
Vol:.(1234567890)

International Journal of Parallel Programming (2021) 49:802–819
https://doi.org/10.1007/s10766-021-00710-5

1 3

On Single‑Valuedness in Textually Aligned SPMD Programs

Frédéric Dabrowski1

Received: 13 November 2020 / Accepted: 17 March 2021 / Published online: 4 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Single-valuedness is a property of an expression occurring in a SPMD program and
states that concomitant evaluations of this expression lead to the same value at all
processes. Although widely used, this property still lacks a formal definition, which
is necessary to tackle the subtleties of the notion of concomitance. First, we pro-
pose such a definition in which the states of all processes can be compared when
they reach textually aligned program points. These program points, of which all pro-
cesses execute exactly the same textual instances, act as logical global synchroniza-
tion barriers. Single-valuedness is then defined at these program points. Secondly,
we show how textual alignment and single-valuedness can be used to ensure proper
use of Direct Remote Memory Access (DRMA) in BSP programs.

Keywords SPMD · BSP · Collective primitives · textual alignment · single-
valuedness · formal semantics

1 Introduction

In the spmd programming model [1, 2], a collection of parallel processes executes a Sin-
gle Program on Multiple Data. Unlike the Single Instruction, Multiple Data (simd) [3]
model, where all processors execute the same instructions at the same pace, the spmd
model allows replicated processes to follow distinct flows of control. Several communi-
cation means may be proposed by spmd programming languages (MPI[4], OpenMP[5],
BSPlib[6], ...). The most popular are Direct Remote Memory Access (DRMA) and mes-
sage passing. In both cases, collective operations (or collectives for short) play a major
role. They expose a simple synchronization scheme: all processes execute the same
sequence of collectives, performing a global synchronization for some of them. Broad-
casts, reductions and global barriers are examples of collectives. However, behind the

 * Frédéric Dabrowski
 frederic.dabrowski@univ-orleans.fr

1 Univ. Orléans, INSA Centre,Val de Loire, LIFO EA 4022, Orléans, France

http://orcid.org/0000-0001-9009-0676
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-021-00710-5&domain=pdf

803

1 3

International Journal of Parallel Programming (2021) 49:802–819

apparent simplicity of the model, the ability to execute distinct instruction streams with
no restriction may lead to programming errors.

To preclude these types of errors, one can introduce a strict separation at the pro-
gramming language level between global and parallel flows of control. The former
produces a single instruction stream, which every process follows. The latter pro-
duces multiple instruction streams free of collectives [7–9]. It is noteworthy that
this distinction had already been present in the early definition of the spmd model,
quoting [10]: “the participating processes follow a different parallel flow of control,
but all the processes follow the same global flow of control”. However, spmd pro-
grams are most often written in general programming languages using libraries, the
result being that the two flows are mixed up (e.g., mpi, implementations of the bsp
model [11, 12]). This simple observation highlights the need for tools capable of
reconstructing the global control flow in library based implementations.

Current practices show that global barriers are usually textually aligned, which
means that all processes synchronize on the same textual occurrences. In other
words, their use is confined to global control flow. The same applies to other kinds
of collective operations. This model not only simplifies programming, but also it
is a prerequisite for some program analysis [13–15]. In previous work [16–18], we
formally defined textual alignment and prove that enforcing textual alignment of
synchronization barriers is a sufficient condition to avoid deadlocks. In this paper,
we consider another relevant property: single-valuedness. This property states that
an expression occurring in the text of a program evaluates to the same value at all
processes. For some collectives, not only processes must execute the same instruc-
tion but also they must execute it on the same data. For example, in mpi all processes
must pick the same source process when performing a broadcast. By combining tex-
tual alignment and single-valuedness, one can enforce this stronger property. The
main contribution of this paper is to show (Sect. 7) :

– how textual alignment can be used to provide a formal definition of the single-
valuedness property. This approach solves a problem raised by Aiken et al.
in [19, 20]; namely the comparison of values computed by distinct programs at
programs points occuring between global synchronization barriers.

– how, when combined with textual alignment, single-valuedness can be used to
enforce proper synchronization of DRMA programs

In Sect. 3 we present a subset of the BSPlib language supporting drma communica-
tions. In Sect. 4 we present BSPDRMA a toy language that mimics the features of this
BSPlib subset. We define its operational semantics and two kinds of errors we aim
to rule out, deadlocks and stack mismatches. Sections 6 and 7 introduce formal defi-
nitions of textual alignment and single valuedness and show how these properties
can be used to rule out errors introduced in sect. 4. We conclude in Sect. 8.

804 International Journal of Parallel Programming (2021) 49:802–819

1 3

2 Related Works

In [19, 20], Aiken and Gay introduced the concept of structural correctness in non
textually aligned programs. This property ensures the absence of deadlocks. Unlike
our work it only considers parameterless primitives. Their work had been used for
the design of the Titanium language [21, 22]. A latter proposal introduced textually
aligned barriers in Titanium by revisiting structural correctness. This proposal was
finally replaced by a dynamic approach [23] after it has been observed that it was
flawed [23, 24]. A recent work also considers dynamic approaches to the problem of
textual alignment of collectives [25]. In [26], the authors consider an empirical static
analysis for detecting Multi-Valued expressions, which is used to lower the number
of dynamic checks. Barrier checking for non-textually aligned is also studied in [27].

The formal definition of textual alignment was first introduced in [17]. In [28] the
authors propose a sufficient condition to ensure correct usage of registers in BSPlib
programs. This condition requires that all bsp actions are textually aligned (i.e. con-
comitant in a logical sense) but also that memory locations used by concomitant
DRMA operations are the same up-to renaming. The condition is expressed over
execution traces and provides no programming methodology to ensure it. No formal
definition of the meaning of “computing the same value at the same time” was pro-
vided. This paper improves over [28], it provide such a definition (based on textual
alignement) and shows how it can be used to provide a sufficient condition to ensure
correctness in the sense of the later. Some formal definitions of the semantics of
BSP programs have already been proposed [29, 30], some were mechanized in Coq
[31].

3 BSP

In the Bulk Synchronous Parallel (BSP) model, a static number of processes pro-
gress at the same pace, synchronizing on global barriers. Between two consecutive
synchronizations, processes perform local computations and issue communication
requests. These requests will be handled at the time of the next synchronization bar-
rier. Communication requests are either message-passing requests or direct remote
memory access requests. Several implementation of the BSP model exists (BSPlib
[6], BSML [32], BSPOnMPI [33], MulticoreBSP [34],...). Here we focus on BSP
DRMA primitives as proposed by BSPlib and provide a short description of their
behavior.

Each process has access to its identifier and to the total number of processes
through the functions
bsp_pid_t bsp_pid(void) and bsp_pid_t bsp_nprocs(void)
The execution of a program proceeds in successive steps, which are local compu-

tation steps issuing communication requests, terminated by global synchronization
barriers. Requests issued during a step are served at the end of this step (Fig. 1).
Synchronization barriers are performed by a collective call to
void bsp_sync(void)

805

1 3

International Journal of Parallel Programming (2021) 49:802–819

Processes can communicate by accessing the memory of other processes. To refer
to a remote memory location processes rely on a mapping between local addresses.
This mapping is built programmatically. Processes collectively push memory loca-
tions on a distributed stack. As the stacks have the same size at every processes,
they can be seen as a global stack of p-tuples (where p is the number of processes).
Elements of a tuple are the physical adresses at each process of a replicated logical
adress. For example in (Fig. 2) both process 0 and process 1 have pushed the address
of the variable y which is a at process 0 and b at process 1. In this case the address
a of process 0 is mapped to the address b of process 1 (and vice versa). Pushing a
memory location on the stack is done by a call to
void bsp_push_reg(const void* addr, bsp_size_t size)
where addr is the local memory location and size is the length of the buffer. A

line of the global stack can be removed by a collective call to
void bsp_pop_reg(const void* addr)
Finally, a process can issue a read or write request to a remote location on process

pid by calling the following functions

– void bsp_put(bsp_pid_t pid, const void * src, void
*dst, bsp_size_t offset, bsp_size_t size): writes size bytes
from the location src to the offset offset of the remote location dst.

– void bsp_get(bsp_pid_t pid, const void * src, void
*dst, bsp_size_t offset, bsp_size_t size): reads size bytes
from the offset offset of the remote location src to the location dst.

Fig. 1 Execution of a BSP program

Fig. 2 Two processes registering physical addresses into their stacks

806 International Journal of Parallel Programming (2021) 49:802–819

1 3

Example 1 Here, each process writes its id in the memory of its right neighbor. First
each process pushes the address of variable y and perform a barrier to update the
stack (bsp_put_reg and bsp_pop_reg issue requests that are served at the end
of the current step). Then each process requires a write of the value of x to the
distant register matching the address of y in the stack. Finally, processes pop the
addresses and perform a barrier to execute the communication.

In this paper we consider two kinds of errors:

– deadlocks: occur when one process is blocked on a barrier while another pro-
cess is terminated (we only consider partial correctness)

– stack mismatch: two processes pop locations occurring in distinct lines of the
stack. As we have seen each line is a mapping between remote addresses, pro-
cesses must thus agree on which line to remove.

In the next section we present a simple language and its semantics. This language
is used to formalize these kinds of errors.

4 BSP
DRMA

The language BSPDRMA is a variation of the While language, extended by a mini-
mal set of primitives dedicated to bsp-like drma programming. It supports global
synchronization, dynamic register allocation, push and pop operations and
updates of remote registers. It is akin to the subset of bsp of Sect. 3, besides a few
limitations whose aim is to simplify the presentation. Dynamic allocation is sup-
ported only in the context of drma communications, there are no heap allocated
structures. We use the name register instead of memory location to reflect this.
Registers hold data of size one. We modify the communication scheme to avoid
nondeterminism due to concurrent writes to remote registers. More precisely,
messages received by a process are buffered on a per source process basis and can
be read separately by the target process. These restrictions are made without loss
of generality:

807

1 3

International Journal of Parallel Programming (2021) 49:802–819

– in practice, shared memory locations are used to exchange contiguous data
(dynamic structures are serialized, processes don’t exchange pointers),

– concurrent writes are communication errors that we do not deal with in this
paper.

4.1 Syntax

We consider a countable set of variables Var that we note x, y, z, An expression
a is a term built from integers, variables, arithmetic operations and the constants pid
and nprocs . The two constants denote respectively the current process id and the total
number of processes. Statements are decorated with labels taken in a countable set Lab ,
elements of which are noted � (possibly with subscript). The syntax of the language
is given in Fig. 3. Each label occurs at most once in a statement. When not necessary
labels are omitted.

The instruction ���� does nothing and returns control to the rest of the computation.
An instruction x ∶= a stores the value of the expression a in the variable x. Sequences,
conditionals and loops behave as usual.

– global synchronizations are performed by ���� . It is a blocking instruction that
must be performed collectively by all processes. Pending requests are realized at the
time the synchronization occurs.

– a fresh register is allocated and stored in the variable x by the instruction ���� x.
– a register stored in x is pushed (resp. popped) by the instruction ���� x (resp. ��� x

).
– An instruction x[a] ← y performs a request to update the register paired with the

register stored in x at process a. The new value is that of y.
– an instruction [���� x ← y[a]] {s} stores in x the last value written by processor

a in the register paired with the register stored in y and executes s. The value was
written at the previous step. If no such value exists, s is ignored and the control
returns immediately to the rest of the computation.

As stated before, remote writes in BSPDRMA differs a bit from what can be found in
BSPlib. Here, a register is rather like a buffer in which other processes can write at a
reserved position. Let’s rephrase the example of the previous Sect. in BSPDRMA to illus-
trate this:

Fig. 3 Syntax of BSP
DRMA

808 International Journal of Parallel Programming (2021) 49:802–819

1 3

We use the local variable y to store the value written in z by the right neighbor of the
process. Specifying the emitter rather than reading the last written value rules out
nondeterminism.

4.2 Semantics

We give an operational semantics for our language as a small-step transition system.
The semantics records execution paths (sequences of labels) followed by processes
during the execution. These annotations will be used in the definitions of textual
alignment and single-valuedness. They have no effect on the behavior of programs
and can be erased. The purpose of this semantics is to provide annotations that are
needed to define textual alignement and single-valuedness in the following sections.
It does not improve the description of programs made by previous BSP semantics.
However it does improve the annotations and formal definitions we gave in [17]
which are now much more simple.

4.3 Definitions

A path pt is a finite sequence of labels. A register is a triple (u, pt,�) where u belongs
to a countable set of names ⊓ , pt is a path and � a label. A value v ∈ V is either an
integer or a register. An environment E ∈ Env is a mapping from variables to values.

The semantics of expressions is given by a function [[.]] ∶ Env × nat → V where
the second parameter is the process id at which the evaluation takes place. The spe-
cial constant pid returns the process id so we have [[pid]](E, i) = i . The special con-
stant nprocs returns the number of processes so we have [[nprocs]](E, i) = p . Unlike
the process id, the number p of process, which is unique for a given execution, is left
implicit to improve readability. The semantics of remaining expressions is as usual.
For the sake of simplicity, we assume that [[.]](E, i) is a total function.

The semantics is a transition system over global states, which consists of vectors
of size p where p is the number of processes. Components of vectors are processes
states. They have the form of tuples (s, (E, S,B,R), pt) where, at process i,

– s is either a statement or the termination symbol ∙
– E is the environment of process i
– S is the contribution of process i to the stack
– B is the buffer of process i; it is a function mapping registers and process ids

to values. It is a partial function. If B(u)[j] = v then process j has requested an
update of u with value v at i.

x ∶= pid;

���� z; ���� z; ����;

z[(pid + 1) ��� nprocs] ← x;

��� z; ����

[���� y ← z[(pid − 1) ��� nprocs]] {����};

809

1 3

International Journal of Parallel Programming (2021) 49:802–819

– R is the history of requests performed by process i since the beginning of the cur-
rent step. Requests, noted r, are defined by

 A write((u, pt,�), i, v) denotes a write of value v at the location paired with u at
process i. We note R1 ⋅ R2 the concatenation of R1 and R2.

– pt is the sequence of labels crossed by i since the beginning of the execution.

As usual a context C denotes the rest of the computation, it has the form of a
statement with a hole. Given a context C and a statement s we note C[s] for the
result of placing s in the hole in C. Contexts are defined by the grammar:

We generalize the notation to the termination symbol ∙ by the equations: [∙] = ∙ and
[∙];s = s . Given a function f, We note f [x ↦ v] the function defined by

If f is partial, we note dom(f) its definition domain. We note Γ ⋅ � a sequence Γ
extended with the element �.

A global transition, v → v′ moves from one global state to the next. Figure 4
gives the two rules that define global transitions.

– Rule local specifies individual computation steps. The vector is updated
according to the result of a transition of the picked component (see below).
Note that processes may execute ���� instructions occurring at distinct labels.

– Rule sync specifies global steps which occur when all process reach a syn-
chronization barrier. Communications requested during the computation step
are served. All components of the vector are updated according to the result.
The definition of ⊳ is given in Fig. 5. We note R↓ (resp. R↑) the sequence, in
order, of registers pushed (resp popped) in R.

In both cases we record the labels crossed by processes. Other rules specify local
transitions. They have the form

where i is the process id, pt is the sequence of labels crossed so far by i and � is the
current label. Executing s with environment E and buffer B leads to the statement s′
and the environment E′ performing the request r (or � if no request is performed).

– The ���� instruction, assignment, conditional and loops behave as usual (rules
skip, assign, if1,if2,while1 and while2).

r ∶∶ = push(u, pt,�) push request

∣ pop(u, pt,�) pop request

∣ write((u, pt,�), i, v) message request

C∶∶ = [] ∣ [];s

f [x ↦ v](y) =

{
v ifx = y

f (y) otherwise

pt,� ⊢i s,E,B → s′,E′, r

810 International Journal of Parallel Programming (2021) 49:802–819

1 3

Fig. 4 Dynamic Semantics

811

1 3

International Journal of Parallel Programming (2021) 49:802–819

– An instruction ���� x generates a fresh register stored in variable x (rule init).
The new register is annotated with pt and � . We assume a function fresh that
maps a buffer to a fresh register, two buffers with the same domain are mapped
to the same register.

– An instruction ���� x (resp. ��� x) performs a request to push (resp. pop) the
register (u, pt,�) stored in x. A request push(u, pt,�) (resp. pop(u, pt,�)) is
issued (rules push and pop).

– An instruction x[a] ← y performs a request to write the value v stored in y to a
remote register paired with the register stored in x . The value j of a is the target
process. A request write(u, j, v) is issued (rule send).

– A statement [���� x ← y[a]]� {s} reads the message sent to the current pro-
cess to the register stored in y and stores it in x (rule receive1). The control is
then returned to the statement s. If no such message exists, the control is simply
returned to the rest of the computation (rule receive2).

Given an environment E, the initial state init(E) is (E, �, �, �) . We note
E ⊢ s ⇝i (s

�, st, pt) if ⟨(s, init(E), �),… , (s, init(E), �)⟩ →∗ v and �i(v) = (s�, st, pt) .
The relation ⇝i is the projection on process i of an execution. We note →∗ the reflex-
ive transitive closure of v and say that v′ is reachable from v if v → v∗ . The semantics
is deterministic in the sense defined below. Indeed, local transition are determinis-
tic and “scheduling” choice are not significant. Moreover, thanks to the with con-
structs, communications are also deterministic.

Lemma 1 Let v, v1 and v2 be vectors. If v →∗ v1 and v →∗ v2 then there exists v′ such
that v1 →∗ v� and v2 →∗ v�.

5 Programming Errors

As stated before, we intend to rule out two kinds of errors: deadlocks and stack mis-
matches. In this section we introduce their formal definitions. A deadlock occurs
when a process is blocked at a barrier waiting for a terminated process. All pro-
cesses are stuck (we do not consider infinite loops).

Definition 1 A deadlock occurs in v, if the following property holds

Fig. 5 Exchange

812 International Journal of Parallel Programming (2021) 49:802–819

1 3

A statement is well-synchronized if no deadlock occurs in any state reachable from
an initial state.

Example 2 The following program is not well-synchronized because some processes
perform less synchronizations than others

More precisely all processes but 0 (which is terminated) are stuck on the first bar-
rier. Thanks to determinism, deadlocks are reproducible and are easily observed by
programmers.

A stack mismatch occurs when two processes perform incompatible push and pop
requests. Intuitively, requests are compatible if all processes perform the same num-
ber of push/pop request and if “concomitant” pop requests refer to the same posi-
tions in the stacks. Intuitively, a mapping between remote registers, as defined by
stacks can be removed but it cannot be modified (see example 3).

Definition 2 A stack mismatch occurs in v if there exists i and j such that
�i(v) = (Ci[����], (−, Si,−,Ri),−) , �j(v) = (Cj[����], (−, Sj,−,Rj),−) and

A statement is well-matched if no stack mismatch occurs in any state reachable from
an initial state.

Example 3 The following program is not well-matched because process 0 tries to
pop the first line while other processes try to pop the second line.

But the following statement is well-matched (processes may pop any line).

Remember that we only consider programming errors related to misuses of col-
lectives. In particular, we don’t consider local errors such as trying to pop or to use
non pushed registers In the next section, we will show how to use textual alignment
and single-valuedness to define a programming methodology that rules out the two
kind of errors we have introduced.

deadlock(v) = ∃i, j.�i(v) = (C[����],−,−) ∧ �j(v) = (∙,−,−).

x ∶= pid;�����(x > 0){x ∶= x − 1;����}

|R↓

i
| ≠ |R↓

j
| ∨

|R↑

i
| ≠ |R↑

j
| ∨

(∃k.(R
↑

i
)k = ui ∧ (R

↑

j
)k = uj ∧ pos(Si, ui) ≠ pos(Sj, uj)

���� x;���� y;���� x;���� y;����;��(pid = 0){��� x}{��� y};����

���� x;���� y;���� x;���� y;����;��� x;����

813

1 3

International Journal of Parallel Programming (2021) 49:802–819

6 Textual Alignment

Instances of textually aligned labels are crossed by all processes at the same pace, at
least from a logical point of view. Intuitively, textually aligned code blocks could be
executed in a pure simd mode. We will return to this remark later. Some programs
are obviously classified as textually aligned, whereas others require more explana-
tions to justify their classification.

Example 4 Consider the following statements written in C.
The first statement (line 1) is clearly not textually aligned. Processes execute sync

instructions that occur in distinct branches. Obviously, label equality is the weaker
reasonable condition. On the contrary, it is obvious that the second statement (line
3) should be considered textually aligned. In the third statement (lines 5,6), all pro-
cesses perform the same number of iterations of the loop. Yet, they call the sync
primitive at distinct iterations. Although the behaviors of all processes are obser-
vationally equivalent, this statement should not be considered as textually aligned
(think of loop unrolling). On the opposite, the last statement (lines 8,9) is textually
aligned.

Intuitively, a label � is said to be textually aligned if, whenever a process
reaches a textual occurrence of � , other processes will eventually reach the same
occurrence (we consider partial correctness only). An obvious way to distinguish
occurrences of a label � is to consider the set of execution paths leading to � .
However, for our purpose, this definition is not appropriate as exemplified by the
following statement:

In this case, we would like to consider that whichever branch is taken, the same tex-
tual occurence of the last assignment is reached. We note Δl the function that retain,
from a path, the labels of loops surrounding � in a program statement s (we omit
the statement which is always clear from the context). Obviously, the information
extracted by Δ

�
 is sufficient to distinguish distinct occurrences of � in the execution

trace of processes.

�� b ���� x ∶= 0 ���� x ∶= 1 ���;x ∶= x + 1

814 International Journal of Parallel Programming (2021) 49:802–819

1 3

Definition 3 A label � in a statement s is textually aligned if for all E, if exists i < p
such that E ⊢i s ⇝ (s�, sti, ptj) where entry(s�) = � then for all j < p , there exists stj
and ptj such that E ⊢j s ⇝ (s�, stj, ptj) and Δ

�
(pti) = Δ

�
(ptj).

This definition relate local executions rather that global executions. This is
because, in general, the execution of the same textual occurrence of a label at dis-
tinct processes may be separated by arbitrarily many synchronizations. Although,
in this paper, we will consider programs with textually aligned barriers, this prop-
erty cannot be assumed a priori. For such programs it will be the case that the
same textual occurrences of labels are always reached during the same steps by
all processes. Indeed, instances of textually aligned label occur in the same order
in distinct processes as stated by the following lemma.

Lemma 2 Let �1 and �2 be two textually aligned program points in s and let E be an
environment.

– E ⊢i s ⇝ (si, sti, pti) and E ⊢i s ⇝ (s�
i
, st�

i
, pt�

i
)

– E ⊢j s ⇝ (sj, stj, ptj) and E ⊢j s ⇝ (s�
j
, st�

j
, pt�

j
)

– entry(si) = entry(sj) = �1 and entry(s�
i
) = entry(s�

j
) = �2 (entry : entry label of

the statement)
– Δ

�1
(pti) = Δ

�1
(ptj) and Δ

�2
(pt�

i
) = Δ

�2
(pt�

j
)

then if pti ≺ pt′
i
 we also have ptj ≺ pt′

j
 where ≺ is the prefix order.

We omit the proof of this intermediate result, the interested reader can refer to
our previous Coq[35] developments [36].

Proposition 1 If all barriers of a statement are textually aligned then this statement
is well-synchronized.

Proof Let i and j be two process ids. We prove that for all n > 0
if E ⊢i s ⇝ (C[[����]�],wi, pti) where i has crossed n barri-
ers then there exists a vector v such that ⟨…(s, init(E), �)…⟩ →∗ v ,
�j(v) = (C[[����]�],wj, ptj) and Δ

�
(pti) = Δ

�
(ptj) . The proof is by induction

on n. Suppose that E ⊢i s ⇝ (C[[����]�],wi, pti) , then by hypothesis we have
E ⊢j s ⇝ (C[[����]�],wj, ptj) and Δ

�
(pti) = Δ

�
(ptj) . We have to prove that these

two local state are part of the same synchronisation. Suppose that the local state of
(C[[����]�],wj, ptj) , which we call Aj , corresponds to another synchronization (oth-
erwise we are done). We distinguish two cases, whether Aj occurs in a synchroniza-
tion preceding Ai = (C[[����]�],wi, pti) or not.

– Suppose Aj was part of a previous synchronization. Then we have a previous
state of i of the form (s�

i
,w�

i
, pt�

i
) such that pt′

i
≺ pti and, by induction hypothesis,

Δ
�
(pt�

i
) = Δ

�
(ptj) . Consequently Δ

�
(pti) = Δ

�
(pt�

i
) which is incompatible with

pt′
i
≺ pti .

815

1 3

International Journal of Parallel Programming (2021) 49:802–819

– Now suppose Aj was not part of a previous synchronization. We assumed Aj is
not part of same synchronization as Ai . Then there exists a state
A�
j
= (C�[[����]�

�

,w�
j
, pt�

j
) which is part of the same synchronization as Ai and

pt′
j
≺ ptj . But by textual alignment, there exists A�

i
= (C[[����]�

�

],w�
i
, pt�

i
) such

that Δ
�� (pt�

i
) = Δ�

�
(ptj) . We have pti ≺ pt′

i
 otherwise Ai and A′

i
 denote the same

local state and then we have � = �
� and Δ

�
(ptj) = Δ

�
(pti) = Δ

�
(pt�

i
) = Δ

�
(pt�

j
)

which leads to a contradiction. Finally we get a contradiction by Lemma 2.

From this result it is immediate that assuming a deadlock leads to a contradiction.
 ◻

In this section we have shown how textual alignment can be used as a sufficient
condition to ensure correctness of parameterless collectives such as global syn-
chronization barriers. More elaborated collectives require not only the execution of
the same instruction but also coherency in the actual values the instruction is used
with. This is the case, for example, of the broadcast instruction in mpi for which all
processes must agree on the source process. In the next section, we consider sin-
gle-valuedness and show how it can be used to prove correctness of push and pop
instructions.

7 Single Valuedness

As informally defined in the literature, a variable is single-valued if all processes
map it to the same value at the same time. Quoting [19],

[...] “at the same time” is a slippery notion in a setting with asynchronous exe-
cution. Only at global synchronization points (i.e., barriers, broadcasts, and the
start and end of execution) is it possible to assert anything useful about the
state of all processes,

In this section, we show how textual alignment can be used to define a logical notion
of time that is more effective than the one induced by global synchronization points.
This section is the main contribution of the paper. In particular, we show:

– how to use this logical time to define formally the single-valuedness property
(Sect. 7.1)

– how, when combined with textual alignment, this property can be used to define
a correctness criterion to enforce a proper use of collectives (Sect. 7.2)

7.1 Definition

Before we present the definition of single-valuedness, we must give some precisions
about the equivalence relation on which it it is based. Basically, single-valuedness
refers to equality. However, we need to consider a slightly weaker relation that does
not distinguish memory locations allocated at the same logical time (as defined by

816 International Journal of Parallel Programming (2021) 49:802–819

1 3

textual alignement). More precisely, we identify memory location carrying the same
time annotations. Two values v1 and v2 are equivalent, noted v1 ⋍ v2 , if

– v1, v2 ∈ Int and v1 = v2 or,
– v1 = (u, pt,�) and v2 = (u�, pt�,��) where � = �

� and Δ
�
(pt) = Δ

�
(pt�)

As mentioned earlier, we rely on textually aligned program points to define sin-
gle-valuedness. Given a textually aligned program point � , a variable x is single-
valued at � if whenever two processes reach � “at the same time”, the occurences
of x at each process hold equivalent values. The following definition states this
property more formally.

Definition 4 A variable x in a statement s is single-valued at label � if � is
textually aligned and if for all E, if there exists i < p and j < p such that
E ⊢i s ⇝ (si, (Ei, Si,Bi,Ri), pti) and E ⊢j s ⇝ (sj, (Ej, Sj,Bj,Rj), ptj) where
entry(si) = entry(sj) = � and Δ

�
(pti) = Δ

�
(ptj) then Ei(x) ⋍ Ej(x).

The notion of single value easily extends to expressions by requiring that their
evaluation leads to equivalent values in the local environment.

Example 5 In the following examples, the pushed variable is single-valued in the
first statement but not in the second.

Indeed, in the first example, we have entry([���� x]�2) = entry([���� x]�2) = �2 ,
Δ

�2
(�1) = Δ

�2
(�1) = � and (u, �,𝓁1) ⋍ (v, �,𝓁1) for the run

In the second example, we have entry([���� x]�4) = entry([���� x]�4) = �4
Δ

�4
(�1�2) = Δ

�4
(�1�3) = � but (u, �,𝓁2) ̸⋍ (v, �,𝓁3) for the run

7.2 Correctness Criterion

In this section, we show how to use the single-valuedness property to avoid stack
mismatches. Intuitively, if push and pop instructions are textually aligned, all pro-
cesses will perform the same sequence of push/pop instructions (up-to param-
eters). This is sufficient to avoid stack mismatches due to push instructions.

s1 = [���� x]�1 ;[���� x]�2

s2 = �� [b]�1 ���� [���� x]�2 ���� [���� x]�3 ���;[���� x]�4

[] ⊢0 s1 ⇝ ([���� x]�2 , ([x ↦ (u, 𝜖,�1)],−,−,−),�1])

[] ⊢1 s1 ⇝ ([���� x]�2 , ([x ↦ (v, 𝜖,�1)],−,−,−),�1])

[] ⊢0 s2 ⇝ ([���� x]�4 , ([x ↦ (u, 𝜖,�2)],−,−,−),�1�2])

[] ⊢1 s2 ⇝ ([���� x]�4 , ([x ↦ (v, 𝜖,�3)],−,−,−),�1�3])

817

1 3

International Journal of Parallel Programming (2021) 49:802–819

However, we must also ensure that concomitant pop instructions must refer to
the same line in the stack. This last requirement is met by enforcing concomittent
push/pop to operate over single-valued memory locations. Global synchronisation
barriers must also be textually aligned. The following proposition formalizes this
intuition.

Proposition 2 If all barriers in s are textually aligned and if push/pop instructions
in s are textually aligned and single-valued then s is well matched.

Proof We prove a stronger property which is that for every reach-
able state v there exists R, R′ and S such that for each process i we have
�i(v) = (Ci[����], (−, Si,−,Ri),−) and

where ⋍ is applied point-wise. Because barriers are textually aligned, we can reason
on a single step and conclude by induction on the number of barriers crossed so far.
So suppose the property holds at the beginning of the step. By hypothesis and by
Lemma 2, push/pop instructions at � that occurs in i at path pti also occurs, in same
order, in j at path ptj and Δ

�
(pt) = Δ

�
(ptj) . By the single value hypothesis we have

requests that are performed in the same order with compatible (with respect to ⋍)
values. Moreover, the stacks are equivalent because of the hypothesis (pushed/pop
values were equivalent at the end of the previous step). If there is no previous step,
the initial state trivially satisfies the conditions. ◻

In this section, we have shown how textual alignement can be used to define an
effective notion of logical time. We have used this logical time to provide the first,
as far as we know, formal definition of single-valuedness in SPMD programs.
Finally, we have shown how to combine textual alignment and single-valuedness
to define sufficient conditions to ensure correctness of drma collectives in a bsp
like language. Here, we have focused on issues related to the collective nature of
push and pop instructions. It is still possible for a program to get stuck because
processes collectively fail, for example by trying to pop a non-valid register. Such
behavior can be ruled out by simple local correctness properties. This issue was
already considered in [28].

8 Conclusion

We have formally defined sufficient conditions to ensure correctness of collec-
tive drma communications la bsp. These sufficient conditions rely on the formal
definitions of two important properties, namely textual alignment and single-
valuedness. The formal definition of textual alignment improves on our previous
work in term of simplicity. As far as we know this is the first formal definition
of single-valuedness based on textual alignment. We have shown that the latter

R
↓

i
⋍ R ∧ R

↑

i
⋍ R� ∧ Si ⋍ S

818 International Journal of Parallel Programming (2021) 49:802–819

1 3

permits to define the former not only at synchronization points but also at all tex-
tually aligned points. Indeed, textually aligned program points behave as synchro-
nization points at the logical level. We are currently working on a static analysis.
We also expect to study the interaction of our analysis with the PARCOACH [37]
dynamic checker. In this context, we expect our analysis to reduce the overhead
of its instrumentation by removing checks that operate over textually aligned
program points. Another direction is to consider more collective communication
schemes like broadcast, map, reduce and others.

References

 1. Larbey, F., Auguin, M.: Opsila an advanced simd for numerical analysis and signal processing.
In Microcomputers: developments in industry, business, and education, Ninth EUROMICRO
Symposium on Microprocessing and Microprogramming, pages 311–318, Madrid, (1983)

 2. Darema, F.: Spmd model: past, present and future, recent advances in parallel virtual machine
and message passing interface. In Proceedings of the 8th European PVM/MPI Users’ Group
Meeting, Lecture Notes in Computer Science, Santorini/Thera, Greece, (2001)

 3. Flynn, Michael J.: Some computer organizations and their effectiveness. IEEE Trans. Comput.
21(9), 948–960 (1972)

 4. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 3.1
 5. OpenMP Architecture Review Board. OpenMP application program interface version 3.0. http://

www. openmp. org/ mp- docum ents/ spec30. pdf, May (2008)
 6. van Duijn, Mick, Visscher, Koen, Visscher, Paul : BSPLib: a fast, and easy to use C++ imple-

mentation of the Bulk Synchronous Parallel (BSP) threading model. http:// bsplib. eu/
 7. Loulergue, Frédéric, Hains, Gaétan: Functional parallel programming with explicit processes:

Beyond SPMD, pages 530–537. Springer Berlin Heidelberg, Berlin, Heidelberg, (1997)
 8. Loulergue, Frédéric, Gava, Frédéric, Billiet, David: Bulk Synchronous Parallel ML: Modular

Implementation and Performance Prediction. volume 3515 of LNCS, pages 1046–1054. Springer,
(2005)

 9. Gava, F., Loulergue, F.: A static analysis for bulk synchronous parallel ml to avoid parallel nesting.
Future Generation Computer Systems, 21(5):665 – 671, (2005). Parallel computing technologies

 10. Darema, Frederica: SPMD Computational Model, pages 1933–1943. Springer US, Boston, MA,
(2011)

 11. Hill, Jonathan M. D., McColl, Bill, Stefanescu, Dan C., Goudreau, Mark W., Lang, Kevin , Rao,
Satish B., Suel, Torsten, Tsantilas, Thanasis, Bisseling, Rob H.: Bsplib: The bsp programming
library. Parallel Comput., 24(14):1947–1980, December (1998)

 12. Yzelman, A.N., Bisseling, R.H., Roose, D., Meerbergen, K.: Multicorebsp for c: A high-perfor-
mance library for shared-memory parallel programming. Int. J. Parallel Program. 42(4), 619–642
(2014)

 13. Kamil, Amir, Yelick, Katherine: Concurrency analysis for parallel programs with textually aligned
barriers. In Proceedings of the 18th International Conference on Languages and Compilers for Par-
allel Computing, LCPC’05, pages 185–199, Berlin, Heidelberg, (2006). Springer-Verlag

 14. Chen, C., Huo, W., Li, L., Feng, X., Xing, K.: Can we make it faster? efficient may-happen-in-par-
allel analysis revisited. In 2012 13th International Conference on Parallel and Distributed Comput-
ing, Applications and Technologies, pages 59–64, Dec (2012)

 15. Chatarasi, Prasanth, Shirako, Jun, Kong, Martin, Sarkar, Vivek: An Extended Polyhedral Model for
SPMD Programs and Its Use in Static Data Race Detection, pages 106–120. Springer International
Publishing, Cham, (2017)

 16. Jakobsson, Arvid, Dabrowski, Frédéric., Bousdira, Wadoud, Loulergue, Frédéric, Hains, Gaetan:
Replicated synchronization for imperative BSP programs. Procedia Computer Science, 108:535–
544, : International Conference on Computational Science, ICCS 2017, 12–14 June 2017. Zurich,
Switzerland (2017)

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://bsplib.eu/

819

1 3

International Journal of Parallel Programming (2021) 49:802–819

 17. Dabrowski, Frederic: Textual Alignment in SPMD Programs. In SAC ’18: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, Pau, France, April (2018)

 18. Dabrowski, Frédéric.: A denotational semantics of textually aligned spmd programs. J. Logic.
Algeb. Methods Program. 108, 90–104 (2019)

 19. Aiken, Alexander, Gay, David: Barrier inference. In Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’98, pages 342–354, New
York, NY, USA, (1998). ACM

 20. Gay, D.: Barrier Inference. PhD thesis, University of California, Berkeley, (1998)
 21. Yelick, Kathy, Semenzato, Luigi, Pike, Geoff, Miyamoto, Carleton, Liblit, Ben, Krishnamurthy,

Arvind, Hilfinger, Paul, Graham, Susan , Gay, David, Colella, Phil , Aiken, Alex: Titanium: a high-
performance java dialect. Concurrency: Practice and Experience, 10(11-13):825–836, (1998)

 22. Hilfinger P. N., (editor), Bonachea, Dan, Gay, David , Graham, Susan, Liblit, Ben, Pike, Geoff,
Yelick, Katherine: Titanium Language Reference Manual, Version 1.16.8. Technical Report UCB//
CSD-04-1163x, Computer Science, UC Berkeley, (2004)

 23. Kamil, Amir, Yelick, Katherine: Enforcing Textual Alignment of Collectives Using Dynamic Checks,
pages 368–382. Springer Berlin Heidelberg, Berlin, Heidelberg, (2010)

 24. Kamil, A.: Problems with the titanium type system for alignment of collectives. unpublished note,
(2006)

 25. Knüpfer, Andreas, Hilbrich, Tobias, Protze,Joachim, Schuchart, Joseph: Dynamic Analysis to Sup-
port Program Development with the Textually Aligned Property for OpenSHMEM Collectives,
pages 105–118. Springer International Publishing, Cham, (2015)

 26. Huchant, Pierre, Saillard, Emmanuelle, Barthou, Denis, Carribault, Patrick: Multi-valued expres-
sion analysis for collective checking. In Ramin Yahyapour, editor, Euro-Par 2019: Parallel Process-
ing, pages 29–43, Cham, (2019). Springer International Publishing

 27. Zhang, Yuan, Duesterwald, Evelyn: Barrier matching for programs with textually unaligned barri-
ers. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’07, pages 194–204, New York, NY, USA, (2007). ACM

 28. Bousdira, Wadoud, Jakobsson, Arvid, Dabrowski, Frederic: Safe Usage of Registers in BSPlib. In
SAC 2019, Limassol, Cyprus, April (2019)

 29. Gava, Frédéric, Fortin, Jean: Formal semantics of a subset of the paderborn’s bsplib. In Proceedings
of the 2008 Ninth International Conference on Parallel and Distributed Computing, Applications
and Technologies, PDCAT ’08, page 269–276, USA, (2008). IEEE Computer Society

 30. Tesson, Julien, Loulergue, Frédéric: Formal semantics of drma-style programming in bsplib. In
Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Wasniewski, editors, Parallel
Processing and Applied Mathematics, pages 1122–1129, Berlin, Heidelberg, (2008). Springer Ber-
lin Heidelberg

 31. Fortin, Jean, Gava, Frédéric: Towards mechanised semantics of hpc: The bsp with subgroup syn-
chronisation case. In Proceedings of the ICA3PP International Workshops and Symposiums on
Algorithms and Architectures for Parallel Processing - Volume 9532, page 222–237, Berlin, Heidel-
berg, (2015). Springer-Verlag

 32. Software. BSML: Bulk synchronous parallel ml, a library for BSP programming in OCaml. https://
tracl ifo. univ- orlea ns. fr/ BSML/

 33. Software. BSPOnMPI, a platform independent software library for developing parallel programs.
http:// bspon mpi. sourc eforge. net/

 34. Software. MultiCoreBSP, BSP programming on modern multicore processors. http:// www. multi
coreb sp. com/

 35. The Coq Development Team. Coq. https:// coq. inria. fr
 36. Dabrowski, Frédéric: Jlamp (2019), coq artefact. https:// github. com/ Dabro wskiFr/ coq- jlamp 2018
 37. Huchant, Pierre: Saillard, Emmanuelle, Barthou, Denis, Brunie, Hugo, Carribault, Patrick: PAR-

COACH Extension for a Full-Interprocedural Collectives Verification. In Second International
Workshop on Software Correctness for HPC Applications, Dallas, United States (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://traclifo.univ-orleans.fr/BSML/
https://traclifo.univ-orleans.fr/BSML/
http://bsponmpi.sourceforge.net/
http://www.multicorebsp.com/
http://www.multicorebsp.com/
https://coq.inria.fr
https://github.com/DabrowskiFr/coq-jlamp2018

	On Single-Valuedness in Textually Aligned SPMD Programs
	Abstract
	1 Introduction
	2 Related Works
	3 BSP
	4
	4.1 Syntax
	4.2 Semantics
	4.3 Definitions

	5 Programming Errors
	6 Textual Alignment
	7 Single Valuedness
	7.1 Definition
	7.2 Correctness Criterion

	8 Conclusion
	References

