal location is almost at the edge of
the field, therefore, generating random points at that region
might not happen very often, thus, the exploration takes
longer to reach that area.

6.1.1 Computational Time Analysis

By analyzing Fig. 17 it is possible to see that with the
exception of its worst case scenario, the DVG+A* algorithm
was faster than RRT in all the other scenarios. Although
RRT was capable of achieving the lowest minimum
computational time, DVG+A* is more consistent, this can
be identified by the height of the boxes in the plot, e.g., a
taller box indicates that the distribution of the samples is
more dispersed, i.e., higher standard deviation.

Another observation to make is that, when comparing
the algorithms in each of its respective worst case scenario,
the DVG+A* also performed better than RRT, even though

Table 7 Results for the stoppage case scenario

Time [ms] Path Length [m] Path Safety [m]

DVG+A* RRT DVG+A* RRT DVG+A* RRT

Mean 1.92 379 3.65 4.38 3.14 3.88
o 0.92 294 0.00 0.74 0.00 1.04
Min  0.44 024  3.65 3.05 3.14 1.37
Max 5.73 19.69 3.65 6.32 3.14 5.33
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Fig. 17 Box plot of the computational time for both algorithms in all
scenarios

its minimum time was around 3.4 ms, approximately 75%
of the samples are lower than 7.5 ms. Conversely, RRT
minimum computational time was around 1 ms, but, it had
approximately 50% of the samples higher than 7.5 ms.

Further discussions on the computational time can be
seen on Section 7.

6.1.2 Path Length Analysis

Figure 18 shows the box plot for the path lengths of
the algorithms throughout the test scenarios. Since there
is no variation in the path length for DVG+A*, there is
practically no box representing its samples, however, this
plot still is useful to give some insights into the path length
samples distribution for RRT. It can be seen on the plot that,
although RRT is indeed capable of finding shorter paths
than DVG+A*, this only happens for less than 25% of the
samples in general. As already mentioned, the only reason
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Fig. 18 Box plot of the path length for both algorithms in all scenarios
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that RRT is capable of finding shorter paths than DVG+A¥*,
is due to the reduced configuration space, of the DVG.

6.1.3 Path Safety Analysis

Figure 19 shows the box plot of the path safety for the
algorithms in all test scenarios. Similarly to what happened
in the path length analysis, the distribution shape for the
path safety samples of the DVG+A* are the same as the path
length.

Due to the stochastic behavior of the RRT algorithm, as
well as how the DVG+A* generates a path, there were no
doubts that the RRT paths would have a higher path safety,
however, it is interesting to see that some RRT samples
have a lower path safety than DVG+A*. The most critical
cases are in the DVG+A* worst scenario, where the RRT
algorithm had a considerable amount of samples lower than
8 m, this can be seen by how much the lower whisker is
extended, meaning that even samples as low as 4 m would
still not be considered outliers. The second critical case is in
the stoppage scenario, where it can be seen that around 25%
of the RRT samples have a path safety lower than DVG+A*.
More details about this behavior can be seen on Section 7.

6.2 Dynamic Environment Perspective

In this section, the results obtained during the dynamic
scenario tests shall be presented. The goal of these tests
was to investigate how the algorithms would perform in a
environment with moving obstacles and a stationary goal
position. There were two different scenarios, the first had
about seven obstacles, and the second had five obstacles.
Table 8 presents the accumulated computational time
of the algorithms during the tests. The results show that
the DVG+A* had a lower computational time. However,
it must also be taken into account that the DVG+A* had
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Fig. 19 Box plot of the path safety for both algorithms in all scenarios

Table 8 Accumulated computational time for the dynamic scenario
tests

Time [ms] Scenario 1 Scenario 2

DVG+A* RRT DVG+A* RRT
Mean 6.80 7.12 1.49 2.36
o 3.03 2.98 0.83 1.63
Min 1.17 1.26 0.12 0.04
Max 14.99 17.28 4.75 8.67

to recalculate its path fewer times than RRT, because of
that, even though it had the lowest total computational
time, the individual computational time was more than
two times higher than RRT in the first scenario. In the
second test scenario, the RRT average individual time was,
approximately, 32% higher than DVG+A*.

Table 9 presents the number of times each algorithm
recalculated a path. As previously mentioned, the results
clearly show that the DVG+A* algorithm had to recalculate
its paths fewer times than RRT, with the exception for the
second scenario, which its maximum value is higher than
RRT. It is also interesting to see that, in this scenario there
were at least one case where both algorithms didn’t had to
recalculate the original path.

The results regarding how much time it took the robot
to reach the goal position can be seen on Table 10. In
this parameter the algorithms performed very similarly. The
only noticeable difference is in the second scenario, where
the maximum time for RRT was more than two seconds
higher than DVG+A*. During a real SSL match, such delay
could possibly result in a play gone wrong or something
like that. In order to verify if this was a random outlier, a
graphical analysis of this parameter is definitely required.
This is one of the most important dynamic parameters due
to the nature of an SSL game, e.g., if the robots from team
A takes, in general, 2 seconds longer than team B to reach
its goal point, then, team A would most likely be dominated
by team B during the whole match, possibly leading to team
A being defeated.

Table 9 Number of times it was necessary to recalculate a path during
navigation

Recalculated Paths Scenario 1 Scenario 2

DVG+A* RRT DVG+A* RRT

Mean 13.09 34.08 5.79 6.93
o 5.05 9.60 3.15 3.32
Min 5.00 10.00 0.00 0.00
Max 48.00 61.00 25.00 19.00
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Table 10 Time needed to navigate from the start to the goal position

Time Elapsed [s] Scenario 1 Scenario 2

DVG+A* RRT DVG+A* RRT

Mean 5.98 5.89 5.30 5.40
o 0.59 0.71 0.35 0.61
Min 5.00 4.50 4.65 4.65
Max 8.15 8.40 6.30 8.55

Regarding the number of collisions, both algorithms
did not perform well. Table 11 shows the results for this
parameter. It can be seen that DVG+A*, in general, had
a similar performance than RRT, its maximum and mean
values were either very close or slightly higher than RRT.

As previously mentioned, the game rules [22] penalizes
practically every collision that happens between the robots,
thus, the goal of a path planning algorithm is to successfully
drive the robot around the field without any collisions, but
this is not a simple task. More details about this will be
discussed on Section 7.

6.2.1 Graphical Analysis

As previously mentioned, the graphical analysis of the
parameters is also a very useful tool, for it allows to get
a better understanding of the distribution shape of the
analyzed parameter. Although the tables may show what are
the minimum and maximum values, it does not contain the
information regarding if these data points are considered
outliers or not, for example.

With that in mind, Fig. 20 shows the box plot of the
accumulated computational time. The plot shows that in the
first scenario, although RRT had the highest accumulated
time, most of these high value samples are considered
outliers. In general, the samples distribution in the first
scenario are similar, the DVG+A* algorithm has a slightly
lower accumulated time than RRT for 75% of its samples.

In the second scenario, the DVG+A* performed signifi-
cantly better than RRT, it can be seen that around 25% of
the RRT samples had a higher accumulated time than almost
all of the DVG+A* samples that are not considered outliers,

Table 11 Number of collisions during navigation

Collisions Scenario 1 Scenario 2

DVG+A* RRT DVG+A* RRT
Mean 2.10 2.12 0.89 0.74
o 1.51 1.40 1.09 0.84
Min 0.00 0.00 0.00 0.00
Max 7.00 6.00 5.00 3.00
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Fig. 20 Box plot of the accumulated computational time in the
dynamic scenario tests

also, 75% of the DVG+A* samples have a lower time than
50% of the RRT samples. This is a reasonable result, since
the second scenario had fewer obstacles and these obstacles
were more dispersed.

The plot for the number of recalculated paths will not be
presented, due to it not adding too much information beyond
what was already possible to see in Table 9.

Moving on with the analysis, Fig. 21 shows the total
navigation time. As seen on Table 8, in the first scenario
the algorithms performed very similarly. However, in the
second scenario the situation changes. Even if the outliers
are discarded, it can be seen that the RRT algorithm has 25%
of the samples which the navigation time is between 5.75 s
and 7 s, conversely, for the DVG+A¥*, its top 25% of the
samples are between 5.5 s and 6.2 s. Not only the amplitude
of this interval is lower, but the maximum value also is.

Scenario-1 Scenario-2
4 o
8.5 °
[e] lo) ?
8.0 ) 3
o 8
7.5 e}
=
v 7.0 1
£
=
§ 6.51
®
2
2 6.0
5.5 4
5.0 T
4.5 —_
DVG+A* RRT DVG+A* RRT

Fig. 21 Box plot of the total navigation time in the dynamic scenario
tests
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At last, there are Figs. 22 and 23 which show the
histogram that depicts the frequency of collisions that
occurred when moving from the start to the goal point,
e.g., Fig. 22 show that there were approximately 12 and
8 cases where the robot collided with 5 obstacles when
moving from the start to the goal point for the RRT
and DVG+A* algorithms, respectively. To account for
consecutive collisions there was a time window of 0.5 s,
that is, another collision would only be counted after 0.5 s
from the previous. This time window was added mostly
to avoid accounting for a collision with the same obstacle
more than once. Note that, for example, a path with seven
collisions doesn’t mean that these obstacles were grouped,
it only means that the robot collided with seven obstacles
outside the specified time window. Also, the figures show
the total count of collisions in the test for each algorithm,
i.e., red and green lines.

The first scenario is definitely the worst, the plots show
than it had more than double of total collisions for both
algorithms when compared to the second scenario, beyond
that, both algorithms achieved practically the same number
of total collisions, which is around 410 collisions. Figure 22
also shows that it is more common for the algorithms to
collide with one or two robots, around 52% and 60% of the
DVG+A* and RRT samples, respectively.

Due to the reduced number of objects and more dispersed
paths, thus, more sparse obstacles in the environment, the
second scenario resulted in less collisions when compared
to the first. To be more precise, it can be seen on Fig. 23 that
for a little less than 50% of the samples for both algorithms,
there were no collisions at all.

By analyzing Figs. 22 and 23 it can be seen that DVG+A*
has less collisions with one or two obstacles. However,
it also has the collisions with most obstacles in the path.
Moreover, there are a few cases, less than 5, where the robot
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Fig. 22 Histogram of the collisions during navigation for the first
scenario
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Fig. 23 Histogram of the collisions during navigation for the second
scenario

being guided by the DVG+A* collided with all obstacles in
the path. If it wasn’t for these cases with a lot of collisions
in the path, the DVG+A* would’ve performed equally and
even better than RRT.

7 Discussion

By analyzing the results, it is clear that the algorithms aren’t
capable of dealing with a highly dynamic environment. The
prediction of the opponent’s position could improve this
situation. However, there are two main characteristics of
the SSL which makes it a complex task for prediction: the
high dynamics of the game and the physical capabilities
of the robot itself. The former is related to the high speed
of the robots, the ball, passes that may occur and special
kicking mechanisms, which can kick the ball in an non-
linear trajectory, these properties contribute to a very fast
change in the current objective of the opponent, making it
harder to predict. The latter is definitely the most important,
and, is related to the fact that a robot may change its
direction very abruptly while moving at a reasonably high
speed, this is completely different from an environment with
a high traffic of cars or humans, in these cases there is
much less noise associated, and the objects have a much
more predictable behavior, e.g., cars/humans won’t change
its direction suddenly while at a high speed.

These two factors combined create an environment with
a high uncertainty about the future position of an opponent
robot and even the ball, which also influences the path.
Therefore, even though some probabilistic techniques, like
the Extended Kalman Filter [33], could be used to track and
predict the opponent’s position, they probably wouldn’t be
capable of predicting the position of the robots throughout
the whole planning and execution of the path, or, to do
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so with an acceptable error, besides making the planning
task more complex and time consuming. A feasible way to
address this problem would be to predict the position of
only the opponents that are close to the allied robot, and
in a small time window, ignoring future collisions that may
happen beyond this time window, this way, the agent would
have to constantly recalculate its path.

Another way to solve this problem would be to infer,
using some kind of learning technique, possible decisions
of the opponent given the current, and future, situation of
the game, hence, using this information to avoid colliding
with them. The latter is definitely a complex solution to
implement and is out of the scope of this work. It is
important to keep in mind that, all of this planning has
to happen within a short period of time, in the worst case
scenario a well built path could take at most a few hundred
milliseconds.

Regarding the static perspective, the DVG+A* had an
overall better performance than RRT. The results obtained
showed that it usually has a lower computational time than
RRT, with a few exceptions where the latter is capable
of finding paths almost instantaneously. Moreover, when
comparing the algorithms in its respective worst case
scenario, RRT performed worse than DVG+A*, both in
computational time and path length. For the path length
parameter, the results for DVG+A* are more consistent, due
to it being a deterministic algorithm. Even though RRT is
clearly capable of finding shorter paths than DVG+A*, that
is not what happens in general.

Given how much time it took for both algorithms to find
a path in its respective worst case scenario, a few more
tests were made, to see how the algorithms would perform
with a strict time constraint in the static perspective. More
specifically, the algorithms were run in both worst case
scenarios within a time constraint of 5 ms, the parameters
of these tests are the same as before, i.e., 200 samples were
collected in each scenario. Also note that these scenarios
were chosen due to the fact that they are the most time
critical ones, in the other scenarios the difference between
the performance of the algorithms wouldn’t be too much
expressive.

A few reasonable metrics to use in this type of test are
the rate of failure (RoF) for each algorithm, which is the
percentage of how many times the algorithm wasn’t capable
of finding a path that reaches the target position and the
average distance that the final path was from the target
position Tyjs;.

The results can be seen on Table 12. They show that the
algorithm with less RoF is the RRT, which is expected. The
RRT will always generate a path, even if it doesn’t lead
to the target position, hence, the importance of the Ty;s,
parameter. Although RRT had the lowest RoF, in the case
that a path didn’t reach the target position, it would be more
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Table 12 Computational time performance within time constraint

Worst-DVG+A* Worst-RRT

DVG+A* RRT DVG+A* RRT
RoF [%] 29.50% 0.00% 0.00% 25.50%
Taist [m] 1.40 0.01 0.00 3.05

than double the distance from the target when compared to
the DVG+A* paths.

Given the results shown in Fig. 17, one may find the RoF
lower than expected for the algorithms, however, the values
in that graph represent the amount of time it took to find an
entire path. For example, the RRT sample higher than 35 ms
probably comes from a case where the algorithm failed
several times in a row, therefore, that single sample could
generate at least seven or eight samples in the current test
when assuming a maximum time limit of 5 ms. Therefore,
by analyzing Fig. 17, it cannot be assumed that the RRT
algorithm should have a total RoF around 75%, which is
roughly the amount of samples above 5 ms, for instance. At
least not if the same amount of samples is collected for both
tests.

Now considering the path safety, it is certainly not
expected that the RRT could have a lower path safety than
the DVG+A*, due to the fact that by using a visibility graph
the A* path will be tangent to all obstacles that it needs to
avoid (when using a grid map the same thing happens). This
RRT behavior has two possible reasons: the post-processing
of the original path, and the free space among groups of
robots. Since the smoothing algorithm tries to prune as
much points it can from the original path, in some cases
it can make the RRT path get closer to the obstacles, this
behavior can be seen on Fig. 13, it can be clearly seen
on the image that the original RRT path (dark blue) has
a greater distance from the obstacles, however, after the
smoothing algorithm (dark green) the path is quite similar
when compared with the DVG+A* path.

Regarding the second reason, an example of that can
be seen on Fig. 24, what happened in this case is that the
RRT algorithm was capable of finding a path between the
obstacles, which causes the path safety to decrease. This
can be seen on the highlighted rectangle, the yellow lines
are the contribution of these robots to the path safety for
DVG+A*, and the cyan lines are the contribution to the
path safety for RRT. In this case, the path safety of RRT
would be a approximately 0.5 m less than DVG+A*, but,
this difference could increase if the algorithm had found a
path that goes inside one, or more, groups of robots. For
example, Fig. 19 shows that there are some situations where
the path safety of DVG+A* can be around 4 m greater than
RRT, these are most likely the cases where the algorithm
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Fig. 24 Example of an RRT path less safe than DVG+A*. The light
green lines are the RRT Tree, the purple lines are the DVG, the red
lines are the DVG+A* path, the dark blue and dark green lines are the
pre and post processed RRT paths, respectively. The yellow lines are
the contribution of the respective robot to the path safety of DVG+A*,
and the cyan lines are the contribution of the respective robot to the
path safety of RRT

had found a path that goes inside all blocks of obstacles in
the scenario. The results show that this is the most probable
reason for this behavior, since, in the scenarios where there
was the possibility of a path between large groups of robots,
i.e., worst case for DVG+A* and game stoppage scenarios
(Figs. 11 and 14), the RRT had cases of a low path safety.

Still, these tests showed that the path safety parameter
of the DVG+A* is usually much lower when compared to
RRT. It is also worth to mention that, although in general
DVG+A* performed worse than RRT in this parameter, this
could be improved by increasing the radius r of the objects
in the DVG. Another improvement that could be made is in
the modeling of the obstacles in the graph. Instead of having
a constant radius, to make it change according to some
parameters, like, distance from the goal, obstacle velocity
and others. With a change like that, it should be possible
to make the algorithm maintain a safer distance from the
obstacles, while not increasing the path length drastically.
There are certainly some cases where the algorithm would
benefit if it wasn’t constrained to a fixed object radius to
generate the graph. In Fig. 25 there is an example of how
that would work by having the object radius to change
according to the distance from the goal position. In this
case, objects closer than d4 don’t get their radius changed,
this is done to not obstruct the goal. Also, the object radius
only increases up to a maximum ryax, to prevent having
objects being too big. The dark dash dot circles represent the
standard object radius (v41y OF Fopponens)- Similarly to the
grouping technique, there would be the need of a condition
where the radius could not be increased so much that
it would obstruct the start or goal points, as this would
interfere on the algorithm completeness.

Fig. 25 Variable object radius example

Regarding the dynamic scenario, the results are much
more similar between the algorithms. With respect to the
individual computational time, each algorithm performed
better in different scenarios, however, in general, the
accumulated computational time was lower for DVG+A*.
The time that it took the robot to drive from the initial to
the goal position was similar in the first scenario, but, in
the second scenario DVG+A* had a lower time. What is
interesting about this result is that, even though DVG+A*
made the robot collide more times than RRT in the second
scenario (30 collisions), it still managed to drive the robot
faster.

Note that, there are attempts in the SSL community to
have a path planning algorithm to generate a path according
to dynamic variables of the environment, e.g., in [20], the
proposed path planning algorithm doesn’t invalidate a path
if the collision happens in a time instant greater than 3 s
in the future, due to the fact that when this instant comes,
the obstacle will probably already have moved to another
position. However, as the author says, the paths must usually
be generated in a 10 ms window, to allow the algorithm to
recalculate the path in case some obstacle gets too close.

Another helpful insight that the number of collisions
gives is that, considering solely the distance of the objects
from the path, doesn’t precisely indicate the path safety,
e.g., in practically all the static experiments, RRT paths
had a higher path safety than DVG+A¥*, however, in the
dynamic experiments both algorithms had a similar number
of collisions.

In another words, the path safety parameter, defined
initially for the static experiments, doesn’t measure at
all how safe a path actually is when there are fast, and
unpredictable, moving obstacles. In this case, another metric
should be implemented to try to measure the actual safety.
However, defining such metric in a way that it could be
useful and valid for dynamic environments, would need
some particular research, given the already mentioned
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complexity of this environment. For example, the rules
defined in [2] could be a great starting point for solving
this problem, however, the development and adaptation of
such rules for the SSL can be the core of a completely new
algorithm, hence, it could be something to do in a future
work.

The number of collisions during the dynamic tests brings
into the discussion the need of not only a path planning
algorithm, but also an obstacle avoidance algorithm.
According to [1], in order to a robot to navigate through
the environment, there are two tasks involved, which can
be separated in high-level and low-level tasks, these tasks
are executed by the path planning and obstacle avoidance
algorithms, respectively. The path planning algorithm is
responsible for generating a high-level path that guides
the robot through the environment while considering many
parameters, such as, path length, energy consumption
and others. The obstacle avoidance algorithm is the one
responsible for avoiding obstacles that may have gotten into
the path after it was originally generated. Also, this is a low-
level task due to it having to handle variables that are more
dynamic than what the path planning algorithm usually
handles. In this work, an obstacle avoidance algorithm
would be the one that makes the robot dodge another
incoming robot that might be at a high speed.

However, it is important to keep in mind that these
path planning algorithms (RRT and DVG+A*) do avoid
collisions at the planning step, their generated path will
never cause a collision if the obstacles don’t move after
the planning has been made. But, when the path execution
begins, and the obstacles start moving from their original
position, the algorithms just can’t properly avoid these
obstacles, specially if they are already close to the robot.
In summary, this means that the algorithms can’t avoid the
collisions long before they happen, this could only be done,
to some extent, if some kind of prediction of the obstacles
position were available.

Throughout the dynamic experiments, it was observed
that the collisions usually happened when a object was
moving perpendicular to the robot path, in that case, the
algorithms have no way of trying to dodge the obstacle. This
is a situation were a obstacle avoidance algorithm would
work well.

In conclusion, even though in the proposed tests the robot
collided a lot with the obstacles, the scenarios built for the
dynamic tests are much more cluttered than what usually
happens in a SSL match. As it can be seen on Table 3, during
most of the time the robots are practically alone or with a
second robot within a radius of 500 to 1500 mm, that means
that the obstacles are quite sparse within the environment,
thus, it should be easier to avoid them.

In fact, Table 13 shows the total number of collisions that
one robot had during a few games of the last competition.
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Table 13 Total number of collisions during the last competition

in-Game Oponnent Total Collisions

RoboIME 154
RoboClIn 287

Note that the games last for around ten minutes each, thus,
the in-game results are quite satisfying, considering that
there are thousands of paths calculated during the whole
match. This means that the number of collisions is much
smaller when put into the same proportion as the number of
samples for the tests performed. Also, even though it might
seem that there were a lot of penalties due to the number of
collisions in these matches, the game referee considers the
velocity of the collision and if robot A collided with robot
B or the other way around. Therefore, since this kind of
sensibility wasn’t implemented when detecting the number
of collisions in the tests and in the script that analyzed these
games, the results regarding number of collisions are higher
than what would be detected in a real match.

8 Conclusions

This work has shown the application of the DVG+A*
algorithm in the SSL environment, as well as, pointing out
some of its weaknesses and proposing a few changes that
increased the DVG computational time performance, e.g.,
the obstacle grouping technique.

Several experiments were made in order to compare both
algorithms. These experiments evaluated the algorithms
regarding its performance on both static and dynamic envi-
ronments. Furthermore, the results in the static environment
showed that the DVG+A* is capable of outperforming RRT
when comparing the computational time and path length.
The only parameter where RRT outperforms DVG+A* is
the path safety. However, there are ways to improve this on
the DVG+A*.

In the dynamic experiments, both algorithms performed
similarly in all analysed parameters. However, these
experiments showed that the algorithms are not capable of
avoiding collisions properly, thus, showing the importance
of also having an obstacle avoidance algorithm. In fact,
all experiments would have to be redone, and the
results reevaluated, when such algorithm gets implemented.
This change would certainly impact the performance of
both algorithms, therefore, the conclusions could change
significantly.

In conclusion, there’s two important points, the first,
considering static, or sparse dynamic environments, the
DVG+A* has a slightly better performance than RRT. It has
a low computational time, is capable of finding short paths
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consistently and the path safety can be improved without
sacrificing the completeness of the algorithm. The second,
considering cluttered dynamic environments, in this case,
both algorithms aren’t suitable for avoiding collisions, to
improve this, either having predictions about the obstacles
positions, or implementing a dedicated obstacle avoidance
algorithm, would be necessary.

In a future work, it would be interesting to see the
effect of having a dedicated obstacle avoidance algorithm
working together with the path planner. The work seen
on [11] provides a thorough survey on obstacle avoidance
algorithms, which could be a great starting point for
future works on this subject in the SSL. And last but not
least, investigating proper metrics to measure the safety of
paths when in cluttered dynamic environments is certainly
something that could produce great results.
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