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Abstract
Parallel implementations of swarm intelligence algorithms such as the ant colony 
optimization (ACO) have been widely used to shorten the execution time when solv-
ing complex optimization problems. When aiming for a GPU environment, devel-
oping efficient parallel versions of such algorithms using CUDA can be a difficult 
and error-prone task even for experienced programmers. To overcome this issue, the 
parallel programming model of Algorithmic Skeletons simplifies parallel programs 
by abstracting from low-level features. This is realized by defining common pro-
gramming patterns (e.g. map, fold and zip) that later on will be converted to effi-
cient parallel code. In this paper, we show how algorithmic skeletons formulated 
in the domain specific language Musket can cope with the development of a paral-
lel implementation of ACO and how that compares to a low-level implementation. 
Our experimental results show that Musket suits the development of ACO. Besides 
making it easier for the programmer to deal with the parallelization aspects, Musket 
generates high performance code with similar execution times when compared to 
low-level implementations.
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1  Introduction

Nature inspired metaheuristics have been widely used to solve complex optimi-
zation problems [1]. When tackling combinatorial problems, approaches using 
Ant Colony Optimization (ACO) have been widely exploited and can be often 
found in literature [2]. Initially proposed by Marco Dorigo in his Ph.D. thesis, it 
is inspired by the social behavior of ant colonies when searching for new sources 
of food and their ability of finding the shortest path between the colony and the 
food [3]. ACO was initially created to solve problems such as the Traveling Sales-
man Problem (TSP), achieving satisfactory results.

In ACO, the process to build a solution is done in several steps, includ-
ing a certain number of probability calculations. The workload in this process 
is proportional to the size of the problem and the number of possibilities to be 
explored. Considering the TSP problem, the number of possible tours grows 
exponentially as the number of nodes in the graph increases. The same occurs for 
packing problems such as the Multidimensional Knapsack Problem (MKP) and 
the Bin Packing Problem (BPP), where the number of combinations rises quickly 
as more items have to be packed. In order to explore more of these possibilities in 
the search space, more ants are required in the colony and, therefore, the compu-
tational costs increase substantially. Knowing that a considerable part of the com-
putations are performed during the solution construction phase (path construc-
tion or packing) and that the runtime increases when tackling a bigger instance of 
such problems with several ants, it is mandatory to speed up the program in order 
to run the algorithm in a reasonable amount of time without losing the quality of 
the solutions.

Parallel implementations of ACO have been introduced aiming for differ-
ent high-performance hardware, such as multi-core CPUs and GPUs. Low-level 
frameworks such as OpenMP, MPI and CUDA provide many tools for program-
mers, assisting the development of such parallel versions of the algorithm. The 
tools provided by CUDA help programmers to develop parallel programs for 
Nvidia GPUs. Nevertheless, some expertise is necessary to generate high per-
formance code. Programmers must be aware of data transfers, synchronization 
points, and many other issues that make the development of the program difficult 
and error prone.

Aiming to ease the development of such parallel algorithms, high-level paral-
lelization tools provide means to profit from the use of high-performance hard-
ware without the issues inherent to low-level programming. For example, some 
tools allow the use of predefined common programming patterns, known as 
algorithmic skeletons [4], here referred to as skeletons. They represent common 
operations, such as map, zip, and reduce and can be used in a program. Mus-
ket converts those patterns to parallel code. This way, the programmer’s job is 
to translate the methods from the original algorithm into predefined operations 
which are translated to parallel code.

Muenster Skeleton Tool for High-Performance Code Generation (Musket) is an 
approach based on a Domain Specific Language (DSL) created to speed-up the 
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development of parallel programs [5]. By using it, programmers are able to create 
code by first writing it in the DSL Musket and then converting the program into 
parallel CPU or GPU code. Created as a general purpose tool, Musket has already 
been applied and tested in several problems including metaheuristics, presenting 
promising performance results compared to other parallelization approaches [6].

In this paper, we investigate the use of Musket to create a parallel GPU version of 
ACO in order to understand and compare how it relates to a low-level implementation 
in terms of performance and development complexity. The identification of positive 
and negative sides of using the general purpose structures available in Musket may also 
serve as a base for the future development of the framework.

Our paper is organized as follows: The basics about ACO are displayed in Sect. 2. 
In Sect. 3 we give an overview of related work. The description of Musket and how it 
was applied in this work can be found in Sect. 4. Experiments are detailed in Sect. 6 
together with the results. In Sect. 7 we put together the conclusions of this work and 
point out future work.

2 � Ant Colony Optimization

ACO is a metaheuristic in which artificial ants cooperate among each other in order 
to solve complex discrete optimization problems. It was initially tailored to solve the 
TSP, therefore it requires some adaptations in order to be applied in other contexts, 
such as the BPP and MKP. Details about each adaptation and the GPU implementation 
are described in the following.

2.1 � ACO Solving the Traveling Salesman Problem

In the case of TSP, the objective is to find the shortest tour in a graph, starting from a 
random node, visiting each node once and only once and coming back to the original 
node [7, 8]. In order to solve such a problem, each ant in the colony tries to create a tour 
and at the end of each iteration they share their success through pheromone deposits. 
More successful ants, the ones that generated shorter tours, deposit more pheromone 
on the visited edges. Pheromone is what will attract other ants in the following itera-
tion, helping them to generate similar tours based on the success of ants from previous 
iterations.

The process described above can be divided into two steps which compose the exe-
cution of ACO, namely tour construction and pheromone deposit. During the tour con-
struction, each ant must create a tour starting at a random node. The decision where to 
go next from the current node i is done in a probabilistic manner, taking into account 
the distance and the amount of pheromone between the current node and a candidate 
node. The probability is calculated as shown in Eq. 1.

(1)pi,j =
[�i,j]

�[�i,j]
�

∑
l�N

[�i,l]
�[�i,l]

�
∀j�N
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where � and � are the parameters used to determine the influence of pheromone 
quantity and distance between the nodes over the probability, respectively. �i,j is the 
pheromone at the edge from node i to j, �i,j is 1∕di,j , where di,j is the distance from 
node i to j. N is the set of unvisited nodes that can follow node i. pi,j is the probabil-
ity that the ant goes from node i to j. The current node i and visited nodes have the 
probability equal to zero.

Once each ant has created its tour, the fitness of each ant will be equal to the total 
distance traveled. Afterwards, the pheromone update will take place. The first step is 
the pheromone evaporation where each edge loses a certain quantity of pheromone 
according to the following assignment (Eq. 2).

where, � ∈ [0..1] defines the evaporation rate and �i,j is the amount of pheromone 
between nodes i and j. � is used to control the amount of pheromone, enabling the 
algorithm to focus more on new trails. After the evaporation, it is time for each ant 
to deposit pheromone on the tour it has created, according to the following assign-
ment (Eq. 3):

where �t = 1∕qk , and qk is the length of the round tour of ant k. By doing so, ants 
that generated shorter tours deposit more pheromone at visited edges than the ones 
that generate longer tours.

This process is repeated through as many iterations as needed. Although the pher-
omones are used to attract ants and help them create tours similar to previous suc-
cessful ones, the probabilistic way of choosing the next step allows ants to create 
distinct paths and therefore generate diversity.

2.2 � ACO Solving the Bin Packing Problem

The bin packing problem (BPP) is an NP-complete combinatorial optimization 
problem where a set of items with a given volume has to be packed into as few bins 
with a fixed capacity as possible. A certain quantity tells how many identical copies 
of an item are available. Being a combinatorial problem, the BPP can also be solved 
using ACO. The goals are similar but the process is a bit different because of the 
weight limitation imposed in the BPP and the method used to build a solution. In 
this section, these differences will be explained together with the approach used in 
this work to build a solution. The algorithm used here follows the approach of Lev-
ine and Ducatelle [9].

Differences between both problems emerge directly from the setup. When solv-
ing the BPP, the algorithm has to ensure continuously that the capacity of the cur-
rently considered bin is not violated, while the TSP has no such restrictions. Nev-
ertheless, the basic structure of the algorithm remains unchanged. Modifications of 
the algorithm come from the fact that the order of inclusion is not important any 
more. Instead the grouping of items that fit together in one bin is relevant. There-
fore, all items included in the current bin should be considered when calculating the 

(2)�i,j ∶= (1 − �) ∗ �i,j

(3)�i,j ∶= �t + �i,j
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probability of selecting the next item. Algorithm 1 illustrates the process of calculat-
ing � and �.

Algorithm 1 Calculate Probabilities Pseudo-code
1: current bin = empty
2: avail capacity = capacity
3: for j ← items do
4: phero sum = 0.0
5: while (j.quantity-- > 0) do
6: if (j.volume <= avail capacity) then
7: avail capacity -= j.volume
8: for i ← current bin do
9: phero sum += pheromones[i][j]
10: current bin = current bin ∪ {j}
11: else
12: current bin = empty
13: avail capacity = capacity

14: τj = phero sum/number of items in current bin
15: ηj = j.volumeβ

Once � and � are calculated for each item, the probability of choosing item j is 
calculated in the same way as explained previously. Items that have already been 
included ( item.volume = 0 ) and items that would exceed the bin’s capacity will be 
excluded and their probabilities are set to zero. If there are still items available but 
none fits into the current bin, a new bin is started. The process is repeated until all 
items have been packed and the fitness of the solution is equal to the number of bins 
used in this solution.

Using the same concept, the pheromone deposit process considers the fitness of 
one solution and re-visits each of the bins created to deposit pheromones. If items A, 
B and C are part of a bin created in a solution that resulted in a good fitness, the con-
nections between these items will receive the same high amount of pheromone. This 
method of depositing pheromones, informs ants in future packing phases that pack-
ing A, B and C together helped creating a good solution and increases the chances of 
them being packed together again.

Other parts of the algorithm, such as the pheromone evaporation, are performed 
in the same way as mentioned previously.

2.3 � ACO Solving the Multidimensional Knapsack Problem

The multidimensional knapsack problem (MKP) is as the previously discussed opti-
mization problems NP-hard. In its original form, a set of items ( J = {1, 2, ..., n} ) is 
given together with a set of constraints ( I = {1, 2, ...,m} ). As each item has a value, 
the goal is to select a subset of J aiming to maximize profit respecting all given 
constraints. The approach used in this work to solve the MKP is inspired by the one 
proposed by Soh-Yee Lee and Yoon-Teck Bau [10]. In this approach, the probability 
of ant k adding a new item to the knapsack is calculated considering the partial solu-
tion ( ̃Sk(t) ) constructed until step t. It can be calculated using Eq. 4:
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where pk
j
(t) is the probability of ant k choosing item j at step t, Ak(t) is the set of 

available items for ant k at step t, �j(t) is the amount of pheromones assigned to item 
j at step t and �j(S̃k(t)) is the heuristic factor which is calculated considering the 
value of item j and how it complies with the constraints as shown in Eq. 5:

where vj is the value of item j and 𝛿j(k, t) is the average tightness considering all con-
straints and the actual state of the partial solution S̃k(t) . The tightness of an item j for 
a certain constraint i is defined by Eq. 6:

where rij is the size of item j for constraint i and ci is the capacity of the knapsack for 
dimension i. Summing the values for each dimension and dividing it by the number 
of constraint dimensions m gives the average tightness 𝛿j(k, t).

Once all probabilities are calculated, the same probabilistic method as mentioned 
before is used to select the next item to be inserted in the knapsack. The process is 
repeated until the knapsack is full and none of the remaining items fits. Differently 
from the BPP, the solution proposed for the MKP can be smaller than the size of the 
initial set of objects.

In the approach used in this work, pheromone values are an association with one 
item and a construction step. Unlike the BPP, where groups of items are important, 
in MKP the order in which items are added has more value. The amount of phero-
mone to be deposited to item j by ant k is calculated using Eq. 7:

where Q is constant (defined by 1∕
∑n

j=1
pj ) and Lk is the fitness of the solution con-

structed by ant k, which is equal to the sum of the values of all items inserted.

2.4 � GPU‑ACO

Targeting a GPU environment, we present here one possible implementation 
approach for parallelizing ACO using CUDA. The concepts explained in this sec-
tion are applied in the same way for both problems investigated, adapting only to 
their peculiarities. The steps that compose the ACO algorithm as described above 

(4)pk
j
(t) =

⎧
⎪⎨⎪⎩

[�j(t)]
�
⋅ [�j(S̃k(t))]

�

∑
l∈Ak(t))

[�l]
�[�l(S̃k(t))]

�
, if j ∈ Ak(t)

0, otherwise

(5)𝜂j(
�Sk(t)) =

vj

𝛿j(k, t)

(6)�ij(k, t) =
rij

ci −
∑

l∈S̃k(t)
ril

(7)��k
j
(t) =

{
QLk, if item j is used by antk

0, otherwise
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are quite simple and the general process makes the algorithm suitable for paralleli-
zation. Even so, extra care is required when dealing with the same steps in a parallel 
way.

The CUDA framework makes it possible to run sequential instructions on the 
CPU, while the computational intensive tasks can run on the GPU in parallel. In 
our approach, the whole algorithm runs on the GPU and, therefore, operations such 
as routing and pheromone updates are declared as CUDA kernels. One advantage 
about this approach is that no data transfer between host and device is necessary 
along the iterations. These data transfers are performed at the beginning (reading 
data and copying to GPU) and at the end of the execution (retrieving results from 
GPU to host). A general view of the proposed implementation used to solve the TSP 
is represented in Algorithm 2.

The first step of this implementation is the initialization of the structures that 
compose the problem. It includes reading the data from a file that contains the x and 
y coordinates of each city present in the graph of the TSP instance or the volumes 
and quantities of the items for the BPP. Afterwards, the data can be copied to the 
GPU and, already on the device side, other data structures necessary to run ACO 
can be created directly on the GPU, i.e. random number generators, distance matrix, 
pheromone matrix and route matrix. After everything is created and initialized prop-
erly, the algorithm can loop through its iterations and perform the solution construc-
tions (tour or packing) and pheromone updates.

The solution construction is the first step in an iteration and also the most 
demanding task of ACO. In order to create a parallel version of it, the straight for-
ward approach was chosen where the calculations necessary for calculating one 
solution (e.g. one route) are performed by one thread. The number of CUDA blocks 
will be determined by dividing the number of ants in the colony by the desired num-
ber of threads per block, meaning that it can be changed and adapted according to 
the necessity and capabilities of the hardware. The simplicity to implement this 
approach is one of its positive aspects. Once there is a sequential implementation of 
ACO, it is not too difficult to port it to CUDA using this approach.

After the solution-construction phase, the pheromone update is broken down 
into two different steps. The first one is the pheromone evaporation, in which each 
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connection in the graph loses a certain amount of pheromone as explained before in 
Eq. 2. In our parallel implementation, one CUDA block is generated for each city 
and, inside this block, one thread is generated for each other city in order to decrease 
the amount of pheromone (Listing 1). For the BPP problem, the same approach is 
chosen with connections between each type of item available to be packed in bins.

The pheromone deposit phase starts with one CUDA block assigned to one ant in 
the colony. Each thread inside a block is responsible for updating an edge visited by 
the ant in the tour constructed previously. As the pheromone matrix is stored in the 
GPU’s global memory and it is being updated by different threads, racing conditions 
might appear. In order to overcome that, the pheromone deposit is performed using 
CUDA’s atomic operations, guaranteeing the integrity of the data without losing 
performance. For the BPP problem the pheromone value of items which are packed 
together in good solutions in one bin is increased. In this way items which are often 
packed together in good solutions have a connection with a higher pheromone value.

The process is repeated for a number n of iterations. At the end, the best results 
are copied to the host and the execution is ended. With such a simple approach it 
is already possible to achieve a considerable speedup when compared to sequential 
implementations.

3 � Related Work

The use of ACO to solve combinatorial problems has been already deeply inves-
tigated. Levine and Ducatelle [9], used pure ACO to solve many instances to the 
BPP and Cutting Stock Problem (CSP). They state that exact methods work well for 
small instances of such problems, but would require too much time to solve bigger 
instances. In this situation, ACO comes as a convenient tool which is able to achieve 
good results in a reasonable amount of time. Furthermore, they also state the need 
of having a certain number of evaluations in order to achieve good results. For big-
ger instances, the necessity of having these evaluations together with the complexity 
of generating solutions result in a notable increase in the execution times. Although 
they do not apply any parallelization, it would come to hand when solving these big-
ger instances as the execution take already a considerable amount of time compared 
to the smaller problems.
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Low-level parallel implementations of ACO have been already investigated in lit-
erature. The approaches include mainly the introduction of data parallelism into the 
code, like in the work of Uchida et  al. [11]. Other works focus on improvements 
in the algorithm that would favor data parallelism. Cecilia et  al. developed a new 
mechanism called I-Roulette in order to enhance parallelism during the path crea-
tion process. Furthermore, they introduce strategies for parallelization of the phero-
mone update process suitable for GPU architectures [12].

Another approach to reduce the execution time of the algorithm is to improve 
the parallelization itself. Instead of modifying the algorithm by introducing new 
mechanisms that would simplify the execution, the idea is to make better use of the 
hardware available. This can be achieved by organizing the structures needed by the 
algorithm in an optimal way and dividing the work in such a way that hardware use 
would be optimized. This can be done for example by introducing different levels of 
parallelism. In ACO, this can be done by parallelizing not only the job of each ant 
but also all internal calculations that belong to tour construction as demonstrated by 
Menezes et al. [13]. Also, in another work, the same authors investigate the use of 
atomic operations to enhance the process of updating the pheromone matrix [14]. 
The results indicate that different levels of parallelism can be useful according to 
the size of the problem and that the use of atomic operations can speedup the phero-
mone update phase.

Rieger et al. introduced Musket, a DSL for parallel programming [5]. Their idea 
is to offer a language with algorithmic skeletons built in and with a syntax similar 
to C++ in order to help programmers to write high performance distributed parallel 
programs without the need of expertise in low-level frameworks. High performance 
low-level code for different architectures (Multi-core CPUs, GPUs or clusters) is 
generated from Musket files. The authors point out the benefits of using a DSL com-
pared to other high-level approaches. Also, among some examples, the Fish School 
Search (FSS) metaheuristic is used as a benchmark. Further analysis of FSS and 
Musket are done by Wrede et al. [6]. Both studies show the possibility of using such 
general purpose tools for the application in the metaheuristics field. The major criti-
cism of using high-level frameworks has been the possible loss in performance. The 
present paper serves to evaluate the performance of a skeleton based implementation 
and the hand written implementation previously discussed [13, 14].

There are also many other approaches providing high-level parallel programming 
based on algorithmic skeletons, including Fastflow [15], SkePU [16], Muesli [17, 
18], eSkel [19] and many others.

4 � Musket

Musket is a DSL which enables programmers to develop parallel applications and 
generate optimized code without requiring knowledge about low-level parallel pro-
gramming frameworks. For interested readers the code can be found in a public 
repository [20].

The syntax of Musket is based on C++ which is widely used for high perfor-
mance computing. It was defined using the Xtext framework and it includes a parser 



785

1 3

International Journal of Parallel Programming (2021) 49:776–801	

and an editor that can be incorporated into Eclipse [21]. In this way, programmers 
can use helpful features such as syntax highlighting, code completion and valida-
tion. Creating parallel programs in musket is simplified in multiple ways. Common 
parallel programming structures are simplified by representing them as skeletons. 
Moreover, the division and allocation of data structures to distinct processes is done 
by the code generator which transforms Musket code to C++ with CUDA opera-
tions in case that GPU code is generated. Furthermore, it is totally abstracted from 
specifying the number of threads to be started. Those and other advantages become 
more apparent by illustrating an exemplary program (Listing 2).

A musket program is divided into four parts, namely meta-information, data 
structure declaration, user function declaration, and main program declaration. The 
meta-information block (lines 1–5) specifies for which type of hardware code should 
be generated. Firstly, the platform argument distinguished between a program for 
GPUs or CPUs. In case of stating multiple platforms multiple programs are created. 
For our application context only the GPU code generator is required. Afterwards, 
the number of processes, cores, and GPUs which shall be used are specified. Infor-
mation about the targeted architecture is essential to generate a distribution for data 
structures which is efficient and to organize the parallel execution of the skeletons.

In musket, global data structures are declared before writing functions in the data 
structure declaration block (line 7). On the one hand, for each additional data struc-
ture type which is offered, the effort for the implementation rises. On the other hand, 
it is possible to include additional information for the data structures e.g. on the data 
distribution. Here, the elements of the array are distributed among the GPUs. Avail-
able distribution modes are dist for distributed, copy to make the whole data struc-
ture available for all processes, and local which is a specific form of copy where 
no global copy needs to be created. Similar to the specification of arrays, matrices 
can be created, which require the same parameters despite having two parameters to 
specify the number of rows and columns.
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The user-function declaration part (lines 9–11) includes custom user functions 
which will be passed as arguments to the skeletons calls and in the final program 
executed among the nodes and cores available. Inside user functions, program-
mers can make use of control structures, such as if-else statements and for loops, 
moreover, a selection of C++ library methods and external functions are avail-
able. Global structures declared in the previous section can be used either with a 
local index or a global index. Moreover, local variables can be created.

In the last part, similar to C programs, a main function is declared which defines 
the entrance of the program. In the example, lines 13–17 contain the main program 
declaration. There, general instructions of the program are listed using control struc-
tures, musket functions, and the parallelization instructions in the form of algorith-
mic skeletons. Musket functions are typically used functions for writing parallel 
programs which do not need to be executed in parallel, for example measuring the 
runtime and getting maximal and minimal values of data types. For example in line 
14 the time measurement is started. Wrapping such functions relieves the user of the 
framework to think about target specific functions. In order to simplify paralleliza-
tion, musket offers (different versions of) the Skeletons fold, map, reduce (which in 
contrast to fold only accepts a selection of commonly used reduction operators), zip, 
gather, scatter and shift partition. For zip and map, in place and index variants and 
their combinations are available. The given example doubles the value of every ele-
ment of the array. The implementation of the ACO algorithm will show how those 
structures can also be used for more complex programs.

The written DSL code will then be transformed into low-level code. With each 
program generated (in case of multiple platforms) CMake Files and execution 
scripts are generated. The generated code is not meant to be further adjusted.
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5 � Our Proposal

ACO is a metaheuristic which is suitable for parallelization. Many tasks, such as 
the path or packing construction, are independent of each other as each ant is able 
to create its own solution without the interference from other ants. Even though, the 
task of creating a parallel version for it can be quite challenging. A few steps require 
extra care since reduction steps are executed before performing general calculations. 
For example, as shown in Eq. 1, the probability is calculated using the product of 
the amount of pheromone and the distance divided by the sum of all products. Fur-
thermore, steps like the pheromone-update phase include changes which shall be 
performed by each ant in the colony over the pheromone matrix, which is a structure 
used by the whole colony. Therefore, the programmer must be careful to avoid race 
conditions and perform the right data transfers without harming performance.

In order to overcome such difficulties, musket is helpful. Generally, high-level frame-
works have the advantage that the user does not need expertise in the specific area (in 
this context parallel programming). Musket DSL code is also more concise than e.g. 
C++ code with calls to a (skeleton) framework.

However, using a DSL also has its disadvantages. The developer of the DSL has to 
decided which functionalities are essential. Missing necessary functionalities limit the 
user of the DSL. While, in contrast, including too much functionalities increases the 
complexity of the code generator and confuses inexperienced users.

In order to evaluate the usability and practicability of a high-level framework for the 
exemplary case of the ACO algorithm, a musket program will be compared to a hand 
written program. The aspects of major interest are the performance of the programs and 
the complexity of the syntax and structure provided by the different approaches. As part 
of the comparison the creation process of a program implementing the ACO algorithm 
in musket will be described, to illustrate advantages and disadvantages of using a high-
level framework.

5.1 � Musket‑ACO

In the following, interesting aspects of the high-level implementation of the ACO algo-
rithm will be discussed. Of particular interest is how the single steps proposed in the 
abstract solution approach in Algorithm 2 are translated to one or multiple skeletons. 
Taking two problems enriches the analysis since similarities of the implementations 
independent from the problem can be highlighted.

The first difference between the algorithms is that for solving the TSP problem 
firstly the distances between all cities are calculated, and secondly, the 32 closest cities 
are determined. Those calculations speed up the route searching process of the algo-
rithm since it favours close cities. The steps are executed once; therefore, they can be 
considered as data pre-processing. For the BPP and the MKP, no data pre-processing is 
necessary with the used data set.

In Listings 3, 4 and 5 extracts of the program are shown. Both programs nest those 
steps in a for loop to find a good solution. The number of iterations is left to the pro-
grammer. A program which stops when a sufficiently good result is achieved would 
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also be feasible. Both programs start in line 1 with the most calculation intense step. 
For solving the TSP problem each ant calculates one possible route to visit all cities, 
for the BPP problem each ant packs bins until all items are packed. The parallelization 
of those methods is obvious as each ant can independently perform calculations. The 
return value of the two methods route_kernel and packing_kernel is differ-
ent. The program solving the TSP problem writes the sequence of visited cities into 
an array and does not save the overall distance. The program solving the BPP problem 
returns the number of bins used. The functions require different parameters, however 
from these two problems it can be concluded that the first part of solving a problem 
with the ACO algorithm is feasible by mapping each result an ant produces to a result 
array.

Obviously, the program solving the TSP uses five skeleton calls while the pro-
gram solving the BPP uses four skeleton calls. This shows that although the same 
algorithm is used the steps for finding a solution are adjusted dependent on the prob-
lem solved. In this case, the changes are caused due to the differences in the steps 
executed to find a good solution and measuring the fitness of a solution.
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The differences in finding a good solution are that for the TSP problem good 
results are found by choosing from the 32 closest cities. For the BPP problem, good 
results are found by firstly packing the heaviest object and proceed by favoring as 
heavy objects. Both approaches are influenced by the pheromone and a random fac-
tor. The fitness of the TSP problem is measured by the overall distance while the fit-
ness of the BPP problem is measured by the number of bins. Therefore, for the BPP 
problem the fitness is required during calculating a solution. Moreover, calculating 
the fitness for the BPP problem does not require a lot of memory space as it is suf-
ficient to increase an integer for each bin used. In contrast, this is not the case for the 
TSP problem. Calculating the distance of the whole route is not necessary as any 
route with all cities is a valid solution. Moreover, calculating the fitness while find-
ing a solution would result in additional read operations of the data structure storing 
the distance between different cities. Therefore, it would be required to load an array 
which stores the distance between all cities in the limited Graphic Processing Unit 
(GPU) memory. Instead the implementation loads an array with the closest 32 cities 
calculated in the data pre-processing which requires remarkably less memory. This 
is essential as less threads can be started with less memory available.

Therefore, the program solving the TSP problem uses another map skeleton to 
calculate the distance of each route found by ants (Listing 3 l.2). Depending on the 
distances, values for updating the pheromone are saved. This skeleton is not nec-
essary for the the BPP problem as the number of bins used are already saved in 
the data structure d_fitness. Both programs continue by finding the minimum of 
all found solutions (Listing 3 l.3, Listing 4 l.2). For other problems this could also 
be the maximum (e.g. the Knapsack problem searches for the maximum value of 
packed items).

For the solution of the BPP problem, the following steps are to evaporate the pre-
vious pheromone, and to update the pheromone between items (Listing 4 l.5+6). 
For the TSP problem it was decided to evaporate the pheromone while updating the 
pheromone in the same skeleton call (Listing 4 l.5). No run-time differences could 
be found for having two or one skeleton call. Starting two skeletons allows more 
parallelization in the generated code as all entries can be changed at the same time, 
but cost more time as the start of an additional kernel requires time. Having one 
skeleton call saves time for starting kernels, but allows for less parallelization as not 
all entries are updated in parallel but dependent on the fitness all entries used by that 
solution are updated by one thread.

As a result, the musket implementation of ACO is very similar to the low-level 
approach. Adjustments have been made according to the necessities and restric-
tions imposed by Musket. For example, atomic operations applied in the pheromone 
update phase were not used in the high-level implementations because they are not 
implemented in musket until now. For this specific case, the lack of this feature 
has no impact in the final program since other approaches can be used to perform 
the same steps. One approach is to run the pheromone updates sequentially which 
would in theory consume more time. The second approach is to perform the updates 
in parallel without any lock controls. In practice, the sequential approach does not 
consume much more time and does not change the fact that the pheromone update 
consumes a minimal fraction of the total execution time. For the parallel approach, 
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there is small chance of two distinct thread trying to update the same value and, if 
they do, the loss of information is minimal and has no major impact in the behavior 
of the algorithm.

Furthermore, parts of the code needed to be split into separate steps in order to fit 
Musket’s structure. The implemented programs for the problems varied in the num-
ber of skeletons used, even so they are based on the same algorithm.

6 � Our Case Study

The comparison between the parallel implementations of ACO used in this work can 
be done from different perspectives. As we propose the use of a high-level paral-
lelization, the first point to analyse is the applicability of the tool. As mentioned in 
the previous section, the skeletons available in musket suffice to create high-level 
programs of ACO. Another aspect which can be discussed is the usability of musket. 
In Musket, 215 lines where needed to solve the TSP, 175 to solve the BPP and 168 
to solve the MKP, compared to 374, 356 and 334 lines of the low-level implementa-
tion, respectively. For this comparison the code methods which read the data from 
files were excluded in both programs.

Furthermore, the cyclomatic complexity was measured for both programs [22]. 
We are aware that it does not reflect directly the effort to implement the programs, 
but it depicts evidence and is commonly used because of its simplicity. In this evalu-
ation, the musket program has a cyclomatic complexity of 54 compared to a slightly 
higher complexity of 67 of the low-level implementation, meaning that it has less 
linearly independent paths, which makes it simpler and easier to maintain.

Most of the difference between the codes from both version comes from the main 
method, since kernel calls do not have to be written in musket. But most importantly it 
is abstracted from all data transfers, which consume several code lines in the low-level 
program. Moreover, it should be considered that the lines-of-code metric is admittedly 
debatable since it misses to evaluate how complex the written lines are. In addition to 
requiring only  57% and  49% of the lines of code compared to the low-level program, 
musket abstracts from complex decisions such as choosing the number of threads or 
moving data between the CPU and GPU. Therefore, it could be argued that creating 
a musket program does not only require less lines of code but additionally is written 
faster since the programmer is relieved from complex low-level decisions as in a low-
level implementation using pure CUDA.

Another aspect to be evaluated in this work is the runtime. In order to test this aspect 
in both parallel implementations mentioned in this work, a NVIDIA GeForce RTX 
2080 Ti accelerator containing 4352 CUDA cores, 11 GB memory and running CUDA 
7.5 was used. Furthermore, we applied the implementations to two different problems 
to evaluate the behavior in different scenarios. The programs and results are publicly 
available [23].
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6.1 � TSP Experiments

The first experiments performed in this work include instances of TSP taken from 
popular repositories with different graph sizes [24, 25]. The selected TSP instances 
have different numbers of vertices so that the performance of low- and high-level ACO 
implementations can be evaluated on various problem sizes (Table 1). Unfortunately, 
the selection from the different repositories does not grow linearly in size. While some 
maps are very close in size, e.g. qa194 and d198, other maps have big differences, e.g. 
d1291 and pr2392.

For experimental purposes, each version was tested using different colony sizes 
(1024, 2048, 4096, and 8192 ants) for all TSP instances in order to simulate differ-
ent levels of computational load. An important remark is that in this work, the fitness 
achieved is not relevant and the focus of the analysis is rather on the execution time. 
Since in essence both implementations represent the same algorithm and just vary in 
the parallelization approach and both achieve similar fitness values when using the 
same setup.

Aiming at a fair comparison between both approaches, the execution times regis-
tered in the experiments are denoted in seconds and represent the whole execution of 
the algorithm, including the initialization process and data transfers between host and 
GPU. The runtimes are the average of 30 runs excluding the first runs due to the warm 
up of the GPU. Figure 1 puts the values beside each other graphically for an easier 
comparison.

The results show that for the smaller problems, where less resources are needed, 
both implementations achieve very similar, almost identical, results. When more 
resources are needed, the low-level version tends to scale better and provide shorter 
execution times. The values for the last and biggest map are excluded in this graph 
since they impede the readability and will be discussed afterwards.

Intuitively, the graph underlines how close the runtime values from the low-
level program and the musket program are. Also, as the TSP instance increases 
in size, the low-level program tends to be slightly faster, especially with higher 
values for the colony size. For example, when tackling the biggest problem, the 
low-level implementations is 0.4% faster with 1024 ants, 3.9% with 2048, 7.9% 
with 4096 and around 7.9% with 8192.

The execution times follow a similar pattern also for the biggest problem tack-
led (pr2392). Figure 2 illustrates this. This pattern appears in all test cases and is 
directly connected to how the programs are organized. In the low-level version, 
the operations are executed specifically for a certain task, against general purpose 
operations present in the musket program.

Table 1   TSPLIB

Instance dj38 qa194 d198 lin318 pcb442 rat783 pr1002 pcb1173 d1291 pr2392

# Vertices 38 194 198 318 442 783 1002 1173 1291 2392
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Table 2 shows the overall execution times for both parallel ACO implementations 
considering the different problems and setups.

Another factor that affects the execution times is the setup regarding the number 
of blocks and block size. As CUDA does not accept more that 1024 threads per 
block for most architectures and some kernels used the block size equal to the num-
ber of cities, some balancing was necessary. Using more blocks with less threads 
each, enables CUDA to run the algorithm but it also adds some overhead, which 
explains the growth in the execution times when changing from 4096 to 8192 ants. 
Adaptations to solve this matter are easily done in the low-level program which 
generates a program with a better configuration of numbers of blocks and threads, 

Fig. 1   TSP execution times comparison

Fig. 2   Execution times for pr2392
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which fits the problem, compared to high-level approaches. Of course the kernel 
instructions can be changed in order to optimize the execution time, but for com-
parison purposes only the numbers of blocks and threads were changed. In order to 
investigate further the runtime differences between both implementations, the runt-
ime of single kernels was isolated and investigated separately.

The most important and time consuming step in ACO is the tour construction. 
Performed many times during the execution, it is affected by the colony size and 
also the graph size. Therefore, special attention was given to the time spent by each 
parallel implementation on creating routes. Figure 3 shows for the example of 1024 
ants the proportional amount of time spent on each kernel by the musket implemen-
tation and the low-level implementation. Obviously, even for the smallest map the 
route-construction kernel requires for both programs by far most of the runtime. 
Therefore, we investigated in the calculations of the route.

In order to compare the two implementations regarding the tour construction 
step, we have investigated the average time spent in the tour construction per iter-
ation as shown in Fig. 4. The graphs show similar results to the total execution 
times mentioned previously and it is no wonder since the tour construction is the 
reason for a great part of the general execution times shown before.

The kernels responsible for executing the other steps of the algorithm have 
almost equal execution times for both implementations. Furthermore, they rep-
resent a small, almost irrelevant, part of the whole execution time. Therefore no 
deeper analysis becomes necessary.

Table 2   Execution times comparison: low-level vs. musket 

GeForce RTX 2080 Ti

1024 2048 4096 8192

Problem LL Musket LL Musket LL Musket LL Musket

dji38 0.103 0.186 0.106 0.189 0.107 0.192 0.158 0.199
cat194 0.890 0.782 0.896 0.797 1.022 0.938 1.742 1.789
d198 0.906 0.852 0.914 0.861 1.037 1.001 1.784 1.804
lin318 2.217 2.103 2.250 2.103 2.726 2.665 6.175 6.261
pcb442 3.711 3.464 3.783 3.474 5.022 4.961 14.318 14.224
rat783 13.365 12.870 13.766 13.621 24.651 25.191 57.208 56.407
pr1002 25.409 25.529 26.307 26.116 43.194 43.657 91.539 93.51
pcb1173 34.680 34.201 39.201 40.23 70.605 72.321 151.416 158.965
d1291 45.37 46.744 48.832 51.306 87.808 91.888 182.741 197.17
pr2392 251.412 252.648 292.913 304.26 428.534 462.256 899.670 969.704
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6.2 � BPP Experiments

The BPP instances used in this work were extracted from different sources from lit-
erature [26, 27]. They vary not only in the number of items to be packed but also in 

Fig. 3   Proportional execution times of route calculation

Fig. 4   Execution times comparison for the tour construction kernel
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the degree of difficulty to solve. Details about each instance can be seen in Table 3.
In order to evaluate the performance of both implementations and compare it 

with the results of the TSP experiments, similar setups were used in the BPP experi-
ments. The same numbers are used for the colony sizes. Furthermore, the BPP 
experiments were also executed in a second GPU, the NVIDIA Tesla V100, so that 
the programs could be evaluated using devices with different configurations. The 
average execution times for each of the BPP instances are displayed in Fig. 5.

The results show that the low-level implementation has slightly shorter execution 
times for most of the test cases and for both GPUs. Also, both implementations pre-
sented a reduction in the execution times in a similar degree when using the Tesla 
V100. Similarly to the TSP results, the tendency of having slightly shorter execution 
times when running the low-level program is more pronounced when observing the 
results from the bigger instances with more items to be packed. Table 4 includes the 
execution times and also the percentage comparison from the low-level to the mus-
ket program, both using the GeForce RTX 2080 Ti.

Table 3   BPP Instance 0 1 2 3 4 5

# Item types 50 166 358 522 712 915
Total # items 60 201 402 600 801 1002
Bin capacity 1000 2456 7552 16,256 31,616 65,088

Fig. 5   BPP execution times
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It is also interesting to observe that the execution times for both implementations 
scale differently as the colony gets bigger in the BPP experiments when compared 
to the TSP experiments. The speedup rates for the BPP experiments remain quite 
stable, independently of the colony sizes. This might be explained by the fact that 
the data is structured differently for the bin packing problem when compared to the 
TSP. In the BPP, most of the data are integer values, which occupy less space and 
favour the internal calculations. Furthermore, the data structures that store the infor-
mation regarding the items to be packed are also smaller due to the repetition of 
items, impacting directly the space required by each thread and reducing the number 
of probability calculations during the packing phase. Having less demanding threads 
to execute makes it possible for the GPU to run more threads simultaneously, mean-
ing that doubling the colony size will not necessarily double the execution time.

In order to investigate further, we measured also the time spent during the pack-
ing phase of the algorithm. Figure 6 shows the values for Problem 3.

6.3 � MKP Experiments

The MKP instances used in this work were extracted from the OR-Library, first 
described in [28]. The library offers a couple of instances of the MKP with different 
numbers of objects and different numbers of constraints. Details about each instance 
can be seen in Table 5.

For these experiments the same ACO setup was used as in the experiments 
previously mentioned. Regarding the hardware used, a third GPU was used in 
the benchmarks, namely Quadro RTX 6000. By doing so, the evaluation of both 
implementations was extended and the performance could be compared also for 
different scenarios since the GPUs have different specs. A comparison of the exe-
cution times for the low-level and musket implementations is displayed in Fig. 7.

The execution time graph shows very similar performances for both implemen-
tations when using the same GPU. The differences are in the magnitude of hun-
dredths of a second and did not follow any pattern. The size of the MKP instances 
and the overall short execution times show that the problems did not pose a greater 
challenge to the programs which makes it difficult to identify where the differences 

Table 4   BPP execution times: proportional comparison

P. GeForce RTX 2080 Ti

1024 2048 4096 8192

LL Musket % LL Musket % LL Musket % LL Musket %

0 0.14 0.14 0.99 0.15 0.16 1.02 0.17 0.18 1.08 0.21 0.21 1.00
1 0.81 0.82 1.02 1.01 1.05 1.05 1.21 1.29 1.06 1.59 1.69 1.07
2 3.82 3.87 1.01 4.70 4.72 1.00 5.65 5.68 1.01 7.40 7.38 1.00
3 8.26 8.49 1.03 10.11 10.25 1.01 12.06 12.15 1.01 15.64 15.75 1.01
4 14.21 15.07 1.06 17.23 17.93 1.04 20.32 21.14 1.04 27.35 28.16 1.03
5 24.24 25.60 1.06 30.94 32.28 1.04 37.70 39.60 1.05 48.85 50.82 1.04
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come from. In addition to that, the solution sizes differ, which adds an uncertainty 
factor to how long a step to build a solution should take.

Fig. 6   Packing kernel execution times–problem 3

Table 5   MKP problems Instance 1 2 3 4 5 6 7

Objects 6 10 15 20 28 39 50
Constraints 10 10 10 10 10 5 5
Optimal 3800 8706.1 4015 6120 12,400 10,618 16,537

Fig. 7   MKP execution times–GeForce RTX 2080 Ti, Tesla V100 and Quadro RTX 6000
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Performance differences between implementations using different GPUs can be 
also be seen in Fig. 7. It is interesting to observe that the runtimes from the Musket 
implementation scale in the same proportion as those from the low-level implemen-
tation for all colony sizes.

Figure 8 puts the execution times from the experiments using the Quadro RTX 
6000 GPU into another perspective. The graph shows how the execution times 
are similar for both implementations and how they remain unchanged even when 
the colony size is doubled. For the same problem, the execution times grow only 
when the colony size is increased to 8192 ants. This behavior shows how similar 
the workload generated by the implementation using Musket is when compared to 
the low-level implementation. For both, the workload generated was not enough to 
fully occupy the GPU even when the colony size was doubled. It took 8192 ants to 
generate a workload that would fully occupy the Quadro RTX 6000 GPU and its 
4608 cores.

As an overall result, plenty of similarities between the execution times of both 
implementations investigated in this work can be observed for all three problems. 
They show how the use of musket can simplify the development of parallel pro-
grams, as the use of general purpose skeletons provided out of the box suffices 
to develop a parallel version of ACO in fewer lines of code and on a much lower 
complexity level when compared to the low-level CUDA implementation without 
impairing the performance.

Fig. 8   MKP execution times–Quadro RTX 6000
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7 � Conclusion

The use of a high-level parallelization approach can be of great help for program-
mers aiming to run swarm intelligence algorithms on high-performance hardware, 
such as graphical processing units. In this work we have evaluated musket as an 
approach for the parallelization of the ACO algorithm in order to identify the pros 
and cons of using such a tool regarding the development aspect and also the perfor-
mance aspect when compared to a low-level implementation.

Considering the development aspect, in its actual state, the skeletons embedded 
in musket provide enough features for the development of parallel ACO programs. 
Furthermore, the experiments have shown that musket offered some advantages in 
terms of simplicity, requiring less skills to develop a high performance parallel ver-
sion of ACO. Not only less lines of code were necessary, but it is also much simpler 
to program without having the concerns that regard the parallel aspects of program-
ming a CUDA-based version of the code, such as data initialization, data transfers, 
and the allocation of blocks and threads.

In terms of runtime, the ACO version implemented using musket achieved reason-
ably good execution times compared to the low-level CUDA based implementation 
for both problems investigated here. As algorithm enhancements and handcrafted 
adaptations to a certain problem instance were left aside, both implementations were 
evaluated in equal conditions. By doing so, we were able to observe how the musket 
implementation reacts in scenarios where the colony size was increased and more 
resources were needed. In these experiments, a bit more overhead was generated but 
nothing that would compromise musket’s overall performance. At the end there is a 
positive balance, as the results showed that we were able to simplify the implemen-
tation phase without compromising the runtime of the experiments.

The ACO version used in this work was idealized to be a simple implementation 
for a single GPU environment. Many optimizations could be introduced in order to 
enhance the performance of the algorithm e.g. the usage of shared memory. Also, if 
the goal is to run in a new environment such as multiple GPUs or multiple compu-
tational nodes with multiple GPUs, more complex changes are necessary, which can 
be tricky even for experienced programmers. In this aspect, musket has the advan-
tage that the same program can be used to generate code for different architectures 
once there is a code generator for it.

Future works include the evaluation on different hardware, such as multiple GPUs 
on one computational node and also a cluster environment with many nodes and 
many GPUs per node. Furthermore, we want to further investigate the possibility to 
enhance musket to provide metaheuristic-specific skeletons in order to make better 
use of the hardware and reduce even more the execution times for such problems.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 



800	 International Journal of Parallel Programming (2021) 49:776–801

1 3

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Talbi, E-G.: Metaheuristics. Wiley, Hoboken, NJ (2009)
	 2.	 Kallioras, N.A., Kepaptsoglou, K., Lagaros, N.D.: Transit stop inspection and maintenance 

scheduling: A GPU accelerated metaheuristics approach. Transp. Res. Part C Emerg. Technol., 
55, 246–260 (2015)

	 3.	 Dorigo, M.: Optimization, Learning and Natural Algorithms[in Italian]. PhD thesis, Dipartimen-
todi Elettronica, Politecnico di Milano, Milan (1992)

	 4.	 Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman 
London (1989)

	 5.	 Rieger, C., Wrede, F., Kuchen, H.: Musket: a domain-specific language for high-level paral-
lel programming with algorithmic skeletons. Proc. ACM Symp. Appl. Comput. Part F147772, 
1534–1543 (2019)

	 6.	 Wrede, F., Rieger, C., Kuchen, H.: Generation of high-performance code based on a domain-
specific language for algorithmic skeletons. J. Supercomput. 0123456789 (2019)

	 7.	 Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 
28–39 (2006)

	 8.	 Dorigo, M., Caro, G.D.: Ant colony optimization: a new meta-heuristic (1999)
	 9.	 Levine, J., Ducatelle, F.: Ant colony optimization and local search for bin packing and cutting 

stock problems. J. Oper. Res. Soc. 55(7), 705–716 (2004)
	10.	 Lee, S.Y., Bau, Y.-T.: An ant colony optimization approach for solving the Multidimensional 

Knapsack Problem. In: 2012 International Conference on Computer & Information Science 
(ICCIS), pp. 441–446. IEEE (2012)

	11.	 Uchida, A., Ito, Y., Nakano, K.: Accelerating ant colony optimisation for the travelling salesman 
problem on the GPU. Int. J. Parallel Emergent Distrib. Syst. 29(4), 401–420 (2014)

	12.	 Cecilia, J.M., García, J.M., Nisbet, A., Amos, M., Ujaldón, M.: Enhancing data parallelism for 
ant colony optimization on GPUs. J. Parallel Distrib. Comput. 73(1), 42–51 (2013)

	13.	 Menezes, B.A., Kuchen, H., Neto, H.A.A., de Lima Neto, F.B.: Parallelization strategies for 
GPU-based ant colony optimization solving the traveling salesman problem. In: 2019 IEEE Con-
gress on Evolutionary Computation, CEC 2019 - Proceedings, pp. 3094–3101 (2019)

	14.	 Menezes, B.A.D.M., Pessoa, L.F.D.A., Kuchen, H., Neto, F.B.D.L.: Parallelization strategies for 
GPU- ased ant colony optimization applied to TSP. Adv. Parallel Comput., 36, 321–330 (2020)

	15.	 Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and efficient 
streaming on multi-core. Programming Multi-Core and Many-Core Computing Systems, Parallel 
and Distributed Computing (2017)

	16.	 Öhberg, T., Ernstsson, A., Kessler, C.: Hybrid cpu-gpu execution support in the skeleton pro-
gramming framework skepu. J. Supercomput. 76(7), 5038–5056 (2020)

	17.	 Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-gpu systems and clusters. 
Int. J. High Perform. Comput. Networking 7(2), 129–138 (2012)

	18.	 Ernsting, S., Kuchen, H.: Data parallel algorithmic skeletons with accelerator support. Int. J. 
Parallel Prog. 45(2), 283–299 (2017)

	19.	 Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible skeletal programming with eskel. In: 
European Conference on Parallel Processing, pp. 761–770. Springer, Berlin (2005)

	20.	 Menezes, B.A.D.M., Herrmann, N.: Musket repository. https://​github.​com/​wwu-​pi/​musket_​dsl 
(2020)

	21.	 The Eclipse Foundation. Xtext documentation. https://​eclip​se.​org/​Xtext/​docum​entat​ion/ (2020)
	22.	 Riguzzi, F.: A survey of software metrics. Technical report (1996)
	23.	 Menezes, B.A.D.M., Herrmann, N.: Ant colony optimization project. https://​github.​com/​breno​

amm/​ant-​colony-​optim​izati​on-​proje​ct (2021). Accessed 24 March 2021

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/wwu-pi/musket_dsl
https://eclipse.org/Xtext/documentation/
https://github.com/brenoamm/ant-colony-optimization-project
https://github.com/brenoamm/ant-colony-optimization-project


801

1 3

International Journal of Parallel Programming (2021) 49:776–801	

	24.	 University of  Waterloo. National traveling salesman problems. http://​www.​math.​uwate​rloo.​ca/​
tsp/​world/​count​ries.​html. Accessed 14 March 2018

	25.	 Heidelberg University. Discrete and combinatorial optimization. https://​www.​iwr.​uni-​heide​lberg.​
de/​groups/​comopt/​softw​are/​TSPLI​B95/​XML-​TSPLIB/​insta​nces/. Accessed 14 March 2018

	26.	 Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: mathematical mod-
els and exact algorithms. Eur. J. Oper. Res. 255, 1–20 (2016)

	27.	 Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2, 5–30 (1996)
	28.	 Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. pp. 

1069–1072 (1990)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://www.math.uwaterloo.ca/tsp/world/countries.html
http://www.math.uwaterloo.ca/tsp/world/countries.html
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/XML-TSPLIB/instances/
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/XML-TSPLIB/instances/

	High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons
	Abstract
	1 Introduction
	2 Ant Colony Optimization
	2.1 ACO Solving the Traveling Salesman Problem
	2.2 ACO Solving the Bin Packing Problem
	2.3 ACO Solving the Multidimensional Knapsack Problem
	2.4 GPU-ACO

	3 Related Work
	4 Musket
	5 Our Proposal
	5.1 Musket-ACO

	6 Our Case Study
	6.1 TSP Experiments
	6.2 BPP Experiments
	6.3 MKP Experiments

	7 Conclusion
	References




