
Vol:.(1234567890)

International Journal of Parallel Programming (2021) 49:776–801
https://doi.org/10.1007/s10766-021-00714-1

1 3

High‑Level Parallel Ant Colony Optimization
with Algorithmic Skeletons

Breno A. de Melo Menezes1  · Nina Herrmann1 · Herbert Kuchen1 ·
Fernando Buarque de Lima Neto2

Received: 13 November 2020 / Accepted: 1 April 2021 / Published online: 29 April 2021
© The Author(s) 2021

Abstract
Parallel implementations of swarm intelligence algorithms such as the ant colony
optimization (ACO) have been widely used to shorten the execution time when solv-
ing complex optimization problems. When aiming for a GPU environment, devel-
oping efficient parallel versions of such algorithms using CUDA can be a difficult
and error-prone task even for experienced programmers. To overcome this issue, the
parallel programming model of Algorithmic Skeletons simplifies parallel programs
by abstracting from low-level features. This is realized by defining common pro-
gramming patterns (e.g. map, fold and zip) that later on will be converted to effi-
cient parallel code. In this paper, we show how algorithmic skeletons formulated
in the domain specific language Musket can cope with the development of a paral-
lel implementation of ACO and how that compares to a low-level implementation.
Our experimental results show that Musket suits the development of ACO. Besides
making it easier for the programmer to deal with the parallelization aspects, Musket
generates high performance code with similar execution times when compared to
low-level implementations.

Keywords  Algorithmic skeletons · Ant colony optimization · High performance
computing

 *	 Breno A. de Melo Menezes
	 breno.menezes@uni-muenster.de

	 Nina Herrmann
	 nina.herrmann@uni-muenster.de

	 Herbert Kuchen
	 kuchen@uni-muenster.de

	 Fernando Buarque de Lima Neto
	 fbln@ecomp.poli.br

1	 University of Münster, Leonardo‑Campus 3, 48149 Münster, Germany
2	 University of Pernambuco, Rua Benfica ,455, 50720‑001 Recife, Brazil

http://orcid.org/0000-0002-7010-7482
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-021-00714-1&domain=pdf

777

1 3

International Journal of Parallel Programming (2021) 49:776–801	

1  Introduction

Nature inspired metaheuristics have been widely used to solve complex optimi-
zation problems [1]. When tackling combinatorial problems, approaches using
Ant Colony Optimization (ACO) have been widely exploited and can be often
found in literature [2]. Initially proposed by Marco Dorigo in his Ph.D. thesis, it
is inspired by the social behavior of ant colonies when searching for new sources
of food and their ability of finding the shortest path between the colony and the
food [3]. ACO was initially created to solve problems such as the Traveling Sales-
man Problem (TSP), achieving satisfactory results.

In ACO, the process to build a solution is done in several steps, includ-
ing a certain number of probability calculations. The workload in this process
is proportional to the size of the problem and the number of possibilities to be
explored. Considering the TSP problem, the number of possible tours grows
exponentially as the number of nodes in the graph increases. The same occurs for
packing problems such as the Multidimensional Knapsack Problem (MKP) and
the Bin Packing Problem (BPP), where the number of combinations rises quickly
as more items have to be packed. In order to explore more of these possibilities in
the search space, more ants are required in the colony and, therefore, the compu-
tational costs increase substantially. Knowing that a considerable part of the com-
putations are performed during the solution construction phase (path construc-
tion or packing) and that the runtime increases when tackling a bigger instance of
such problems with several ants, it is mandatory to speed up the program in order
to run the algorithm in a reasonable amount of time without losing the quality of
the solutions.

Parallel implementations of ACO have been introduced aiming for differ-
ent high-performance hardware, such as multi-core CPUs and GPUs. Low-level
frameworks such as OpenMP, MPI and CUDA provide many tools for program-
mers, assisting the development of such parallel versions of the algorithm. The
tools provided by CUDA help programmers to develop parallel programs for
Nvidia GPUs. Nevertheless, some expertise is necessary to generate high per-
formance code. Programmers must be aware of data transfers, synchronization
points, and many other issues that make the development of the program difficult
and error prone.

Aiming to ease the development of such parallel algorithms, high-level paral-
lelization tools provide means to profit from the use of high-performance hard-
ware without the issues inherent to low-level programming. For example, some
tools allow the use of predefined common programming patterns, known as
algorithmic skeletons [4], here referred to as skeletons. They represent common
operations, such as map, zip, and reduce and can be used in a program. Mus-
ket converts those patterns to parallel code. This way, the programmer’s job is
to translate the methods from the original algorithm into predefined operations
which are translated to parallel code.

Muenster Skeleton Tool for High-Performance Code Generation (Musket) is an
approach based on a Domain Specific Language (DSL) created to speed-up the

778	 International Journal of Parallel Programming (2021) 49:776–801

1 3

development of parallel programs [5]. By using it, programmers are able to create
code by first writing it in the DSL Musket and then converting the program into
parallel CPU or GPU code. Created as a general purpose tool, Musket has already
been applied and tested in several problems including metaheuristics, presenting
promising performance results compared to other parallelization approaches [6].

In this paper, we investigate the use of Musket to create a parallel GPU version of
ACO in order to understand and compare how it relates to a low-level implementation
in terms of performance and development complexity. The identification of positive
and negative sides of using the general purpose structures available in Musket may also
serve as a base for the future development of the framework.

Our paper is organized as follows: The basics about ACO are displayed in Sect. 2.
In Sect. 3 we give an overview of related work. The description of Musket and how it
was applied in this work can be found in Sect. 4. Experiments are detailed in Sect. 6
together with the results. In Sect. 7 we put together the conclusions of this work and
point out future work.

2 � Ant Colony Optimization

ACO is a metaheuristic in which artificial ants cooperate among each other in order
to solve complex discrete optimization problems. It was initially tailored to solve the
TSP, therefore it requires some adaptations in order to be applied in other contexts,
such as the BPP and MKP. Details about each adaptation and the GPU implementation
are described in the following.

2.1 � ACO Solving the Traveling Salesman Problem

In the case of TSP, the objective is to find the shortest tour in a graph, starting from a
random node, visiting each node once and only once and coming back to the original
node [7, 8]. In order to solve such a problem, each ant in the colony tries to create a tour
and at the end of each iteration they share their success through pheromone deposits.
More successful ants, the ones that generated shorter tours, deposit more pheromone
on the visited edges. Pheromone is what will attract other ants in the following itera-
tion, helping them to generate similar tours based on the success of ants from previous
iterations.

The process described above can be divided into two steps which compose the exe-
cution of ACO, namely tour construction and pheromone deposit. During the tour con-
struction, each ant must create a tour starting at a random node. The decision where to
go next from the current node i is done in a probabilistic manner, taking into account
the distance and the amount of pheromone between the current node and a candidate
node. The probability is calculated as shown in Eq. 1.

(1)pi,j =
[�i,j]

�[�i,j]
�

∑
l�N

[�i,l]
�[�i,l]

�
∀j�N

779

1 3

International Journal of Parallel Programming (2021) 49:776–801	

where � and � are the parameters used to determine the influence of pheromone
quantity and distance between the nodes over the probability, respectively. �i,j is the
pheromone at the edge from node i to j, �i,j is 1∕di,j , where di,j is the distance from
node i to j. N is the set of unvisited nodes that can follow node i. pi,j is the probabil-
ity that the ant goes from node i to j. The current node i and visited nodes have the
probability equal to zero.

Once each ant has created its tour, the fitness of each ant will be equal to the total
distance traveled. Afterwards, the pheromone update will take place. The first step is
the pheromone evaporation where each edge loses a certain quantity of pheromone
according to the following assignment (Eq. 2).

where, � ∈ [0..1] defines the evaporation rate and �i,j is the amount of pheromone
between nodes i and j. � is used to control the amount of pheromone, enabling the
algorithm to focus more on new trails. After the evaporation, it is time for each ant
to deposit pheromone on the tour it has created, according to the following assign-
ment (Eq. 3):

where �t = 1∕qk , and qk is the length of the round tour of ant k. By doing so, ants
that generated shorter tours deposit more pheromone at visited edges than the ones
that generate longer tours.

This process is repeated through as many iterations as needed. Although the pher-
omones are used to attract ants and help them create tours similar to previous suc-
cessful ones, the probabilistic way of choosing the next step allows ants to create
distinct paths and therefore generate diversity.

2.2 � ACO Solving the Bin Packing Problem

The bin packing problem (BPP) is an NP-complete combinatorial optimization
problem where a set of items with a given volume has to be packed into as few bins
with a fixed capacity as possible. A certain quantity tells how many identical copies
of an item are available. Being a combinatorial problem, the BPP can also be solved
using ACO. The goals are similar but the process is a bit different because of the
weight limitation imposed in the BPP and the method used to build a solution. In
this section, these differences will be explained together with the approach used in
this work to build a solution. The algorithm used here follows the approach of Lev-
ine and Ducatelle [9].

Differences between both problems emerge directly from the setup. When solv-
ing the BPP, the algorithm has to ensure continuously that the capacity of the cur-
rently considered bin is not violated, while the TSP has no such restrictions. Nev-
ertheless, the basic structure of the algorithm remains unchanged. Modifications of
the algorithm come from the fact that the order of inclusion is not important any
more. Instead the grouping of items that fit together in one bin is relevant. There-
fore, all items included in the current bin should be considered when calculating the

(2)�i,j ∶= (1 − �) ∗ �i,j

(3)�i,j ∶= �t + �i,j

780	 International Journal of Parallel Programming (2021) 49:776–801

1 3

probability of selecting the next item. Algorithm 1 illustrates the process of calculat-
ing � and �.

Algorithm 1 Calculate Probabilities Pseudo-code
1: current bin = empty
2: avail capacity = capacity
3: for j ← items do
4: phero sum = 0.0
5: while (j.quantity-- > 0) do
6: if (j.volume <= avail capacity) then
7: avail capacity -= j.volume
8: for i ← current bin do
9: phero sum += pheromones[i][j]
10: current bin = current bin ∪ {j}
11: else
12: current bin = empty
13: avail capacity = capacity

14: τj = phero sum/number of items in current bin
15: ηj = j.volumeβ

Once � and � are calculated for each item, the probability of choosing item j is
calculated in the same way as explained previously. Items that have already been
included ( item.volume = 0 ) and items that would exceed the bin’s capacity will be
excluded and their probabilities are set to zero. If there are still items available but
none fits into the current bin, a new bin is started. The process is repeated until all
items have been packed and the fitness of the solution is equal to the number of bins
used in this solution.

Using the same concept, the pheromone deposit process considers the fitness of
one solution and re-visits each of the bins created to deposit pheromones. If items A,
B and C are part of a bin created in a solution that resulted in a good fitness, the con-
nections between these items will receive the same high amount of pheromone. This
method of depositing pheromones, informs ants in future packing phases that pack-
ing A, B and C together helped creating a good solution and increases the chances of
them being packed together again.

Other parts of the algorithm, such as the pheromone evaporation, are performed
in the same way as mentioned previously.

2.3 � ACO Solving the Multidimensional Knapsack Problem

The multidimensional knapsack problem (MKP) is as the previously discussed opti-
mization problems NP-hard. In its original form, a set of items ( J = {1, 2, ..., n} ) is
given together with a set of constraints ( I = {1, 2, ...,m} ). As each item has a value,
the goal is to select a subset of J aiming to maximize profit respecting all given
constraints. The approach used in this work to solve the MKP is inspired by the one
proposed by Soh-Yee Lee and Yoon-Teck Bau [10]. In this approach, the probability
of ant k adding a new item to the knapsack is calculated considering the partial solu-
tion ( ̃Sk(t) ) constructed until step t. It can be calculated using Eq. 4:

781

1 3

International Journal of Parallel Programming (2021) 49:776–801	

where pk
j
(t) is the probability of ant k choosing item j at step t, Ak(t) is the set of

available items for ant k at step t, �j(t) is the amount of pheromones assigned to item
j at step t and �j(S̃k(t)) is the heuristic factor which is calculated considering the
value of item j and how it complies with the constraints as shown in Eq. 5:

where vj is the value of item j and 𝛿j(k, t) is the average tightness considering all con-
straints and the actual state of the partial solution S̃k(t) . The tightness of an item j for
a certain constraint i is defined by Eq. 6:

where rij is the size of item j for constraint i and ci is the capacity of the knapsack for
dimension i. Summing the values for each dimension and dividing it by the number
of constraint dimensions m gives the average tightness 𝛿j(k, t).

Once all probabilities are calculated, the same probabilistic method as mentioned
before is used to select the next item to be inserted in the knapsack. The process is
repeated until the knapsack is full and none of the remaining items fits. Differently
from the BPP, the solution proposed for the MKP can be smaller than the size of the
initial set of objects.

In the approach used in this work, pheromone values are an association with one
item and a construction step. Unlike the BPP, where groups of items are important,
in MKP the order in which items are added has more value. The amount of phero-
mone to be deposited to item j by ant k is calculated using Eq. 7:

where Q is constant (defined by 1∕
∑n

j=1
pj ) and Lk is the fitness of the solution con-

structed by ant k, which is equal to the sum of the values of all items inserted.

2.4 � GPU‑ACO

Targeting a GPU environment, we present here one possible implementation
approach for parallelizing ACO using CUDA. The concepts explained in this sec-
tion are applied in the same way for both problems investigated, adapting only to
their peculiarities. The steps that compose the ACO algorithm as described above

(4)pk
j
(t) =

⎧
⎪⎨⎪⎩

[�j(t)]
�
⋅ [�j(S̃k(t))]

�

∑
l∈Ak(t))

[�l]
�[�l(S̃k(t))]

�
, if j ∈ Ak(t)

0, otherwise

(5)𝜂j(
�Sk(t)) =

vj

𝛿j(k, t)

(6)�ij(k, t) =
rij

ci −
∑

l∈S̃k(t)
ril

(7)��k
j
(t) =

{
QLk, if item j is used by antk

0, otherwise

782	 International Journal of Parallel Programming (2021) 49:776–801

1 3

are quite simple and the general process makes the algorithm suitable for paralleli-
zation. Even so, extra care is required when dealing with the same steps in a parallel
way.

The CUDA framework makes it possible to run sequential instructions on the
CPU, while the computational intensive tasks can run on the GPU in parallel. In
our approach, the whole algorithm runs on the GPU and, therefore, operations such
as routing and pheromone updates are declared as CUDA kernels. One advantage
about this approach is that no data transfer between host and device is necessary
along the iterations. These data transfers are performed at the beginning (reading
data and copying to GPU) and at the end of the execution (retrieving results from
GPU to host). A general view of the proposed implementation used to solve the TSP
is represented in Algorithm 2.

The first step of this implementation is the initialization of the structures that
compose the problem. It includes reading the data from a file that contains the x and
y coordinates of each city present in the graph of the TSP instance or the volumes
and quantities of the items for the BPP. Afterwards, the data can be copied to the
GPU and, already on the device side, other data structures necessary to run ACO
can be created directly on the GPU, i.e. random number generators, distance matrix,
pheromone matrix and route matrix. After everything is created and initialized prop-
erly, the algorithm can loop through its iterations and perform the solution construc-
tions (tour or packing) and pheromone updates.

The solution construction is the first step in an iteration and also the most
demanding task of ACO. In order to create a parallel version of it, the straight for-
ward approach was chosen where the calculations necessary for calculating one
solution (e.g. one route) are performed by one thread. The number of CUDA blocks
will be determined by dividing the number of ants in the colony by the desired num-
ber of threads per block, meaning that it can be changed and adapted according to
the necessity and capabilities of the hardware. The simplicity to implement this
approach is one of its positive aspects. Once there is a sequential implementation of
ACO, it is not too difficult to port it to CUDA using this approach.

After the solution-construction phase, the pheromone update is broken down
into two different steps. The first one is the pheromone evaporation, in which each

783

1 3

International Journal of Parallel Programming (2021) 49:776–801	

connection in the graph loses a certain amount of pheromone as explained before in
Eq. 2. In our parallel implementation, one CUDA block is generated for each city
and, inside this block, one thread is generated for each other city in order to decrease
the amount of pheromone (Listing 1). For the BPP problem, the same approach is
chosen with connections between each type of item available to be packed in bins.

The pheromone deposit phase starts with one CUDA block assigned to one ant in
the colony. Each thread inside a block is responsible for updating an edge visited by
the ant in the tour constructed previously. As the pheromone matrix is stored in the
GPU’s global memory and it is being updated by different threads, racing conditions
might appear. In order to overcome that, the pheromone deposit is performed using
CUDA’s atomic operations, guaranteeing the integrity of the data without losing
performance. For the BPP problem the pheromone value of items which are packed
together in good solutions in one bin is increased. In this way items which are often
packed together in good solutions have a connection with a higher pheromone value.

The process is repeated for a number n of iterations. At the end, the best results
are copied to the host and the execution is ended. With such a simple approach it
is already possible to achieve a considerable speedup when compared to sequential
implementations.

3 � Related Work

The use of ACO to solve combinatorial problems has been already deeply inves-
tigated. Levine and Ducatelle [9], used pure ACO to solve many instances to the
BPP and Cutting Stock Problem (CSP). They state that exact methods work well for
small instances of such problems, but would require too much time to solve bigger
instances. In this situation, ACO comes as a convenient tool which is able to achieve
good results in a reasonable amount of time. Furthermore, they also state the need
of having a certain number of evaluations in order to achieve good results. For big-
ger instances, the necessity of having these evaluations together with the complexity
of generating solutions result in a notable increase in the execution times. Although
they do not apply any parallelization, it would come to hand when solving these big-
ger instances as the execution take already a considerable amount of time compared
to the smaller problems.

784	 International Journal of Parallel Programming (2021) 49:776–801

1 3

Low-level parallel implementations of ACO have been already investigated in lit-
erature. The approaches include mainly the introduction of data parallelism into the
code, like in the work of Uchida et al. [11]. Other works focus on improvements
in the algorithm that would favor data parallelism. Cecilia et al. developed a new
mechanism called I-Roulette in order to enhance parallelism during the path crea-
tion process. Furthermore, they introduce strategies for parallelization of the phero-
mone update process suitable for GPU architectures [12].

Another approach to reduce the execution time of the algorithm is to improve
the parallelization itself. Instead of modifying the algorithm by introducing new
mechanisms that would simplify the execution, the idea is to make better use of the
hardware available. This can be achieved by organizing the structures needed by the
algorithm in an optimal way and dividing the work in such a way that hardware use
would be optimized. This can be done for example by introducing different levels of
parallelism. In ACO, this can be done by parallelizing not only the job of each ant
but also all internal calculations that belong to tour construction as demonstrated by
Menezes et al. [13]. Also, in another work, the same authors investigate the use of
atomic operations to enhance the process of updating the pheromone matrix [14].
The results indicate that different levels of parallelism can be useful according to
the size of the problem and that the use of atomic operations can speedup the phero-
mone update phase.

Rieger et al. introduced Musket, a DSL for parallel programming [5]. Their idea
is to offer a language with algorithmic skeletons built in and with a syntax similar
to C++ in order to help programmers to write high performance distributed parallel
programs without the need of expertise in low-level frameworks. High performance
low-level code for different architectures (Multi-core CPUs, GPUs or clusters) is
generated from Musket files. The authors point out the benefits of using a DSL com-
pared to other high-level approaches. Also, among some examples, the Fish School
Search (FSS) metaheuristic is used as a benchmark. Further analysis of FSS and
Musket are done by Wrede et al. [6]. Both studies show the possibility of using such
general purpose tools for the application in the metaheuristics field. The major criti-
cism of using high-level frameworks has been the possible loss in performance. The
present paper serves to evaluate the performance of a skeleton based implementation
and the hand written implementation previously discussed [13, 14].

There are also many other approaches providing high-level parallel programming
based on algorithmic skeletons, including Fastflow [15], SkePU [16], Muesli [17,
18], eSkel [19] and many others.

4 � Musket

Musket is a DSL which enables programmers to develop parallel applications and
generate optimized code without requiring knowledge about low-level parallel pro-
gramming frameworks. For interested readers the code can be found in a public
repository [20].

The syntax of Musket is based on C++ which is widely used for high perfor-
mance computing. It was defined using the Xtext framework and it includes a parser

785

1 3

International Journal of Parallel Programming (2021) 49:776–801	

and an editor that can be incorporated into Eclipse [21]. In this way, programmers
can use helpful features such as syntax highlighting, code completion and valida-
tion. Creating parallel programs in musket is simplified in multiple ways. Common
parallel programming structures are simplified by representing them as skeletons.
Moreover, the division and allocation of data structures to distinct processes is done
by the code generator which transforms Musket code to C++ with CUDA opera-
tions in case that GPU code is generated. Furthermore, it is totally abstracted from
specifying the number of threads to be started. Those and other advantages become
more apparent by illustrating an exemplary program (Listing 2).

A musket program is divided into four parts, namely meta-information, data
structure declaration, user function declaration, and main program declaration. The
meta-information block (lines 1–5) specifies for which type of hardware code should
be generated. Firstly, the platform argument distinguished between a program for
GPUs or CPUs. In case of stating multiple platforms multiple programs are created.
For our application context only the GPU code generator is required. Afterwards,
the number of processes, cores, and GPUs which shall be used are specified. Infor-
mation about the targeted architecture is essential to generate a distribution for data
structures which is efficient and to organize the parallel execution of the skeletons.

In musket, global data structures are declared before writing functions in the data
structure declaration block (line 7). On the one hand, for each additional data struc-
ture type which is offered, the effort for the implementation rises. On the other hand,
it is possible to include additional information for the data structures e.g. on the data
distribution. Here, the elements of the array are distributed among the GPUs. Avail-
able distribution modes are dist for distributed, copy to make the whole data struc-
ture available for all processes, and local which is a specific form of copy where
no global copy needs to be created. Similar to the specification of arrays, matrices
can be created, which require the same parameters despite having two parameters to
specify the number of rows and columns.

786	 International Journal of Parallel Programming (2021) 49:776–801

1 3

The user-function declaration part (lines 9–11) includes custom user functions
which will be passed as arguments to the skeletons calls and in the final program
executed among the nodes and cores available. Inside user functions, program-
mers can make use of control structures, such as if-else statements and for loops,
moreover, a selection of C++ library methods and external functions are avail-
able. Global structures declared in the previous section can be used either with a
local index or a global index. Moreover, local variables can be created.

In the last part, similar to C programs, a main function is declared which defines
the entrance of the program. In the example, lines 13–17 contain the main program
declaration. There, general instructions of the program are listed using control struc-
tures, musket functions, and the parallelization instructions in the form of algorith-
mic skeletons. Musket functions are typically used functions for writing parallel
programs which do not need to be executed in parallel, for example measuring the
runtime and getting maximal and minimal values of data types. For example in line
14 the time measurement is started. Wrapping such functions relieves the user of the
framework to think about target specific functions. In order to simplify paralleliza-
tion, musket offers (different versions of) the Skeletons fold, map, reduce (which in
contrast to fold only accepts a selection of commonly used reduction operators), zip,
gather, scatter and shift partition. For zip and map, in place and index variants and
their combinations are available. The given example doubles the value of every ele-
ment of the array. The implementation of the ACO algorithm will show how those
structures can also be used for more complex programs.

The written DSL code will then be transformed into low-level code. With each
program generated (in case of multiple platforms) CMake Files and execution
scripts are generated. The generated code is not meant to be further adjusted.

787

1 3

International Journal of Parallel Programming (2021) 49:776–801	

5 � Our Proposal

ACO is a metaheuristic which is suitable for parallelization. Many tasks, such as
the path or packing construction, are independent of each other as each ant is able
to create its own solution without the interference from other ants. Even though, the
task of creating a parallel version for it can be quite challenging. A few steps require
extra care since reduction steps are executed before performing general calculations.
For example, as shown in Eq. 1, the probability is calculated using the product of
the amount of pheromone and the distance divided by the sum of all products. Fur-
thermore, steps like the pheromone-update phase include changes which shall be
performed by each ant in the colony over the pheromone matrix, which is a structure
used by the whole colony. Therefore, the programmer must be careful to avoid race
conditions and perform the right data transfers without harming performance.

In order to overcome such difficulties, musket is helpful. Generally, high-level frame-
works have the advantage that the user does not need expertise in the specific area (in
this context parallel programming). Musket DSL code is also more concise than e.g.
C++ code with calls to a (skeleton) framework.

However, using a DSL also has its disadvantages. The developer of the DSL has to
decided which functionalities are essential. Missing necessary functionalities limit the
user of the DSL. While, in contrast, including too much functionalities increases the
complexity of the code generator and confuses inexperienced users.

In order to evaluate the usability and practicability of a high-level framework for the
exemplary case of the ACO algorithm, a musket program will be compared to a hand
written program. The aspects of major interest are the performance of the programs and
the complexity of the syntax and structure provided by the different approaches. As part
of the comparison the creation process of a program implementing the ACO algorithm
in musket will be described, to illustrate advantages and disadvantages of using a high-
level framework.

5.1 � Musket‑ACO

In the following, interesting aspects of the high-level implementation of the ACO algo-
rithm will be discussed. Of particular interest is how the single steps proposed in the
abstract solution approach in Algorithm 2 are translated to one or multiple skeletons.
Taking two problems enriches the analysis since similarities of the implementations
independent from the problem can be highlighted.

The first difference between the algorithms is that for solving the TSP problem
firstly the distances between all cities are calculated, and secondly, the 32 closest cities
are determined. Those calculations speed up the route searching process of the algo-
rithm since it favours close cities. The steps are executed once; therefore, they can be
considered as data pre-processing. For the BPP and the MKP, no data pre-processing is
necessary with the used data set.

In Listings 3, 4 and 5 extracts of the program are shown. Both programs nest those
steps in a for loop to find a good solution. The number of iterations is left to the pro-
grammer. A program which stops when a sufficiently good result is achieved would

788	 International Journal of Parallel Programming (2021) 49:776–801

1 3

also be feasible. Both programs start in line 1 with the most calculation intense step.
For solving the TSP problem each ant calculates one possible route to visit all cities,
for the BPP problem each ant packs bins until all items are packed. The parallelization
of those methods is obvious as each ant can independently perform calculations. The
return value of the two methods route_kernel and packing_kernel is differ-
ent. The program solving the TSP problem writes the sequence of visited cities into
an array and does not save the overall distance. The program solving the BPP problem
returns the number of bins used. The functions require different parameters, however
from these two problems it can be concluded that the first part of solving a problem
with the ACO algorithm is feasible by mapping each result an ant produces to a result
array.

Obviously, the program solving the TSP uses five skeleton calls while the pro-
gram solving the BPP uses four skeleton calls. This shows that although the same
algorithm is used the steps for finding a solution are adjusted dependent on the prob-
lem solved. In this case, the changes are caused due to the differences in the steps
executed to find a good solution and measuring the fitness of a solution.

789

1 3

International Journal of Parallel Programming (2021) 49:776–801	

The differences in finding a good solution are that for the TSP problem good
results are found by choosing from the 32 closest cities. For the BPP problem, good
results are found by firstly packing the heaviest object and proceed by favoring as
heavy objects. Both approaches are influenced by the pheromone and a random fac-
tor. The fitness of the TSP problem is measured by the overall distance while the fit-
ness of the BPP problem is measured by the number of bins. Therefore, for the BPP
problem the fitness is required during calculating a solution. Moreover, calculating
the fitness for the BPP problem does not require a lot of memory space as it is suf-
ficient to increase an integer for each bin used. In contrast, this is not the case for the
TSP problem. Calculating the distance of the whole route is not necessary as any
route with all cities is a valid solution. Moreover, calculating the fitness while find-
ing a solution would result in additional read operations of the data structure storing
the distance between different cities. Therefore, it would be required to load an array
which stores the distance between all cities in the limited Graphic Processing Unit
(GPU) memory. Instead the implementation loads an array with the closest 32 cities
calculated in the data pre-processing which requires remarkably less memory. This
is essential as less threads can be started with less memory available.

Therefore, the program solving the TSP problem uses another map skeleton to
calculate the distance of each route found by ants (Listing 3 l.2). Depending on the
distances, values for updating the pheromone are saved. This skeleton is not nec-
essary for the the BPP problem as the number of bins used are already saved in
the data structure d_fitness. Both programs continue by finding the minimum of
all found solutions (Listing 3 l.3, Listing 4 l.2). For other problems this could also
be the maximum (e.g. the Knapsack problem searches for the maximum value of
packed items).

For the solution of the BPP problem, the following steps are to evaporate the pre-
vious pheromone, and to update the pheromone between items (Listing 4 l.5+6).
For the TSP problem it was decided to evaporate the pheromone while updating the
pheromone in the same skeleton call (Listing 4 l.5). No run-time differences could
be found for having two or one skeleton call. Starting two skeletons allows more
parallelization in the generated code as all entries can be changed at the same time,
but cost more time as the start of an additional kernel requires time. Having one
skeleton call saves time for starting kernels, but allows for less parallelization as not
all entries are updated in parallel but dependent on the fitness all entries used by that
solution are updated by one thread.

As a result, the musket implementation of ACO is very similar to the low-level
approach. Adjustments have been made according to the necessities and restric-
tions imposed by Musket. For example, atomic operations applied in the pheromone
update phase were not used in the high-level implementations because they are not
implemented in musket until now. For this specific case, the lack of this feature
has no impact in the final program since other approaches can be used to perform
the same steps. One approach is to run the pheromone updates sequentially which
would in theory consume more time. The second approach is to perform the updates
in parallel without any lock controls. In practice, the sequential approach does not
consume much more time and does not change the fact that the pheromone update
consumes a minimal fraction of the total execution time. For the parallel approach,

790	 International Journal of Parallel Programming (2021) 49:776–801

1 3

there is small chance of two distinct thread trying to update the same value and, if
they do, the loss of information is minimal and has no major impact in the behavior
of the algorithm.

Furthermore, parts of the code needed to be split into separate steps in order to fit
Musket’s structure. The implemented programs for the problems varied in the num-
ber of skeletons used, even so they are based on the same algorithm.

6 � Our Case Study

The comparison between the parallel implementations of ACO used in this work can
be done from different perspectives. As we propose the use of a high-level paral-
lelization, the first point to analyse is the applicability of the tool. As mentioned in
the previous section, the skeletons available in musket suffice to create high-level
programs of ACO. Another aspect which can be discussed is the usability of musket.
In Musket, 215 lines where needed to solve the TSP, 175 to solve the BPP and 168
to solve the MKP, compared to 374, 356 and 334 lines of the low-level implementa-
tion, respectively. For this comparison the code methods which read the data from
files were excluded in both programs.

Furthermore, the cyclomatic complexity was measured for both programs [22].
We are aware that it does not reflect directly the effort to implement the programs,
but it depicts evidence and is commonly used because of its simplicity. In this evalu-
ation, the musket program has a cyclomatic complexity of 54 compared to a slightly
higher complexity of 67 of the low-level implementation, meaning that it has less
linearly independent paths, which makes it simpler and easier to maintain.

Most of the difference between the codes from both version comes from the main
method, since kernel calls do not have to be written in musket. But most importantly it
is abstracted from all data transfers, which consume several code lines in the low-level
program. Moreover, it should be considered that the lines-of-code metric is admittedly
debatable since it misses to evaluate how complex the written lines are. In addition to
requiring only 57% and 49% of the lines of code compared to the low-level program,
musket abstracts from complex decisions such as choosing the number of threads or
moving data between the CPU and GPU. Therefore, it could be argued that creating
a musket program does not only require less lines of code but additionally is written
faster since the programmer is relieved from complex low-level decisions as in a low-
level implementation using pure CUDA.

Another aspect to be evaluated in this work is the runtime. In order to test this aspect
in both parallel implementations mentioned in this work, a NVIDIA GeForce RTX
2080 Ti accelerator containing 4352 CUDA cores, 11 GB memory and running CUDA
7.5 was used. Furthermore, we applied the implementations to two different problems
to evaluate the behavior in different scenarios. The programs and results are publicly
available [23].

791

1 3

International Journal of Parallel Programming (2021) 49:776–801	

6.1 � TSP Experiments

The first experiments performed in this work include instances of TSP taken from
popular repositories with different graph sizes [24, 25]. The selected TSP instances
have different numbers of vertices so that the performance of low- and high-level ACO
implementations can be evaluated on various problem sizes (Table 1). Unfortunately,
the selection from the different repositories does not grow linearly in size. While some
maps are very close in size, e.g. qa194 and d198, other maps have big differences, e.g.
d1291 and pr2392.

For experimental purposes, each version was tested using different colony sizes
(1024, 2048, 4096, and 8192 ants) for all TSP instances in order to simulate differ-
ent levels of computational load. An important remark is that in this work, the fitness
achieved is not relevant and the focus of the analysis is rather on the execution time.
Since in essence both implementations represent the same algorithm and just vary in
the parallelization approach and both achieve similar fitness values when using the
same setup.

Aiming at a fair comparison between both approaches, the execution times regis-
tered in the experiments are denoted in seconds and represent the whole execution of
the algorithm, including the initialization process and data transfers between host and
GPU. The runtimes are the average of 30 runs excluding the first runs due to the warm
up of the GPU. Figure 1 puts the values beside each other graphically for an easier
comparison.

The results show that for the smaller problems, where less resources are needed,
both implementations achieve very similar, almost identical, results. When more
resources are needed, the low-level version tends to scale better and provide shorter
execution times. The values for the last and biggest map are excluded in this graph
since they impede the readability and will be discussed afterwards.

Intuitively, the graph underlines how close the runtime values from the low-
level program and the musket program are. Also, as the TSP instance increases
in size, the low-level program tends to be slightly faster, especially with higher
values for the colony size. For example, when tackling the biggest problem, the
low-level implementations is 0.4% faster with 1024 ants, 3.9% with 2048, 7.9%
with 4096 and around 7.9% with 8192.

The execution times follow a similar pattern also for the biggest problem tack-
led (pr2392). Figure 2 illustrates this. This pattern appears in all test cases and is
directly connected to how the programs are organized. In the low-level version,
the operations are executed specifically for a certain task, against general purpose
operations present in the musket program.

Table 1   TSPLIB

Instance dj38 qa194 d198 lin318 pcb442 rat783 pr1002 pcb1173 d1291 pr2392

Vertices 38 194 198 318 442 783 1002 1173 1291 2392

792	 International Journal of Parallel Programming (2021) 49:776–801

1 3

Table 2 shows the overall execution times for both parallel ACO implementations
considering the different problems and setups.

Another factor that affects the execution times is the setup regarding the number
of blocks and block size. As CUDA does not accept more that 1024 threads per
block for most architectures and some kernels used the block size equal to the num-
ber of cities, some balancing was necessary. Using more blocks with less threads
each, enables CUDA to run the algorithm but it also adds some overhead, which
explains the growth in the execution times when changing from 4096 to 8192 ants.
Adaptations to solve this matter are easily done in the low-level program which
generates a program with a better configuration of numbers of blocks and threads,

Fig. 1   TSP execution times comparison

Fig. 2   Execution times for pr2392

793

1 3

International Journal of Parallel Programming (2021) 49:776–801	

which fits the problem, compared to high-level approaches. Of course the kernel
instructions can be changed in order to optimize the execution time, but for com-
parison purposes only the numbers of blocks and threads were changed. In order to
investigate further the runtime differences between both implementations, the runt-
ime of single kernels was isolated and investigated separately.

The most important and time consuming step in ACO is the tour construction.
Performed many times during the execution, it is affected by the colony size and
also the graph size. Therefore, special attention was given to the time spent by each
parallel implementation on creating routes. Figure 3 shows for the example of 1024
ants the proportional amount of time spent on each kernel by the musket implemen-
tation and the low-level implementation. Obviously, even for the smallest map the
route-construction kernel requires for both programs by far most of the runtime.
Therefore, we investigated in the calculations of the route.

In order to compare the two implementations regarding the tour construction
step, we have investigated the average time spent in the tour construction per iter-
ation as shown in Fig. 4. The graphs show similar results to the total execution
times mentioned previously and it is no wonder since the tour construction is the
reason for a great part of the general execution times shown before.

The kernels responsible for executing the other steps of the algorithm have
almost equal execution times for both implementations. Furthermore, they rep-
resent a small, almost irrelevant, part of the whole execution time. Therefore no
deeper analysis becomes necessary.

Table 2   Execution times comparison: low-level vs. musket 

GeForce RTX 2080 Ti

1024 2048 4096 8192

Problem LL Musket LL Musket LL Musket LL Musket

dji38 0.103 0.186 0.106 0.189 0.107 0.192 0.158 0.199
cat194 0.890 0.782 0.896 0.797 1.022 0.938 1.742 1.789
d198 0.906 0.852 0.914 0.861 1.037 1.001 1.784 1.804
lin318 2.217 2.103 2.250 2.103 2.726 2.665 6.175 6.261
pcb442 3.711 3.464 3.783 3.474 5.022 4.961 14.318 14.224
rat783 13.365 12.870 13.766 13.621 24.651 25.191 57.208 56.407
pr1002 25.409 25.529 26.307 26.116 43.194 43.657 91.539 93.51
pcb1173 34.680 34.201 39.201 40.23 70.605 72.321 151.416 158.965
d1291 45.37 46.744 48.832 51.306 87.808 91.888 182.741 197.17
pr2392 251.412 252.648 292.913 304.26 428.534 462.256 899.670 969.704

794	 International Journal of Parallel Programming (2021) 49:776–801

1 3

6.2 � BPP Experiments

The BPP instances used in this work were extracted from different sources from lit-
erature [26, 27]. They vary not only in the number of items to be packed but also in

Fig. 3   Proportional execution times of route calculation

Fig. 4   Execution times comparison for the tour construction kernel

795

1 3

International Journal of Parallel Programming (2021) 49:776–801	

the degree of difficulty to solve. Details about each instance can be seen in Table 3.
In order to evaluate the performance of both implementations and compare it

with the results of the TSP experiments, similar setups were used in the BPP experi-
ments. The same numbers are used for the colony sizes. Furthermore, the BPP
experiments were also executed in a second GPU, the NVIDIA Tesla V100, so that
the programs could be evaluated using devices with different configurations. The
average execution times for each of the BPP instances are displayed in Fig. 5.

The results show that the low-level implementation has slightly shorter execution
times for most of the test cases and for both GPUs. Also, both implementations pre-
sented a reduction in the execution times in a similar degree when using the Tesla
V100. Similarly to the TSP results, the tendency of having slightly shorter execution
times when running the low-level program is more pronounced when observing the
results from the bigger instances with more items to be packed. Table 4 includes the
execution times and also the percentage comparison from the low-level to the mus-
ket program, both using the GeForce RTX 2080 Ti.

Table 3   BPP Instance 0 1 2 3 4 5

Item types 50 166 358 522 712 915
Total # items 60 201 402 600 801 1002
Bin capacity 1000 2456 7552 16,256 31,616 65,088

Fig. 5   BPP execution times

796	 International Journal of Parallel Programming (2021) 49:776–801

1 3

It is also interesting to observe that the execution times for both implementations
scale differently as the colony gets bigger in the BPP experiments when compared
to the TSP experiments. The speedup rates for the BPP experiments remain quite
stable, independently of the colony sizes. This might be explained by the fact that
the data is structured differently for the bin packing problem when compared to the
TSP. In the BPP, most of the data are integer values, which occupy less space and
favour the internal calculations. Furthermore, the data structures that store the infor-
mation regarding the items to be packed are also smaller due to the repetition of
items, impacting directly the space required by each thread and reducing the number
of probability calculations during the packing phase. Having less demanding threads
to execute makes it possible for the GPU to run more threads simultaneously, mean-
ing that doubling the colony size will not necessarily double the execution time.

In order to investigate further, we measured also the time spent during the pack-
ing phase of the algorithm. Figure 6 shows the values for Problem 3.

6.3 � MKP Experiments

The MKP instances used in this work were extracted from the OR-Library, first
described in [28]. The library offers a couple of instances of the MKP with different
numbers of objects and different numbers of constraints. Details about each instance
can be seen in Table 5.

For these experiments the same ACO setup was used as in the experiments
previously mentioned. Regarding the hardware used, a third GPU was used in
the benchmarks, namely Quadro RTX 6000. By doing so, the evaluation of both
implementations was extended and the performance could be compared also for
different scenarios since the GPUs have different specs. A comparison of the exe-
cution times for the low-level and musket implementations is displayed in Fig. 7.

The execution time graph shows very similar performances for both implemen-
tations when using the same GPU. The differences are in the magnitude of hun-
dredths of a second and did not follow any pattern. The size of the MKP instances
and the overall short execution times show that the problems did not pose a greater
challenge to the programs which makes it difficult to identify where the differences

Table 4   BPP execution times: proportional comparison

P. GeForce RTX 2080 Ti

1024 2048 4096 8192

LL Musket % LL Musket % LL Musket % LL Musket %

0 0.14 0.14 0.99 0.15 0.16 1.02 0.17 0.18 1.08 0.21 0.21 1.00
1 0.81 0.82 1.02 1.01 1.05 1.05 1.21 1.29 1.06 1.59 1.69 1.07
2 3.82 3.87 1.01 4.70 4.72 1.00 5.65 5.68 1.01 7.40 7.38 1.00
3 8.26 8.49 1.03 10.11 10.25 1.01 12.06 12.15 1.01 15.64 15.75 1.01
4 14.21 15.07 1.06 17.23 17.93 1.04 20.32 21.14 1.04 27.35 28.16 1.03
5 24.24 25.60 1.06 30.94 32.28 1.04 37.70 39.60 1.05 48.85 50.82 1.04

797

1 3

International Journal of Parallel Programming (2021) 49:776–801	

come from. In addition to that, the solution sizes differ, which adds an uncertainty
factor to how long a step to build a solution should take.

Fig. 6   Packing kernel execution times–problem 3

Table 5   MKP problems Instance 1 2 3 4 5 6 7

Objects 6 10 15 20 28 39 50
Constraints 10 10 10 10 10 5 5
Optimal 3800 8706.1 4015 6120 12,400 10,618 16,537

Fig. 7   MKP execution times–GeForce RTX 2080 Ti, Tesla V100 and Quadro RTX 6000

798	 International Journal of Parallel Programming (2021) 49:776–801

1 3

Performance differences between implementations using different GPUs can be
also be seen in Fig. 7. It is interesting to observe that the runtimes from the Musket
implementation scale in the same proportion as those from the low-level implemen-
tation for all colony sizes.

Figure 8 puts the execution times from the experiments using the Quadro RTX
6000 GPU into another perspective. The graph shows how the execution times
are similar for both implementations and how they remain unchanged even when
the colony size is doubled. For the same problem, the execution times grow only
when the colony size is increased to 8192 ants. This behavior shows how similar
the workload generated by the implementation using Musket is when compared to
the low-level implementation. For both, the workload generated was not enough to
fully occupy the GPU even when the colony size was doubled. It took 8192 ants to
generate a workload that would fully occupy the Quadro RTX 6000 GPU and its
4608 cores.

As an overall result, plenty of similarities between the execution times of both
implementations investigated in this work can be observed for all three problems.
They show how the use of musket can simplify the development of parallel pro-
grams, as the use of general purpose skeletons provided out of the box suffices
to develop a parallel version of ACO in fewer lines of code and on a much lower
complexity level when compared to the low-level CUDA implementation without
impairing the performance.

Fig. 8   MKP execution times–Quadro RTX 6000

799

1 3

International Journal of Parallel Programming (2021) 49:776–801	

7 � Conclusion

The use of a high-level parallelization approach can be of great help for program-
mers aiming to run swarm intelligence algorithms on high-performance hardware,
such as graphical processing units. In this work we have evaluated musket as an
approach for the parallelization of the ACO algorithm in order to identify the pros
and cons of using such a tool regarding the development aspect and also the perfor-
mance aspect when compared to a low-level implementation.

Considering the development aspect, in its actual state, the skeletons embedded
in musket provide enough features for the development of parallel ACO programs.
Furthermore, the experiments have shown that musket offered some advantages in
terms of simplicity, requiring less skills to develop a high performance parallel ver-
sion of ACO. Not only less lines of code were necessary, but it is also much simpler
to program without having the concerns that regard the parallel aspects of program-
ming a CUDA-based version of the code, such as data initialization, data transfers,
and the allocation of blocks and threads.

In terms of runtime, the ACO version implemented using musket achieved reason-
ably good execution times compared to the low-level CUDA based implementation
for both problems investigated here. As algorithm enhancements and handcrafted
adaptations to a certain problem instance were left aside, both implementations were
evaluated in equal conditions. By doing so, we were able to observe how the musket
implementation reacts in scenarios where the colony size was increased and more
resources were needed. In these experiments, a bit more overhead was generated but
nothing that would compromise musket’s overall performance. At the end there is a
positive balance, as the results showed that we were able to simplify the implemen-
tation phase without compromising the runtime of the experiments.

The ACO version used in this work was idealized to be a simple implementation
for a single GPU environment. Many optimizations could be introduced in order to
enhance the performance of the algorithm e.g. the usage of shared memory. Also, if
the goal is to run in a new environment such as multiple GPUs or multiple compu-
tational nodes with multiple GPUs, more complex changes are necessary, which can
be tricky even for experienced programmers. In this aspect, musket has the advan-
tage that the same program can be used to generate code for different architectures
once there is a code generator for it.

Future works include the evaluation on different hardware, such as multiple GPUs
on one computational node and also a cluster environment with many nodes and
many GPUs per node. Furthermore, we want to further investigate the possibility to
enhance musket to provide metaheuristic-specific skeletons in order to make better
use of the hardware and reduce even more the execution times for such problems.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article

800	 International Journal of Parallel Programming (2021) 49:776–801

1 3

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Talbi, E-G.: Metaheuristics. Wiley, Hoboken, NJ (2009)
	 2.	 Kallioras, N.A., Kepaptsoglou, K., Lagaros, N.D.: Transit stop inspection and maintenance

scheduling: A GPU accelerated metaheuristics approach. Transp. Res. Part C Emerg. Technol.,
55, 246–260 (2015)

	 3.	 Dorigo, M.: Optimization, Learning and Natural Algorithms[in Italian]. PhD thesis, Dipartimen-
todi Elettronica, Politecnico di Milano, Milan (1992)

	 4.	 Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman
London (1989)

	 5.	 Rieger, C., Wrede, F., Kuchen, H.: Musket: a domain-specific language for high-level paral-
lel programming with algorithmic skeletons. Proc. ACM Symp. Appl. Comput. Part F147772,
1534–1543 (2019)

	 6.	 Wrede, F., Rieger, C., Kuchen, H.: Generation of high-performance code based on a domain-
specific language for algorithmic skeletons. J. Supercomput. 0123456789 (2019)

	 7.	 Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4),
28–39 (2006)

	 8.	 Dorigo, M., Caro, G.D.: Ant colony optimization: a new meta-heuristic (1999)
	 9.	 Levine, J., Ducatelle, F.: Ant colony optimization and local search for bin packing and cutting

stock problems. J. Oper. Res. Soc. 55(7), 705–716 (2004)
	10.	 Lee, S.Y., Bau, Y.-T.: An ant colony optimization approach for solving the Multidimensional

Knapsack Problem. In: 2012 International Conference on Computer & Information Science
(ICCIS), pp. 441–446. IEEE (2012)

	11.	 Uchida, A., Ito, Y., Nakano, K.: Accelerating ant colony optimisation for the travelling salesman
problem on the GPU. Int. J. Parallel Emergent Distrib. Syst. 29(4), 401–420 (2014)

	12.	 Cecilia, J.M., García, J.M., Nisbet, A., Amos, M., Ujaldón, M.: Enhancing data parallelism for
ant colony optimization on GPUs. J. Parallel Distrib. Comput. 73(1), 42–51 (2013)

	13.	 Menezes, B.A., Kuchen, H., Neto, H.A.A., de Lima Neto, F.B.: Parallelization strategies for
GPU-based ant colony optimization solving the traveling salesman problem. In: 2019 IEEE Con-
gress on Evolutionary Computation, CEC 2019 - Proceedings, pp. 3094–3101 (2019)

	14.	 Menezes, B.A.D.M., Pessoa, L.F.D.A., Kuchen, H., Neto, F.B.D.L.: Parallelization strategies for
GPU- ased ant colony optimization applied to TSP. Adv. Parallel Comput., 36, 321–330 (2020)

	15.	 Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and efficient
streaming on multi-core. Programming Multi-Core and Many-Core Computing Systems, Parallel
and Distributed Computing (2017)

	16.	 Öhberg, T., Ernstsson, A., Kessler, C.: Hybrid cpu-gpu execution support in the skeleton pro-
gramming framework skepu. J. Supercomput. 76(7), 5038–5056 (2020)

	17.	 Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-gpu systems and clusters.
Int. J. High Perform. Comput. Networking 7(2), 129–138 (2012)

	18.	 Ernsting, S., Kuchen, H.: Data parallel algorithmic skeletons with accelerator support. Int. J.
Parallel Prog. 45(2), 283–299 (2017)

	19.	 Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible skeletal programming with eskel. In:
European Conference on Parallel Processing, pp. 761–770. Springer, Berlin (2005)

	20.	 Menezes, B.A.D.M., Herrmann, N.: Musket repository. https://​github.​com/​wwu-​pi/​musket_​dsl
(2020)

	21.	 The Eclipse Foundation. Xtext documentation. https://​eclip​se.​org/​Xtext/​docum​entat​ion/ (2020)
	22.	 Riguzzi, F.: A survey of software metrics. Technical report (1996)
	23.	 Menezes, B.A.D.M., Herrmann, N.: Ant colony optimization project. https://​github.​com/​breno​

amm/​ant-​colony-​optim​izati​on-​proje​ct (2021). Accessed 24 March 2021

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/wwu-pi/musket_dsl
https://eclipse.org/Xtext/documentation/
https://github.com/brenoamm/ant-colony-optimization-project
https://github.com/brenoamm/ant-colony-optimization-project

801

1 3

International Journal of Parallel Programming (2021) 49:776–801	

	24.	 University of Waterloo. National traveling salesman problems. http://​www.​math.​uwate​rloo.​ca/​
tsp/​world/​count​ries.​html. Accessed 14 March 2018

	25.	 Heidelberg University. Discrete and combinatorial optimization. https://​www.​iwr.​uni-​heide​lberg.​
de/​groups/​comopt/​softw​are/​TSPLI​B95/​XML-​TSPLIB/​insta​nces/. Accessed 14 March 2018

	26.	 Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: mathematical mod-
els and exact algorithms. Eur. J. Oper. Res. 255, 1–20 (2016)

	27.	 Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2, 5–30 (1996)
	28.	 Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. pp.

1069–1072 (1990)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://www.math.uwaterloo.ca/tsp/world/countries.html
http://www.math.uwaterloo.ca/tsp/world/countries.html
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/XML-TSPLIB/instances/
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/XML-TSPLIB/instances/

	High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons
	Abstract
	1 Introduction
	2 Ant Colony Optimization
	2.1 ACO Solving the Traveling Salesman Problem
	2.2 ACO Solving the Bin Packing Problem
	2.3 ACO Solving the Multidimensional Knapsack Problem
	2.4 GPU-ACO

	3 Related Work
	4 Musket
	5 Our Proposal
	5.1 Musket-ACO

	6 Our Case Study
	6.1 TSP Experiments
	6.2 BPP Experiments
	6.3 MKP Experiments

	7 Conclusion
	References

