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Abstract
Fortress provides a nice set of abstractions used widely in scientific computing. The

use of such abstractions enhances the productivity of programmers/users. Also, in

scientific computations, boilerplate code has extensive usage. Keeping this in view,

we embed Fortress abstractions in an X10 environment so that we can get better

productivity without losing performance. In this paper, we transform Fortress into

X10 through a transcompilation system. We describe compilation strategies for a

few important constructs and discuss the performance of the generated X10 code

with respect to the original Fortress code. The translated X10 code outperforms the

original Fortress code with a maximum of 206x speedup achieved in the best case.

The system also supports the multiresolution language approach that simplifies

parallel programming by allowing domain scientists to write programs in the For-

tress syntax that is closer to the mathematical notation. The translated X10 code,

which can further be compiled to either C?? or Java, implicitly assures perfor-

mance and may further be optimized for performance by utilizing the low-level

features of X10 (or C??/Java).
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1 Introduction

The accelerating pace of advances in computational science has challenged the

scientific community to use advanced computing capabilities to understand and

solve complex problems from various scientific disciplines like numerical

simulations, model fitting, and data analysis. These problems involve large

computations that are usually executed on multi-node computing clusters with

each node comprised of multi-core processors and accelerators that specialize in

number crunching and parallel computing. To exploit the available hardware,

several high-performance languages have been developed, which enable program-

mers to run an application on thousands of threads over hundreds of computing

units. For an experienced computer programmer, it is a matter of a few days to learn

and get familiar with the features of these languages. However, all these languages

have their own sophisticated syntaxes and constructs. This leads to two challenges:

• Firstly, there is much boilerplate code involved in writing a parallel program.

Programmers themselves have to spawn and manage the thread pool and are also

responsible for synchronization and joining of these threads. For example, for a

simple FOR loop construct, the body of which is required to be executed in

parallel, a programmer has to invoke a certain number of threads, write code to

issue tasks to each thread, and also write separate code for invoking these threads

on several processors. The situation gets further complicated when atomic

blocks and several computing devices with multiple cores are involved.

• Secondly, for a person not familiar with the syntax of the language, it becomes

increasingly difficult to understand how the problem is being solved by a

computer. This is important because the end-users of the output of the solutions

to these problems are they themselves. It is therefore required that there be some

way to get the syntax as close as possible to mathematical notations, which are

universally understood.

With these requirements in mind, Guy Steele and his team at Sun Microsystems Inc.

began working on Project Fortress in 2002. Fortress [22] was developed as a part of

the High Productivity Computing Systems (HPCS) program, along with Chapel [6]

and X10 [7, 10], for development of computing systems with a focus on

productivity and performance. However, even as Chapel and X10 have evolved as

full-fledged programming languages, the development of Fortress language,

unfortunately, ceased in the year 2012 due to various reasons. However, Fortress

did introduce some exciting syntax and constructs. The goal of the developers was

to build a language that was as close as possible to mathematical notation, was

efficient, scalable, and at the same time, was as simple as possible to facilitate

productivity in high-performance software development.
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2 Motivation

The aim of this project is fueled by and carries forward the original goals of

Fortress, i.e., to build a high-performance language that is close to mathematical

notation, scalable, and simplifies writing parallel code. Since domain/computational

scientists are by far the largest user community of HPC, Fortress’s proximity to

mathematical notation reduces the scope for errors in translating the mathematical

equations into programs, while also simplifying debugging, thereby improving their

productivity significantly. Thus, providing continued support to such a language

becomes absolutely necessary. However, Project Fortress being no longer under

development, and in its current state only having a working interpreter, all the

features provided by Fortress become unreachable to the entire scientific computing

community. In this paper, we try to address this problem using the X10

programming language.

X10 is an object-oriented and statically-typed language that has found wide

popularity in the HPC community. Both X10 and Fortress unite in the view of the

abstract programming model that they follow: Partitioned Global Addressing Space

(PGAS), wherein the global addressing space is logically divided into several

partitions such that each partition is local to some processing element (called Places

in X10). This approach is particularly helpful in exploiting data locality in multi-

core, multi-node clusters.

Since both Fortress and X10 work on very similar execution models and are both

compiled and ran on JVM, it opens up an opportunity to build a source-to-source

compiler (transcompiler/transpiler) for Fortress code to be converted into X10.

Thus, in this paper, we present a transpiler that translates Fortress programs into

X10, enabling users to still write programs in the Fortress syntax that is similar to

mathematical notation, and at the same time, get better performance using X10’s

infrastructure. Our work also supports Multiresolution language philosophy [17]

that simplifies parallel programming by allowing the domain scientists to use the

high-level specification for convenience and productivity, and at the same time,

provide fine-grained control to the HPC programmers using low-level representa-

tions for performance. Since the X10 compiler has two backends: C?? and Java,

X10 itself can be compiled to both C?? and Java, and therefore provides more

flexibility to the HPC programmers for fine-grained optimizations of the original

Fortress code.

The paper has been organized as follows: In the next section, we give a brief

background of the Xtext framework and the Xtend language used to realize the

transpiler. The architecture of the translation process from Fortress to X10 is

described in detail in Sect. 3.2. We then present a case study of Buffon’s Needle

algorithm and give its Fortress implementation and the translated X10 code in

Sect. 4. The results of run-time comparisons of benchmark applications in Fortress

and the corresponding translated X10 code is discussed in Sect. 5.
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3 Background

The Fortress-to-X10 Transpiler has been built using Xtext [25] which is a

framework for development of programming languages especially parser-based

external Domain-Specific Languages (DSL) [12, 23]. Unlike internal DSLs which

are written inside an existing host language in the form of an API, external DSLs are

parsed independently of the host language and have their own syntax. The transpiler

also employs the Xtend language [24] for code generation. We first give a brief

overview of the Xtext framework and the Xtend language, and then discuss the

similarities and differences in Fortress and X10 languages.

3.1 Xtext Framework

Xtext provides complete infrastructure, including parser, linker, type-checker,

compiler as well as editing support for Eclipse. It uses the LL(*) parser generator of

ANTLR in the background, allowing it to cover a wide range of syntax.

In order to build a DSL, Xtext requires the DSL’s grammar to be defined using

the Xtext grammar language. Xtext grammar language itself is an EBNF-like DSL

developed using Xtext [3]. Now, to derive the various language components, we

need to execute the Generate Xtext Artifacts command. This generates the

following:

1. a metamodel based on Eclipse Modelling Framework’s (EMF) Ecore model

[21]. From this Ecore model, a Java-API is generated that allows the AST to be

accessed programmatically.

2. an ANTLR-based parser that generates the abstract syntax tree (AST) for textual

DSL models.

3. a full-featured text editor with support for code highlighting, syntax coloring,

content assist, code navigation, etc.

3.2 Xtend Language

Xtend is a statically typed template language for implementing generators,

interpreters, and model transformations. Since each of these require access to

AST, Xtend enables programmatic access to it using the Java-API mentioned in

Sect. 2.1. Since Xtend is compiled to Java, it seamlessly integrates with all existing

Java libraries. Like Xtext’s grammar language, Xtend language too has been built

using Xtext. It provides a rich set of language features like:

• lambda expressions

• template expressions

• active annotations

• type-based switch statements

• polymorphic method invocation
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The meta models of Xtext DSLs are represented as Ecore models and since Xtend

itself is built using Xtext, each Xtend program is also represented as an Ecore

model. The relationship between Xtext, Xtend and Ecore has been discussed in

detail by Klaus Birken [4].

3.3 Fortress and X10 Languages

Here, we introduce Fortress and X10 languages through a comparison of a few

important programming aspects:

1. Programming Model: As mentioned in Sect. 1, both Fortress and X10 use the

PGAS programming model which provides an abstraction of a single shared

address space even though the address space is partitioned into regions based on

the underlying NUMA architecture. X10, in addition, also supports asyn-

chronous operations and control flow, which permits the creation of asyn-

chronous tasks locally and globally, due to which it is said to be an

Asynchronous PGAS (APGAS) language.

2. Basic Execution Model: The basic unit of execution in Fortress is a thread -

implicit or explicit (launched using spawn), while in X10 it is known as an

activity—a lightweight thread or a user-level thread that is much cheaper to

create and manage than kernel-level threads.

3. Memory Abstraction: Unlike X10 and Chapel, which provide flat memory

abstractions, Fortress provides a hierarchical abstraction of the target architec-

ture. This is realized using regions that map to an element of the system’s

hierarchy i.e., node, processor, core, or memory, thereby forming a hierarchical

tree. Every thread, object, and array element has an associated region in

Fortress, which can be queried using the function region provided by Fortress.

X10, on the other hand, uses the notion of places that represent various

computational units with local memory. Both Fortress and X10 allow

computation to be placed near data using the same construct: at.

Fortress and X10 have many similar features. While Fortress uses spawn-at,
for-spawn, and at-atomic, X10 uses at-async, for-async, and at-
atomic for asynchronous remote tasks, nested parallelism, and remote transac-

tions, respectively. Also, X10 provides distributed arrays for data distribution, while

Fortress provides arrays, vectors, and matrices, that are assumed to be distributed

across the machine [22]. Tuples in Fortress are also similar to Points in X10.

Fortress, in addition, supports several unique features that were aimed at

improving the productivity of programmers. Here, we list a few:

1. Growable syntax [2, 20]

Growable syntax allows growing a programming language using syntactic

abstraction. Thus, the growable syntax of Fortress allows it to adapt to the

changing needs of users by providing support for adding new constructs in

libraries by defining them in terms of existing constructs.

2. Dimensions and units [1]

Many applications involve representing physical quantities that are usually
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expressed as raw numbers. By providing adequate support for units and

dimensions, Fortress eliminates bugs that may arise due to misrepresentation of

different physical measurements. For example, addition/subtraction/comparison

of quantities that are expressed in different units.

3. Function contracts [22]

Function contracts allow a user to express certain semantic properties that

cannot be expressed through the static type system.

4. High-level combinators [11]

It allows nested data structures to be generated through a set of primitives,

called Generators of Generators (GoGs).

Further description of Fortress language follows in Sect. 3.2.

4 Translation from Fortress to X10

In this section, we describe the challenges in compiling Fortress to X10 and describe

the implementation of the Fortress-to-X10 transpiler along with an illustration of

translation of a few key constructs.

4.1 Challenges

Targeting X10 for translation has raised many challenges in the design of the

transpiler. Issues such as extensive usage of Left Recursion in the original Fortress

grammar expressed in Parser Expression Grammar and inclusion of unimplemented

features such as Dimensions, Coercion, Tests, and Properties embedded in the

Fortress Grammar presented a major task of filtering and adapting the essential

abstractions from the Fortress grammar while staying true to the objectives of the

project. The resulting modified Fortress Grammar faced the following major

challenges:

• Multiplication Operator:
Originally, multiplication in Fortress is implied by juxtaposing two operan-ds

together. Juxtaposition itself is an overloaded operator that is given semantic

actions at run-time, i.e., When the left operand is a function, number or a string,

juxtaposition performs function application, multiplication and string concate-

nation, respectively.

Such an operator was possible to be defined in Parsing Expression Grammar

(PEG) due to infinite look-ahead, which is not the case with LL(*) parser. And

hence, multiplication operator ‘*’ was used.

• Parsing Nested Expressions:
Since Xtext doesn’t support left-recursive parser rules, parsing of nested

expressions is difficult due to their recursive nature. To get rid of left-recursion,

the grammar needs to be left-factored. Operator precedence is handled by

defining an order of delegation. An operator with higher precedence has its rule

listed above other operators.
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• Dimensions and Units:
Since Fortress is being translated to X10, which doesn’t provide support for

dimensions and units, providing support for them in Fortress poses a challenge.

This is because dimension-checking would require manipulation of dimensions

according to a dimensional algebra. There are type systems that model units as

types so that dimensional analysis is reduced to type checking [13]. However,

due to the complex semantics of units, more powerful algorithms are required to

perform type checking for unit correctness. We discuss implementations of

programming languages supporting dimensions and units in Sect. 3.5.

• Return Statements: Being an expression-oriented language, Fortress has every

construct as an expression that returns some value. For example, in the following

code:

the IF block is an expression that returns a value. We illustrate an example in

Sect. 3.3, where we revisit the same code (but in a different context) and show how

we address it.

Fig. 1 Architecture of fortress-to-X10 transcompilation
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4.2 An Architecture for Translation from Fortress to X10

The Fortress to X10 transpiler, built using the Xtext framework and the Xtend

language, takes as input a Fortress program and translates it into the corresponding

X10 code. The architecture of Fortress-to-X10 transcompilation is shown in Fig. 1.

To implement the Fortress to X10 transpiler, the Xtext project takes as input the

grammar of Fortress language (obtained from the Fortress language specification

[22]) specified in Xtext’s grammar language. On generating the Xtext artifacts for

the Fortress grammar, apart from the parser and other infrastructure being

generated, a code generator stub is put into the runtime project. The code generator

is then written using the Xtend language by defining methods to translate each

element of the EMF’s metamodel. On executing the project, a new instance of

Eclipse IDE is generated with support for functionalities like code completion,

syntax highlighting, syntactic validation, linking errors, the outline view, find

references, etc. This enables complete Eclipse support for programs written in the

Fortress language. To translate Fortress programs to X10, the code generator

invokes (Xtend) methods corresponding to each element of AST generated by the

parser. Since the DSL Xtext editor is already integrated in the automatic building

infrastructure of Eclipse, the generator will be automatically called when the source

is written/modified in our DSL (Fortress, in our case). Thus this change is

automatically reflected in the translated code. We now illustrate a simple application

implementing a threshold function, which is translated from Fortress to X10.

Listing 1 shows the application written in Fortress.

1 static component threshold
2 static export Executable
3 threshold(x: ZZ32): ZZ32 =
4 if x>127
5 then 1
6 else
7 0
8 end
9 end

Listing 1 Fortress code implementing a
threshold function
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1 import x10.io.Console;
2 import x10.lang.Math;
3 import x10.array.Array_1;
4 import x10.array.Array_2;
5 import x10.array.Array_3;
6 import x10.util.Random;
7

8 public class threshold{
9

10 static def threshold(x:Int):
Int{

11 var result:Int;
12 if((x > 127)){
13 result = 1;
14 }
15 else{
16 result = 0;
17 }
18 return result;
19 }
20 }

Listing 2 Translated X10 code
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The Figure to the right of Listing 1 shows a representation of the AST for the

application, obtained using the Sample Reflective Ecore Model Editor tool. The

translated X10 code is shown in Listing 2.

4.3 Illustration of Translation of a Few Key Constructs

For illustration, we show the translation of a few key constructs in Fortress to X10.

4.3.1 Translation of If-Then Block

Listings 3, 4 show a Fortress code snippet of an if-then block and the corresponding

translated X10 code, respectively.

1 if 0.0 < val AND val < 1.0 then
2 println("Hello")
3 end

Listing 3 Fortress code of if-then block

1 if (((0.0f < val)&&(val < 1.0f))){
2 Console.OUT.println("Hello");
3 }

Listing 4 Translated X10 code

The Xtend method generates the if-then block in X10 syntax using simple string

operations. As with Java, the string literals in Xtend (enclosed in ’’’ ’’’) can be

concatenated with the ’?’ operator. The transpiler traverses through the AST and

translates every element of if to the corresponding code in the X10 syntax.

4.3.2 Translation of for Loop

Since for loops in Fortress are parallel by default, the equivalent translated X10

code can be implemented using async and finish. For each loop iteration, a new

asynchronous activity in X10 is spawned using async. Listings 5, 6 show a code

snippet of for loop in Fortress and the corresponding translated X10 code,

respectively.

1 for i<- 0#1000 do
2 a[i] := SQRT((a[i])^2 + (a[i])^3)
3 end

Listing 5 Fortress code of for loop
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1 finish for(i in 0n..(1000n-1))
2 async{
3 a(i)=SQRT ((( Math.pow(a(i),2n))+(Math.pow(a(i) ,3n))));
4 }

Listing 6 Translated X10 code

Parallelism in for loops is specified by the generators used. Thus, if there is any

dependency that limits parallel execution, the programmer should specify the use of

sequential generator (eg. i  seqð1 : nÞ) that forces the iterations to be performed

sequentially.

The grammar rules for for loop in Fortress, specified in the Xtext’s grammar

language is listed below:

A for loop consists of the ‘for’ keyword followed by a generator clause list. In

Fortress, comma-separated generator clause lists are utilized to express parallel

iterations (eg. for i 1:m, j 1:n do ..... end ). Thus, the body of a ‘for’ loop is

evaluated for every combination of values bound in the generator clause list (i, j in

the above example), in parallel. The generator clause list begins with a binding that

consists of one or more identifiers followed by the token ‘ ’ and a generator source

that is essentially a sub-expression that specifies the range of values for which the

for loop is to be evaluated.

4.3.3 Translation of Function Contracts

Function Contract is a key feature of Fortress that allows a function to impose

certain conditions on its execution. They enable us to express semantic properties

that cannot be expressed through the static type system.

Fortress allows three optional clauses in the function’s declaration that are

evaluated in the scope of the function body: requires, ensures, and an

invariant clause. A brief description of these clauses is given below:

1. Requires
It specifies constraints (as a sequence of comma-separated boolean expressions)
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that the argument to a function must satisfy. The body of the function is

evaluated only if these expressions evaluate to true, or else an exception

(CallerViolation) is thrown.

2. Ensures
An ensure clause is evaluated after a requires clause. It consists of a

sequence of ensures subclauses, each comprising of a boolean expression,

followed by an optional provided subclause. The provided subclause

consists of the keyword provided followed by a boolean expression. The

boolean expression preceding provided is evaluated after the function body

is evaluated, only if the expression following provided evaluates to true or in

the absence of the provided subclause. If this expression (preceding

provided) evaluates to false, an exception CalleeViolation is thrown.

3. Invariant
It specifies a sequence of expressions (of any type), enclosed by curly braces.

These expressions are evaluated both before and after a function call. For each

expression e, if the value of e evaluated before the function call is not equal to

the value of e evaluated after the function call, an exception CalleeViolation is

thrown.

1 factorial(n:ZZ64):ZZ64
2 requires {n>=0}
3 ensures{result >= 0}=
4 if n === 0
5 then 1
6 else
7 n*factorial(n-1)
8 end

Listing 7 Fortress code with function contracts

1 static def factorial (n:Long):Long{
2 var result:Long;
3 if((n >= 0)){
4 if((n == 0)){
5 result = 1;
6 }
7 else{
8 result = (n*factorial ((n-1)));
9 }

10 }
11 else
12 throw new Exception("CallerViolation");
13 if(( result >= 0)== false)
14 throw new Exception("CalleeViolation");
15 return result;
16 }

Listing 8 Translated X10 code

Listings 7, 8 show an example of the usage of function contracts in Fortress and
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the corresponding translated code in X10. The code also highlights the ability of

Fortress to succinctly express these semantic properties, which could be realized in

X10 only with much extra boilerplate code, affecting the readability of code. Also,

since the function has a return type (Long), the transpiler declares a variable result
that captures the values of expressions returned by the if-then block, which is

eventually returned at the end.

4.4 Objects and Traits

Objects in Fortress are the same as classes in the standard object-oriented languages

like Java or C??, and consist of fields and methods in their body. Object

declarations do not allow abstract methods. Listings 9, 10 show a Fortress code

snippet of an object declaration and the corresponding translated X10 code,

respectively.

1 object factorial
2 fact(i:ZZ64):ZZ64 =
3 if i===0
4 then 1
5 else
6 i*fact(i-1)
7 end
8 end

Listing 9 Fortress code of an object declaration

1 public class factorial {
2

3 def fact(i:Long):Long{
4 var result:Long;
5 if((i == 0)){
6 result = 1;
7 }
8 else{
9 result = (i*fact((i-1)));

10 }
11 return result;
12 }
13 }

Listing 10 Translated X10 code

Traits Unlike other object-oriented languages, Fortress does not allow objects to

be extended by other objects. For instance, Java supports multiple inheritance by

augmenting single inheritance with interfaces. However, Fortress still allows

multiple inheritance of methods (and not fields) through traits. Traits are very

similar to interfaces in Java, but in addition to abstract methods, trait declarations

also allow concrete implementations of methods. Thus, Fortress objects can extend

multiple traits and inherit (abstract and/or concrete) methods from them. Moreover,
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traits themselves may extend other traits. Thus, Traits are an effective programming

language mechanism to reduce redundancy in code through reuse of methods.

Traits are supported by neither X10, Java, or C??, and further, Fortress itself

does not provide interfaces. Therefore, Traits can be supported in Fortress in a

similar way by which they are implemented in Scala [19]. This is realized by

compiling each Fortress Trait declaration into an X10 interface and an X10 helper

class. While the X10 interface holds the abstract methods defined in the trait, the

concrete implementations themselves are held in the X10 helper class as static

methods. The helper class remains invisible to the user and the implementation of

static methods can be accessed only through reference to the interface. An example

of the expected translation is shown in Listings 11, 12.

1 trait abc
2 display1 () = println("implementation of display1 method")
3 end
4 object xyz extends abc
5 display2 () = println("implementation of display2 method")
6 end

Listing 11 Fortress code with Object and Trait

1 interface abc {
2 void display1 ();
3 }
4

5 abstract class abc$class {
6 public static void display1(abc a) {
7 Console.OUT.println("This is the implementation of

display1 method");
8 }
9 }

10

11 class Foo implements Trait {
12 public void display1 () {
13 abc$class.bar(this);
14 }
15 public void display2 () {
16 Console.OUT.println("This is the implementation of

display2 method");
17 }
18 }

Listing 12 Translated X10 code

Here, the abc trait is compiled into the interface, abc and the abstract class,

abc$class. The concrete implementation of the display1 (static) method is accessed

by using the reference to the abc interface.

4.5 Units and Dimensions

Following the loss of NASA’s Mars Climate Orbiter probe in 1999 due to a bug

resulting from mismatched quantities, several attempts have been made to extend
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programming languages with support for dimensions and units. Although attempts

in this direction are known from 1970s, these were limited by the lack of

polymorphism and user-definable dimensions [9]. Andrew J. Kennedy overcame

these limitations [14] and provided support for dimension checking for the general

purpose functional programming language ML. The implementation identified a

canonical unit for each dimension, other units of the same dimensions are then

represented in this canonical unit using the respective conversion method. There

were also other attempts for languages like F# [15] and Haskell [5]. However, all of

these were limited to structurally typed functional languages. Allen et al. [1] in

2004, as part of the Fortress project by Sun, introduced support for static checking

of units and dimensions for nominally typed object-oriented languages. Their

implementation requires units and dimensions to behave like both types and values.

To integrate units and dimensions with object-oriented types, each dimension is

specified as a class and allows classes to be instances of other classes. Essentially

the Java language was extended with metaclasses, instance classes, and abelian
classes, of which dimensions are an instance.

Since neither X10, nor C?? and java provide support for units and dimensions,

any attempt to provide this support in Fortress has to be provided by the transpiler,

and thus any such mismatch of units and error will be reflected by the parser and the

compiled X10 program will be void of these units. A possible direction to

implement units and dimensions can be through generics, by using units and

dimensions as type parameters. All units are transformed to their canonical type of

the respective dimension and dimensional analysis is performed using the canonical

types. These type parameters are then erased after the type checking, also known as

type erasure.

4.6 Tuples

A tuple is a parenthesized, comma-separated series of expressions. Tuples are

appropriate when multiple expressions are to be evaluated or passed as arguments,

in parallel, and return multiple results. An example of a tuple is (a?b, a-b, a*b). The

evaluation of a tuple of expressions,(factorial(a), factorial(b), factorial(c)) could

then be translated to X10 using finish and async statements as shown in Listing 13.

1 finish{
2 async factorial(a);
3 async factorial(b);
4 async factorial(c);
5 }

Listing 13 Translated X10 code
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5 Case Study

For the case study, we consider an implementation of Buffon’s needle [8] which is a

Monte-Carlo Simulation to estimate the value of p. Given a floor with equally

spaced parallel lines distance d apart, it finds the probability that a needle of length l
lands on any of the lines. This probability is then used to estimate the value of p.

5.1 Fortress Code

The buffon’s needle program implemented in Fortress is listed below:

5.2 The Translated X10 Code

The X10 code of the Buffon’s needle program translated using the Fortress-to-X10

transpiler is listed below:
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The case study demonstrates the translation of Buffon’s Needle from Fortress to

X10 code using our transpiler framework. It demonstrates the following constructs/

features of Fortress: component, export, run, for loop, and atomic. The codes show

the conciseness of the Fortress code and how the syntax is closer to mathematical

notation and hence more intuitive. An important distinction between the two

languages is the implicit data parallelism in Fortress given by the parallel-by-default

for construct.

6 Experimental Results

In this section, we discuss a few benchmark applications in Fortress and their

performance with respect to the transformed X10 codes.

All the experiments were conducted on Ubuntu 16.04 LTS system with the Intel

i7-4710HQ processor supported by 8 GB of DDR3 RAM. The Fortress codes have

been given full JVM memory allowance to create as many implicit threads as

needed to achieve the maximum performance. The X10 codes are all run with 4

Places and as many number of activities required by each place. All the run-times

are averaged over 5 runs.

We first compare the execution times of the following three applications:

• Matrix Multiplication (MM32): employs Divide and Conquer strategy to

multiply two matrices of size 32*32.

• Positive Feedback (PosFeedback): Given a set of entities, each having a

positivity score and a bank of facts, evolving them by supplying random facts.

• Buffon’s Pi (Buffons) [8]: A Monte Carlo method using Buffon’s needle to

approximate the value of Pi.

The results of these experiments are shown in Fig. 2.

It is evident from the results that the translated X10 code outperforms the original

Fortress code in terms of execution time, with an average speedup of 16x observed

Fig. 2 Fortress versus X10: run-time comparison
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across the three experiments. While the speedup is 20.36x for MM32, it is 13.63x
and 14.13x for PosFeedback and Buffons, respectively. MM32 significantly fares

better than other applications as here computations are inherently parallel and more

numerically intensive and also, no synchronization is needed. Buffons, on the other

hand, requires at least two atomic operations in each iteration. We also performed

experiments with the following benchmark applications:

• Array Stream Benchmarks [16]: It is a synthetic benchmark program that

measures memory bandwidth (in MB/s) and the corresponding computation rate

for simple vector kernels. The results for array stream benchmarks are shown in

Tables 1 and 2.

In all of the experiments (Int, Int64/Long, and Float), an average speedup of

more than 2x was observed for the translated X10 code. Also, in all cases, the

highest speedup was observed for the Triad operation when compared to other

operations.

• NAS Fast Fourier Transform (and Inverse) of 3D grids [18]: This application

solves a 3-dimensional partial differential equation using the Fast Fourier

Transform. The results for the NAS Fast Fourier Transform (FT) are shown in

Tables 3 and 4. For NAS-FT, the translated X10 code clearly outperforms

Fortress by a large margin. The highest speedup of 206x is achieved by the X10

Table 1 Fortress stream benchmark test

Int32 OpType Rate (MB/s) Avg. time (s)

Copy 0.76380121485 10.4739294

Sscale 0.73007764609 10.957738595

Add 0.91273471055 13.147303221

Triad 0.80712187147 14.867643195

Sscale 0.79928385621 10.008959818

Int64 OpType Rate (MB/s) Avg. time (s)

Copy 1.79794160235 8.899065453

Sscale 1.47913110244 10.81716149

Add 2.00083967138 11.994964086

Triad 1.493870698 16.065647472

Sscale 1.514487715 10.564628446

Float OpType Rate (MB/s) Avg. time (s)

Copy 1.782398159 8.976669955

Sscale 1.84008156 8.695266747

Add 1.756414426 13.664201139

Triad 2.035071163 11.793199389
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code for Class W. The higher speedup in FT can be explained by the fact that the

iterations of FT are independent, and further, more than half of the total time is

spent on the core FFT computations and therefore scales well with the number of

processors.

We also conducted experiments to comparatively evaluate the performance of the

translated X10 code with respect to the X10 code that has been optimized for

performance. In this experiment, we observed the execution times of the translated

X10 code and the optimized code for Buffons and PosFeedback for different number

of iterations, and computed the speedup achieved by the optimized code w.r.to the

original X10 code. The results for PosFeedback are shown in Fig. 3.

The results demonstrate the efficacy of the optimized X10 code, with a maximum

of 2.5x speedup achieved for 4 � 106 iterations. The result also shows that the

speedup increases with the increase in the number of iterations till 4 � 106, and
decreases thereafter due to communication overheads. This experiment also

demonstrates the Multi-resolution Language philosophy, where the domain

scientists could express their problems in Fortress, and the translated X10 code

could then be optimized by the HPC programmers.

Table 2 X10 stream benchmark test

Int32 OpType Rate (MB/s) Avg. time (s)

Copy 8.42345860721409 4.748643267

Sscale 9.524426067121496 4.199728122

Add 13.528420739316202 4.435107479

Triad 8.899139206154164 4.494816754

Long OpType Rate (MB/s) Avg. time (s)

Copy 16.486417432848583 4.852479341

Sscale 16.41668567602583 4.873090804

Add 21.6605982250443 5.540013196

Triad 14.58383811756954 5.485524411

Sscale 17.148535071815235 4.66512152

Float OpType Rate (MB/s) Avg. time (s)

Copy 8.02382936905595 4.985150875

Sscale 8.483019312473154 4.715302244

Add 10.898170595394351 5.505511175

Triad 7.578662969599845 5.277975833
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7 Discussion

The experimental results show an impressive performance of the translated X10

code with respect to the original Fortress code. The huge performance improvement

was as expected because Fortress was an experimental and interpreted language,

with an inefficient interpreter. However, by providing this tool for translating

Fortress code to X10, we provide an opportunity for better engagement of domain

scientists with the X10 community. It will enable the domain scientists to express

their problems in a representation that is closer to the mathematical notation,

thereby reducing the scope for errors and simplifying debugging. It will also

Table 3 Fortress NAS FT

benchmark
Class Grid Iterations Avg. run time (s)

Class T: 2 x 4 x 4 1 0.650441406

Class S: 64 x 64 x 64 1 503.49956373

Class W: 128 x 128 x 32 1 1040.398577308

Table 4 X10 NAS FT

benchmark
Class Grid Iterations Avg. run time (s)

Class T: 2 x 4 x 4 1 0.019727665

Class S: 64 x 64 x 64 6 2.653876066

Class W: 128 x 128 x 32 6 5.042912789

Fig. 3 Fortress versus X10: run-time comparison
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significantly improve their productivity since they can get their implementation to

work without worrying about low-level performance aspects. The 90/10 rule [17],

which states that almost 90% of a program’s execution time is spent within 10% of

its code, also suggests better productivity for domain scientists by limiting their

focus to problem-solving than on performance improvement. Tuning the program

for performance, which requires a good understanding of low-level implementation

details, could be realized by HPC programmers. As an example, the domain

scientists may write an application using the Fortress arrays. The translated X10

code can then be optimized for performance by taking advantage of the rich support

for arrays provided by X10. For example, while Region array in X10 could be used

as the default choice due to the flexibility they offer, the array implementation could

be changed to Rail for better performance in certain cases.Rail is an intrinsic one-

dimensional fixed-size array that supports only up to three dimensions using row-

major ordering, thus allowing efficient optimizations on indexing operations.

Further, since X10 itself can be compiled to either C?? or Java, HPC programmers

have more flexibility to optimize the original Fortress code in a language of their

choice.

8 Conclusion

In order to leverage the novel syntactic features of Fortress, we have built a Fortress

to X10 transpiler that enables a program written in Fortress syntax to be

automatically translated into the corresponding X10 code. We have showcased the

tremendous performance gain of X10 codes over the existing Fortress system. Thus,

we have shown how the reduction in boilerplate code, readability achieved by

Fortress and the impressive performance of X10 can be amalgamated together to

form a powerful language for high performance and scientific computing. This also

supports the Multiresolution language philosophy that will enable the domain

scientists to write programs easily in the Fortress syntax that is close to the

mathematical notation, without bothering about performance. The translated X10

code inherently improves performance and can further be optimized for perfor-

mance by utilizing the low-level features of X10, Java or C??.

There are certain features from the original Fortress implementation that have not

yet been implemented in the transpiler like growable syntax and high-level

combinators [11]. The current transpiler only supports a single component i.e. a

single class and also does not provide support for APIs, which is another name for

Interfaces in Fortress. This is the immediate future goal of the transpiler, to provide

the notion of multiple classes, APIs, and packages. There are several novel features

of Fortress that are not present in the original implementation either, such as

dimensions, units, and where clauses. Including these features will further simplify

the language for a programmer and hence increase productivity. Another possible

addition for the transpiler would be operator overloading and user-defined types and

operators. This is an interesting addition that can be useful in various scenarios.
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