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Abstract
The Divide-and-conquer (D&C) pattern appears in a large number of problems and
is highly suitable to exploit parallelism. This has led to much research on its easy
and efficient application both in shared and distributed memory parallel systems.
One of the most successful approaches explored in this area consists of expressing
this pattern by means of parallel skeletons which automate and hide the complexity
of the parallelization from the user while trying to provide good performance. In
this paper, we tackle the development of a skeleton oriented to the efficient parallel
resolution of D&C problems with a high degree of imbalance among the subproblems
generated and/or a deep level of recurrence. The skeleton achieves in our experiments
average speedups between 11 and 18% higher than those of other solutions, reaching
a maximum speedup of 78% in some tests. Nevertheless, the new proposal requires an
average of between 13 and 29% less programming effort than the usual alternatives.

Keywords Algorithmic skeletons · Divide-and-conquer · Template
metaprogramming · Load balancing

1 Introduction

Divide-and-conquer [1], hence denoted D&C, is widely used to solve problems whose
solution can be obtained by dividing them into subproblems, separately solving those
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subproblems, and combining their solutions to compute the one of the original prob-
lem. In this pattern the subproblems have the same nature as the original one, thus
this strategy can be recursively applied to them until base cases are found. The inde-
pendence of the subproblems allows exploiting parallelism in this pattern, and the
fact that it has a well defined structure allows expressing it by mean of algorithmic
skeletons [7], which automate the management of typical patterns of parallelism [22].
Since skeletons hide the implementation details and the difficulties inherent to par-
allel programming from the user, they largely simplify the development of parallel
versions of these algorithms with respect to manual implementations. In fact several
parallel skeletons for expressing D&C problems have been proposed in the literature,
either restricted to sharedmemory systems [9,13,20] or supporting distributedmemory
environments [3,6,8,12,14]. In addition to the large number of problems that exhibit a
D&C pattern, properly designed D&C skeletons can be used to express or implement
other very common patterns such as map or reduce [15]. In our opinion, this wide
applicability makes it extremely interesting to develop highly optimized skeletons for
this pattern.

A common shortcoming of the skeletons for D&C we know of are their lim-
ited mechanisms to deal effectively with problems with large degrees of imbalance
among their subtasks and/or large depths of recursion. For example, Sect. 4 shows that
very unbalanced algorithms achieve limited speedups under the optimized skeleton
in [13] due to their imbalance. This is the case of uts-T2XL, described in Table 1,
or topsorts, discussed in Sect. 4.3, which achieve speedups of 17.8 and 14.3 when
using 24 threads in the evaluation platform described in Sect. 4, respectively. As
we can see these speedups are far from the optimal values near 24 that would be
desirable for these very parallel problems. There are several reasons for this inef-
ficiency. In this regard, some skeletons only provide static load balancing, which
is inadequate for irregular unbalanced problems. Most skeletons provide dynamic
load balancing by turning each individual step of the algorithm into a task that can
be stolen by any thread in a work-stealing scheme. However, this packaging and
availability as task of every single step, together with the cost incurred by the par-
allel threads when competing for every task, imposes a large overhead when there
are many steps or they are relatively lightweight. This problem can be ameliorated
by limiting the number of tasks created and increasing their granularity. Neverthe-
less, in the implementations found once a task is not partitioned, it cannot be later
partitioned even if this were required to achieve load balancing, thus limiting the
performance. As for the problem related to deep recursions in D&C algorithms, it
appears when the recursions rely on the stack, something very usual as it is natural
and provides good performance. The problem appears when a deep recursion crashes
the application because of the limited maximum size of the stack memory in many
systems.

This paper presents a C++ parallel skeleton for the resolution of D&C prob-
lems in shared memory systems that avoids these problems. Our skeleton, called
parallel_stack_recursion, is an evolution of theparallel_recursion
skeleton proposed in [13] after a complete redesign and reimplementation. To solve
the aforementioned issues, it provides advanced task-stealing based on stacks of
tasks located in the heap, which avoids the deep recursion problems. The imple-
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mentation ensures minimal contention among the threads by supporting private and
shareable groups of tasks per thread as well as stealing several tasks at once. Also,
it uses very light tasks, which allows the continuous creation of parallel tasks. This
leads to a cheap load balancing that provides efficient executions in many scenarios
where other skeletons fail or underperform. Our new implementation is available at
https://github.com/fraguela/dparallel_recursion together with the material published
in [13,14].

The rest of this paper is organized as follows. The next section reviews the key
aspects and main problems of the D&C skeleton parallel_recursion. Then,
our solution to these problems is presented in Sect. 3, where the new skeleton and its
implementation details are explained. The evaluation of our proposal is presented in
Sect. 4, which is followed by a discussion of the the related work in Sect. 5. Section 6
is devoted to our conclusions and future work.

2 The parallel_recursion Skeleton

In this section we will describe the D&C algorithm template parallel_
recursion, including the limitations that led us to propose a new alternative in
this field.

2.1 Syntax and Semantics

Specifying aD&Calgorithm requires providing functions to decidewhether a problem
is a base case or, on the contrary, it can be subdivided into subproblems, to subdivide
a non-base case, to solve a base case, and to obtain the solution of a non-base problem
by combining the solutions of its subproblems. The analysis performed in [13] noticed
that the two first functions are mostly, and often exclusively, related to the nature of
the input data structure to process, while the two latter ones more strongly relate to
the computation being performed. For this reason, parallel_recursion relies
on two separate objects to provide these two groups of elements. We now describe in
turn the requirements for these objects, which are modeled by the C++ class templates
Info and Body shown in Listing 1.
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Listing 1 Class templates with pseudo-signatures for the info and body objects used by
parallel_recursion

template<typename T, int N >
struct Info : Arity < N > {
bool is_base(const T & t ) const ; / / base case detection
int num_children(const T & t ) const ; / / num. of subtasks of t
T child ( int i , const T & t ) const ; / / get i−th subproblem of t

};

template<typename T, typename S >
struct Body : EmptyBody < T, S > {
void pre(T & t ) ; / / preprocessing of t before partition
S base(T & t ) ; / / solve base case
S post (T & t , S ∗r ) ; / /combine children solutions

};

The object that describes the structure of the problem is called the info object and
it must belong to a class that provides the member functions is_base(t), which
indicateswhether a givenproblemt is a base case or not,num_children(t),which
gives the number of subproblems in which a non-base problem can be subdivided, and
finally child(i, t), which returns the i-th child of the non-base problem t. As
shown in Listing 1, the class Info for this object must derive from a class Arity<N>
provided by the library, where N is either the number of children of every non-base
case of the problem, when it is fixed, or the identifier UNKNOWNwhen this value is not
a constant. In the first case, Arity<N> automatically provides the num_children
function member so that users do not need to implement it.

We call body object the one that provides the computations. Its class must provide
the functions of the class templateBody shown in Listing 1. Here,base(t) provides
the solution for a base case t, while post(t, r) receives in the pointer r the array
of solutions to the subproblems in which a non-base problem t was subdivided so
that combining them, maybe with some additional information from t, it can compute
the solution to the parent problem t. The object class must also support a function
member pre(t) that allows performing computations on the problem t before even
checking whether it is a base problem or not, as it was found to be useful for some
D&C problems. The library provides a class template EmptyBody<T,S> that can
be used as base case for the body object classes, where T is the type of the problems
and S is the type of the solutions, although this it not required. The main advantage
of EmptyBody is that it provides empty implementations of all the body functions
required, so that deriving a class from it avoids writing unneeded components.

Besides the input problem and the two aforementioned objects, the skeleton accepts
a fourth optional argument called thepartitioner. Its role is to indicatewhen parallelism
should be applied during the execution of the skeleton. The partitioner can be of three
different classes. If a partitioner of the simple_partitioner class is used, the
skeleton parallelizes the resolution of any non-base problem. This behavior is the only
possible one in the other shared-memory skeletons we know of [9,20].
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Since this partitioner breaks the resolution of every non-base problem into parallel
tasks, it is the most suitable one when the cost of the subproblems generated may
be very unbalanced and they have a minimum degree of granularity. This second
condition is required so that the overhead of creating and scheduling every single step
as a task is not counterproductive. An example of problem of this kind is the UTS [24]
benchmark, whose subtasks can be extremely unbalanced, but which have a suitable
minimum cost because for each subproblem various calculations of SHA1 hashes are
performed to generate pseudorandom numbers.

The second kind of partitioner is the auto_partitioner. Under its control the
skeleton applies heuristics in order to try to generate a number of parallel tasks that
keeps busy the threads available while allowing for some load balancing, in case the
tasks were not of identical size. This partitioner generates sequential non-partitionable
tasks once a given level of recursion of the D&C is reached in which the heuristics
assume that enough tasks have been generated. For this reason it is adequate when the
imbalance between the tasks is not too large and it can thus be reasonably addressed
by generating a number of tasks per thread rather than a single one at the top levels of
decomposition of the problem. Algorithms in which the packaging and scheduling as a
parallel task of every single step would be very expensive in comparison with the cost
of the step itself also benefit from this partitioner. Concrete examples of algorithms
that benefit from this partitioner are the resolution of the N Queens problem, whose
high level subtask are not too unbalanced, or the recursive computation of Fibonacci
numbers, in which each step is very lightweight.

Finally, with the custom_partitioner users decide when to apply parallelism
bymeans of ado_parallel(t)member function that theymust provide in the info
object. The function must return a boolean that indicates whether problem t should
be solved using parallelism or not. This partitioner is interesting for problems with
meaningful imbalance where the user can estimate whether it is worth to parallelize a
problem in order to promote load balancing or, on the contrary, it is a bad idea because
the problem is too small. For example, the Fibonacci computation can improve its
performancewith this partitioner if we fine-tunewhen it is actually worth to parallelize
a step. Another example is the floorplan benchmark [11], which computes the optimal
floorplan distribution of a number of cells. While its tasks are too small for a simple
partitioner, they are too unbalanced for the automatic partitioner. Thus only a user-
tuned custom partitioner can find the best balance between creating enough parallel
tasks for the load balancing and avoiding excessive overhead for the task creation.

Listing 2 illustrates the use of the skeleton in a problem consisting in adding the
value val stored in a tree of nodes of type tree_t in which each node has a variable
number of childrenwhose pointers are stored in astd::vector<tree_t*> called
children. The base cases are identified by the is_base member function of the
info object, whose class is TreeAddInfo, as those nodes whose vector of children is
empty. These nodes just contribute their stored value val to the reduction, as shown in
the member function base of the body object, whose class is TreeAddBody. The
num_children member function of the info object provides the correct variable
number of children of each node, each child being obtained by means of the child
member function of the same object. Finally, the post member function of the body
object uses the std::accumulate function to add the values returned by all the
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children of the node together with the value val stored in the node itself. The last
line in Listing 2 illustrates the invocation of the skeleton with the root of the tree and
applying an auto_partitioner to take the decisions on parallelization.

2.2 Implementation and Limitations

The implementation of parallel_recursion heavily relies on templates and
static parallelism, which are resolved at compile time, in order to avoid the costs
associated to runtime polymorphism. As for parallelism, it uses the low level API of
the Intel TBB [26] to build and synchronize the parallel tasks. This also means that
the library relies on the TBB scheduler to balance the workload among the threads,
which is achieved by means of work-stealing.

At the top level, the skeleton proceeds generating new parallel tasks to solve the
children subproblems of each non-base problem as long as the partitioner in use
decides that parallelism must be applied. However, when the partitioner decides that
a given problem must be solved sequentially, the skeleton assigns the solution of that
problem to a purely sequential highly optimized code that relies on the info and body
objects to perform the computation, but which never checks again the possibility of
creating new parallel tasks within the resolution of that problem. As a result, the task
graph generated by the skeleton takes the form of a tree that grows with new tasks as
long as the partitioner in use recommends doing so, and which once this is not the
case, reaches leaf tasks. Each leaf task recursively solves in a sequential fashion an
independent D&C problem.

The aforementioned strategy is very successful in many situations, but it presents
two main limitations. First, there is the issue of load balancing. As seen in [13], the
skeleton can provide good performance for some imbalanced problems by generating
more tasks than threads and letting the TBB scheduler balance them. However, some-
times this does not work well because the imbalance among tasks generated at high
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levels of the D&C tree may be too big to keep all the threads busy, while generating
parallel tasks down to the level needed to attain this balance could be very detrimental
to performance. In addition, even if we wished to assert as much control as possible
by means of a custom partitioner, it might not be possible to estimate whether it is
interesting or not to parallelize a given problem with the information available. As
an example, Sect. 4.3 shows that in the topsorts application our new proposal obtains
speedups between 28 and 43% larger than those of parallel_recursion in exe-
cutions using between 6 and 24 cores. As another example, in the same execution
environment, the UTS [24] benchmark with the input uts-T2XL described in Table 1
attains speedups 22% higher than this skeleton in the same environment. The reason
in both cases is that the workload is very imbalanced and this skeleton cannot balance
it among the threads as efficiently as our new proposal. And this is despite the fact that
parallel_recursion does perform some load balancing. This way, for example
its speedups for the uts-T2XL problem are between 3.5 and 9.4 times larger that those
obtained in a parallel execution without any load balancing when using between 6 and
24 threads in the same system, respectively.

The second limitation is related to the implementation of the serial computations
performed by the skeleton when it decides not to parallelize a D&C problem. They
follow a very efficient and simple recursive strategy that relies on stackmemory for the
recursive calls. Unfortunately, stack memory is much more limited than other kinds
of memory, and if this recursion is very deep it can be easily exhausted, breaking
the program. As in the case of the load balancing problem, this can be solved by
reducing the size of the sequential tasks applying parallelism up to deeper levels in
the D&C tree. However, often this does not solve the stack memory problems either,
as this limitation also exists in the case of the parallel computations of this skeleton.
The reason is that the frame in which a parallelized problem is considered remains
in the stack until the lower level tasks it generates finish and return their results,
which also implies continuous growth in the depth of the stack memory as deeper
and smaller parallel tasks are generated. Furthermore, the excessive parallelization
may have important additional costs due to the overheads associated to the creation,
scheduling and synchronization of the tasks. This problem is also illustrated in our
evaluation in Sect. 4, as we will see that this skeleton cannot support the input uts-
T3XXL from Table 1 for the reasons just stated, while our new skeleton successfully
parallelizes it.

3 A NewD&C Algorithm Template

Given the nature of the problems of the parallel_recursion skeleton described
in Sect. 2.2, our first approach to solve them was to try to minimize the changes
required following an incremental strategy. Namely, we designed new partitioners
that allowed spawning new parallel tasks from tasks that such partitioners had decided
to run sequentially at some point, something that the original skeleton did not support.
Unfortunately, the results obtained were unsatisfactory, which led us to consider a
complete redesign and reimplementation in a form of a new algorithm template which
we call parallel_stack_recursion. We now discuss in detail the strategy
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followed by this parallel skeleton together with its interface and a very useful auto-
tuning feature for its most critical parameter.

3.1 Implementation Strategy

We observed that the cost of the creation and management of parallel tasks and the
decision on when to build them in order to balance the workload could imply large
overheads, particularly in algorithms in which the core computation was relatively
lightweight. As a result we decided to build our new algorithm template so that it would
have a single parallel task per thread, and to base the load balancing on the ability of
such tasks to steal pendingwork fromother tasks,which should be cheaper. This largely
simplified the structure of the parallel execution, in particular avoiding the requirement
of parallel_recursion to perform an efficient scheduling of parallel tasks,
which this skeleton obtained by relying on the excellent scheduler of the Intel TBB
framework. As a result, the parallelization of parallel_stack_recursionwas
just based on the C++11 facilities for multithreading, thus eliminating the dependency
on Intel TBB. This allows us to avoid the framework limitations and achieve full
control over the implementation and a much greater margin of customization. Since
the skeleton uses a single task per thread, both words will be used interchangeably in
what follows.

In order to enable the load balancing among the threads, the library could simply
rely on a shared queue where all the threads could place and retrieve problems to
process such as the one proposed in [20]. However that strategy implies the need for
synchronizations on the queue every time a thread requests a new problem to process
or tries to insert new pending problems. For this reason we designed a data structure in
which each thread has its own container of pending problems, where it places the new
problems it generates and from which it obtains the problems it processes. The load
balancing is achieved in this structure by stealing pending work from the containers
of other threads when the current thread cannot find work in its own container. Such
steals of course must be performed with proper synchronization on the container of
the victim thread.

The use of the proposed containers to keep the problems also solves the second
issue of parallel_recursion related to the limitation of the stack memory, as
the data of our containers are stored in the heap and there are no longer recursive
calls within the skeleton. Rather, each thread works in a simple cycle in which, once
a new problem is obtained, it is processed in a single step if it is a base case, while
non base problems can be also subject to an optional processing, after which they
are decomposed in children problems that are stored in the container to be considered
later. In either case, the problem is then deallocated and the skeleton proceeds to obtain
a new problem to process.

As for the problem containers, given the recursive nature of D&C algorithms, and in
order to enhance locality, using stacks seemed the most natural and performant option.
As a result of this selection, since each thread will be always pushing and popping
problems from the top of its stack, it was clear thatwork stolen by another thread should
be taken from the opposite part of the stack, namely its bottom. Despite this adequate
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design decision, if work stealing could happen at any moment in the private stack of a
thread, this thread would always have to use synchronization mechanisms whenever
it accessed its stack in order to make sure it suffered no conflicts with work steals.
This would clearly strongly degrade the performance with respect to unsynchronized
accesses. In order to avoid this problem, the work stack of each thread is divided in
two dynamic sections:

– At the top we find the local section, which is exclusively reserved for the owner
thread. Since it is only accessible by its owner, work cannot be stolen from this
portion of the stack and the owner thread can therefore push and pop problems in
an unsynchronized fashion there. Each thread is expected to work the vast majority
of the time on this portion of the stack.

– Just below there is the shared section, from which other threads can steal work
when they run out of it, and in particular, from the bottomof this section.As a result,
and as its name implies, accesses to this region must always be synchronized.

While steals could always take place with a granularity of a single problem, there are
two reasons why in general it is more beneficial to steal chunks of several problems.
The first one is that the granularity of a single problem muy be too small. The second
one is that each steal has a non negligible overhead, so it is desirable to amortize this
cost among several stolen problems.

For these reasons our skeleton supports a parameter called chunkSize that controls
the number of problems stolen in a steal process.

Our library also uses the chunk size to decide when to migrate work between the
local and the shared sections of a stack. This way, when a local section has a size of
at least two chunk sizes, elements of the bottom of the local section are moved to the
shared section. Conversely, if a local section becomes empty, the associated thread
checks whether the shared section has at least chunkSize elements. If this is the case,
the chunkSize problems at the top of the shared section, which are next to the just
emptied local section, are moved to this latter section. If on the contrary the shared
section has no data, the thread will try to steal chunkSize problems, from another
stack. The data movements between –always consecutive– sections of the same stack
are very cheap because, beyond the required synchronization, as they always affect the
shared section, they do not imply any actual data movement, but rather a modification
of pointers that indicate the limits of the sections on the stack.
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FUNCTION ThreadExecution(thread Id, body, in f o, result) :
while not(allT hreadStacksEmpty()) do

while not(stack[thread Id].localSectionEmpty()) do
i tem ← stack[thread Id].pop()
body.pre(i tem)

if in f o.is_base(i tem) then
base_res ← body.base(i tem)

body.post(base_res, result)
else
body.pre_rec(i tem)

if body.process_non_base then
non_base_res ← body.non_base(i tem)

body.post(non_base_res, result)
end if
if in f o.doParallel(i tem) then

for i ← 0 to in f o.num_children(i tem) do
child ← body.child(i tem, i)
stack[thread Id].push(child))

end for
stack[thread Id].releaseWorkT oSharedSection()

else
computeSequentially(i tem, body, in f o, result)

end if
end if

end while
if stack[thread Id].stealWorkFromSharedSection() == FAI L then
victim Id ← f indV ictimWithWork()
stolenWork ← stack[victim Id].stealWork()
stack.push(stolenWork)

end if
end while
END FUNCTION

Listing 3 Pseudocode of the thread main function of parallel_stack_recursion

A final issue to consider is what to do when a thread cannot find work to steal from
any other thread. In this case, it spinlocks, waiting for a signal that is activated each
time that any thread releases a chunk to its shared section. At that point, the thread
retries the steal process. If at any time it is detected that all threads are in the spinlock
waiting for work, this means that all the problems have already been processed and
the execution of the algorithm finishes.

Listing 3 summarizes as a pseudocode the operation of each thread in our skeleton
following the strategy just described. We can can see that the body object presents a
somewhat different interface from the one of parallel_recursion. This change
and its motivation is explained in Sect. 3.2.
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3.2 Interface

One of the aims in the design of parallel_stack_recursion was to
minimize the changes in its interface so that it were as similar as possible
to that of parallel_recursion. Indeed the new algorithm template can
use exactly the same info objects and with the same semantics as the original
parallel_recursion algorithm. There are some changes however in the body
and partitioner objects supported, which we now explain in turn.

3.2.1 Body Object

Given the implementation described in Sect. 3.1, a problem is destroyed as soon as its
children are generated, which makes it impossible to use the post member function
described in Sect. 2.1. It would have been possible to use still that interface, at the cost
of more memory and CPU consumption, by storing somewhere subdivided problems
until all their subproblems are processed, and by adding in the internal data structures
of the library components to associate each problem with its subproblems and their
solutions. However, when we analyzed the highly unbalanced problems for which
the new skeleton was useful, we found that the reduction operations of their D&C
algorithms were not only associative and commutative, but also that we could not find
situations in which it were necessary to process together a problem with the solution
of its subproblems. Therefore, although it would have been perfectly possible to use
exactly the same body objects as parallel_recursion, for efficiency reasons
we propose a new post function that covers all the problems we found and is in fact
easier to write than the original one. Its signature is

void post(const S& local_result, S& global_result)
where S is the type of the results, local_result is a partial result such as the one
obtained by processing a base problem by means of the base member function, and
global_result is the global result with which the local result must be reduced. A
restriction with this design is that while with the original post function the non base
problems could contribute to the computation of the global result, this is impossible
now. The reason is that since partial results are only obtained from the base functions
applied to base problems and their reductions performed by post invocations, the
intermediate nodes of the tree have no mechanism to contribute to the global result
beyond the results of its children. While this is enough in many problems, whose
results are obtained by combining only the results obtained at the leaves of the D&C
recursion tree, in some algorithms the internal nodes may also have a contribution to
the result. For this reason, the body objects of our skeleton support a

S non_base(const T& t)
member function that computes a partial result from a non base node t. The
EmptyBody template introduced in Sect. 2.1 provides a default implementation of
this function that just invokes the base member function. Finally, since only some
problems benefit from the non_base function, the EmptyBody template now sup-
ports a third optional argument which is a boolean that indicates whether this function
should be used, when true, or not, when false.
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Listing 4 Reduction on a tree using parallel_stack_recursion

struct NewTreeAddBody: public EmptyBody <tree_t ∗ , int , true> {
int base( tree_t ∗ t ) { return t−> val ; }
void post ( int local , int& global ) { global + = local ; }

};

int r = parallel_stack_recursion<int >(root , TreeAddInfo() , NewTreeAddBody( ) ) ;

Given the explanations above, the problem expressed in Listing 2 usingparallel
_recursion can be rewritten usingparallel_stack_recursion as shown in
Listing 4. The listing does not include theTreeAddInfo class because it is identical.
As for the body class, since the internal nodes of thisD&Crecursion tree also contribute
to the result, it derives from an instantiation of the EmptyBody class template whose
third argument is true. The member function non_base is not implemented though,
as its default implementation relies on the base member function, which suffices in
this case, as both base and non base nodes contribute their val value to the global
result. Altogether we can see that the interface is very similar and somewhat simpler
than that of parallel_recursion.

3.2.2 Partitioner

The second change reflected in the interface pertains to the partitioner. Inparallel_
recursion this object decides when to switch from parallel computation, by gen-
erating and synchronizing new parallel tasks, to sequential computation, by entering
a sequential recursive computation. In parallel_stack_recursion however,
there is always a single task per thread that iteratively works on its container stack,
sometimes stealing work from other stacks. Therefore the role of the partitioner was
redefined. Namely, in this skeleton it chooses whether a given problem taken from the
stack must be processed using the aforementioned strategy based on dynamic stacks
described up to this point or, on the contrary, it must be solved by means of a recursive
sequential computation unrelated to the stack container analogous to those offered by
parallel_recursion. The second alternativemeans that all the computations are
directly performed in the thread that took the problem from its stack, making impos-
sible the stealing of portions of this D&C recursion tree by other threads. It has the
advantage however that the computation can be faster because every interaction with
the container stack is avoided and replaced with a direct optimized recursive execution
that relies on the stack memory of the thread. This can be particularly advantageous
for problems whose computations are very simple.

In parallel_stack_recursion, the simple partitioner gives place to the
default behavior that relies on the container stacks for all the processing, while the
custom partitioner allows to programmatically choose between the default behavior
and the optimized sequential resolution for every problem taken from the stack. This
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Fig. 1 Performance of several benchmarks in a 24 core system using the parallel_stack_
recursion library with the simple partitioner as a function of the chunkSize

partitioner must be used with caution, since it can cause the same problems of imbal-
ance and excessive stack memory usage that the new skeleton intends to avoid.

Regarding the automatic partitioner, we must remember that the effort to develop
this new skeleton derives from the impossibility to find adequate work decomposi-
tions in terms of overhead incurred and load balancing in the original skeleton for
very irregular problems. As a result, it seemed of little use to support any automatic
partitioner in the new skeleton, since there are no simple heuristics that allow to obtain
good performance in the irregular unbalanced problems it is oriented to. This is why
we can notice that Listing 4 does not use the automatic partitioner used in Listing 2.

3.3 Chunk Size Auto-tuning

As we have seen, our skeleton only introduces one quantitative parameter, called
chunkSize, which controls the granularity of the steals among threads as well as the
movements between the sections of a stack. This is one of the most important param-
eters that influences performance. Usually, a program has a set of consecutive chunk
sizes that provide good performance and, as one moves away from these values, the
performance begins to decrease, sometimes very quickly. The reason is that if the
chunk size is too small, the threads consume too much time performing continuous
steals, while if it is too large, there are fewer steals and some threads remain idle for
too long. Unfortunately, there is no a universal value for this parameter that guarantees
good performance for all cases, as the best value depends on many factors such as
the type of D&C problem, its implementation, and even on the processor architecture
where the execution is performed.

Figure 1 illustrates the comments we have just made by representing the perfor-
mance of some benchmarks used in our evaluation in Sect. 4 when they are parallelized
using different chunk sizes for parallel_stack_recursion. The performance
is measured as the speedup achieved with respect to an optimized sequential execution
when running each problem using 24 threads, i.e. one per core, in the system used in
our experiments, also described in Sect. 4, and a simple partitioner. We can see that the
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Table 1 Benchmarks used

Name Problem size Seq. time (s)

uts-T3XXL Binomial tree, 2793M n, h 99049 519.867

uts-T2XL Geometric [cyclic branch factor] tree, 1495M n, h 104 457.092

N Queens 16 × 16board 178.696

fib 54st Fibonacci number 332.491

floorplan Optimal placement of 20 cells in a floorplan 6.381

knapsack 44 total items 293.059

n stands for nodes and h for heights

performance is basically a concave downward curve (inverted U shape) with respect to
the chunk size because of the aforementioned problems when the chunks are too large
or too small. Interestingly, while benchmarks such as fib present a very limited number
of chunk sizes that provide good performance, others reach near optimal performance
for a large range of values.

Given the importance of this parameter and the difficulty to predict a priori a good
value for it, users should perform tests in order to choose a reasonable value for their
executions. While doing this manually is not particularly difficult, it is tedious and it
represents additional work that can be automated. For this reason, another contribution
of our new library is an auto-tuning framework that automatically searches for the best
chunk size for a given problem and environment. The framework allows to control
the search process, for example, the amount of time of the search or the size of the
number of tests.

4 Evaluation

The core of our evaluation relies on the benchmarks described in Table 1, which
includes their sequential runtime in the system used in the experiments. The uts
(Unbalanced Tree Search [24]) benchmark processes unbalanced trees of different
shapes and sizes. The two main types of trees it suports are binomial and geometric.
A binomial tree is an optimal adversary for load balancing strategies, since there is no
advantage to be earned by choosing to move one node over another for load balance:
the expected work at all nodes is identical. In geometric trees however the expected
size of the subtree rooted at a node increases with proximity to the root.

The N Queens benchmark solves the N Queens puzzle problem, which computes
on how many ways can n chess queens be placed on an n × n chessboard so that no
two queens threaten each other.

The fib benchmark implements the recursive algorithm to compute the n-th
Fibonacci number. Although this is an inefficient method, it is often used in the litera-
ture of D&C and unbalanced algorithms. The enormous simplicity of its computations
is particularly interesting when evaluating a parallel skeleton like ours, since it is in
this kind of algorithmwhere the overheads of the library can bemore clearly observed.
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Two benchmarks from the Barcelona OpenMP Tasks Suite [11] are included,
floorplan and knapsack. The floorplan benchmark computes the optimal floorplan
distribution of a number of cells. This benchmark needs certain adaptations so that it
can be treated as a D&C problem, and it is interesting because it is a memory-bound
problem, where most of the runtime is making continuous memory copies, limiting its
scalability. For the knapsack benchmark, given a set of items, each with a weight and
a value, the application determines the number of each item to include in a collection
so that the total weight is less than or equal to a given limit and the total value is as
large as possible. These two benchmarks come with an aggressive pruning mechanism
based on the best result found up to that moment to reduce the search space, which
allows achieving large speedups and a high scalability. This effect is not very notice-
able in floorplan, specially because this is a memory-bound application with a short
sequential execution time, but is very noticeable in knapsack.

We will first analyze the performance of the skeleton, which will be followed by a
study on the programmability advantages it offers. In all cases, it will be compared to
the sequential version, a version developed using OpenMP, a version developed using
Cilk and another one based on the parallel_recursion algorithm template. For
Cilk and OpenMP, two different implementations are made, one that does not limit the
creation of tasks (simple), and another one manually tuned to limit the number of tasks
created by a cut-off mechanism (manual). In these manual versions the code inside a
non-partitionable task is purely sequential, as in our skeleton, andwe tuned each one of
their executions seeking the cut-off condition that led to the best possible performance.
The OpenMP versions are implemented with OpenMP tasks and they rely on custom
if statements in the manual version, which turned out to be more efficient than using
the OpenMP if clause. We are using tied tasks, and although we also tested the use
of untied tasks the performance was very similar. For parallel_recursion and
parallel_stack_recursion the use of the simple partitioner will be know as
simple version and the use of the custom partitioner will be know as manual version.
The parallel_recursion tests will include a third automatic version that relies
in its automatic partitioner.

The only exception to the explanations above is the uts OpenMP benchmark, for
which a single version, namely the highly optimized standard OpenMP version pro-
vided by the authors will be used. This code does not use tasks and rather relies on a
single parallel section with an optimized manual work-stealing stack-based strategy
similar to our new implementation.

While other approaches could not be compared for space reasons, it must be noted
that parallel_recursion was successfully compared to the recent D&C skele-
ton [9] in the single node experiments in [14], thus providing an approximate indirect
comparison to our new proposal.

As final step, our skeleton will be evaluated in the scope of an original application
consisting in the resolution of the topological sorts problem following the reverse
search approach.
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Fig. 2 Performance results of uts-T3XXL benchmarks

4.1 Performance Evaluation

All the measurements were taken in a server with 128 GB of memory and two
2.5 GHz Intel Xeon E5-2680v3 with 12 cores each, totaling 24 cores. The codes
were compiled with g++ 6.4.0 and the optimization level O3. We measured the per-
formance when using 6, 12 and 24 cores, always using a single thread per core. The
parallel_stack_recursion chunk size used was obtained by means of a sep-
arate auto-tuning configured to use just 10% of the runtime of the sequential version.
This time is not included in the performance measurements. This percentage should
not be taken as a rule and may vary for other benchmarks, we simply consider that for
our examples it is enough to provide a close to optimal chunk size with reliability. Fur-
ther tests proved that in our experiments the performance of the chunk size obtained
following this strategy was always almost identical to that of the optimal chunk size.

In all the figures, the benchmarks using parallel_stack_recursion will
be labeled as spar, those using parallel_recursion will be known as par,
those that are implemented with OpenMP will be labeled as omp and those that are
implemented with Cilk will be labeled as cilk.

The uts benchmark allows generating unbalanced trees that follow different distri-
butions and have different sizes and shapes depending on the arguments to the binary.
The T3XXL tree is predefined in the uts distribution package, while T2XL has been
added as example of a geometric tree with a circular factor branch, its uts parameters
being -t 1 -a 2 -d 26 -b 7 -r 220. The performance obtained on these
trees is now discussed in turn.

We consider that T3XXL is the most challenging benchmark tried, since this tree is
very deep and extremely unbalanced. Figure 2 shows the speedup with respect to the
standard sequential implementation achieved by our skeleton and the OpenMP UTS
implementation of the benchmark for 6, 12 and 24 threads. All the executions with
parallel_recursion failed with a stack overflow error no matter the partitioner
used, further confirming the interest of our new proposal. Similarly, all the executions
with Cilk failed due the fixed spawn deep limit of the framework, which is currently
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Fig. 3 Performance results of uts-T2XL benchmarks
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Fig. 4 Performance results of N Queens benchmarks

hardcoded. The figure only shows the results of parallel_stack_recursion
with a simple partitioner because we were unable to find a custom partitioner that
performed better. As we can see, our skeleton, despite strongly reducing the complex-
ity of the code with respect to the OpenMP implementation as shown in Sect. 4.2,
systematically offers between 6.5 and 7.1% better performance than the OpenMP
implementation.

It deserves to be mentioned that in experiments using smaller binomial trees so that
parallel_recursion would not break, it consistently offered clearly worse per-
formance than parallel_stack_recursion and OpenMP. Experiments with
smaller binomial trees using Cilk were unsuccessful and kept failing.

T2XL is a geometric tree with a cyclic branch factor, which makes somewhat diffi-
cult to balance its processing. As can be seen in Fig. 3, the use of the simple partitioner
in parallel_stack_recursion is enough to obtain the best performance, there
being no advantage in the use of a custom partitioner. The speedups obtained by Cilk
and parallel_recursion are always lower, and it is particularly interesting that
the use of the automatic partitioner provides very bad results for this benchmark. As
for OpenMP, despite the high programming cost of developing by hand its standard
manually optimized version, it performs about 2.7% slower than our skeleton.

Figure 4 shows the results of N Queens. The larger complexity of the compu-
tations of this benchmark allows the simple partitioner to obtain quite good results,
better than the simple version of all the other benchmarks, although slightly worse than
those ofmanually tunedOpenMP and Cilk. As expected, all tuned custom benchmarks
improve their performance, with our new proposal systematically offering better per-
formance than the other implementations. This way, it is consistently ∼ 4.9% faster
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Fig. 5 Performance results of fib benchmarks
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Fig. 6 Performance results of floorplan benchmarks

than parallel_recursion, ∼ 3.4% faster than Cilk and ∼ 4.2% faster than
OpenMP, except for 24 threads, where its advantage grows to 8.4%.

Figure 5 shows the performance of all the parallel implementations of fib. As
mentioned before, this is a particularly challenging benchmark given the extremely
lightweight nature of all the individual functions that conform it as a D&C algo-
rithm. This is clearly reflected in the poor performance of all simple implementations,
as the consideration of every single Fibonacci number computation as a separate
task to be managed leads to much overhead. Our new skeleton is considerably
more efficient than the others in this situation, being in fact 22 times faster than
parallel_recursionwhen 24 threads are used, and reaching a performance sim-
ilar to that of manual tuned OpenMP. The performance of all implementations grows
considerably for the manual versions, where the calculations of Fibonacci numbers
under some threshold are done sequentially. In this scenario our new proposal also
consistently outperforms the other implementations across all the parallel executions,
although for the parallel_recursion only for a small margin that decreases as
the number of threads grow. Namely, the speedup of the new skeleton with respect to
parallel_recursion goes from 10.6% for 6 threads to 2.7% for 24.

As for the absolute performance, both skeletons achieve superlinear speedups,
which are in addition much higher than that of the OpenMP and Cilk version, even
for its manual versions. Both behaviors are related to the fact, already observed and
discussed in [14], that the object code that the compiler generates from our skeleton is
muchmore efficient than the one it generates from the typical recursive implementation
used by the sequential, OpenMP and Cilk versions.

Figure 6 shows the results of floorplan. For the simple implementation of
benchmarks, Cilk provides the best performance. The adaptations performed in
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Fig. 7 Performance results of knapsack benchmarks

the parallel_recursion and parallek_stack_recursion versions to
implement this benchmark as a D&C problem prevent us from achieving good perfor-
mance with the simple partitioner. Using the automatic partitioner for parallel_
recursion only helps to some extent this problem. However, it is possible to
achieve higher performance than the rest of the implementations when we use a
custom partitioner in the manual versions, being our new skeleton a little behind
parallel_recursion in this case.

Finally, Fig. 7 shows the results of knapsack. The prune system implemented in
this benchmark causes the final execution time to be highly dependent on the order
of execution. All the benchmarks were written to ensure that they all execute the
loop iterations in the same order. Despite this effort, in a multithread environment,
each implementation has its own behavior and distributes the tasks among the threads
differently, giving place to great differences in performance. The task distribution of
parallel_stack_recursion is the best for this benchmark by far.

4.2 Programmability Comparison

The best approach to measure the programmability of different options is probably to
rely on the observations and results from a group of programmers with a similar degree
of expertise when trying to apply them [28]. This is seldom possible, thus, our study
relies on three approximate metrics of this kind. The first one is the number of source
lines of code (SLOC) excluding comments and blank lines. Its value strongly depends
on the programming style used and lines can widely vary in terms of complexity.
A more precise metric is the Halstead programming effort [16], which estimates the
complexity of the program through a formula that takes into account the number of
unique operands, unique operators, total operands and total operators found in the
code. The last metric computed is the cyclomatic complexity [23], defined as V = P
+ 1, where P is the number of predicates or decision points in a program.

Figure 8, shows the relative growth of all the metrics in the parallel versions with
respect to the sequential counterpart. The measurements were performed in all the
cases on the whole application. As expected, given their similar API and semantics,
the metrics are very similar for the two skeletons considered, which is interesting
given the more complex behavior and better performance of our new proposal. The
differences come basically from the changes in the post and non_base functions,
although the latter one is only required in uts.
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Fig. 8 Growth of the programmability metrics of the parallel implementations with respect to the sequential
one

The simple implementations using OpenMP and Cilk are the best in terms of pro-
grammability, but as we have seen in the previous section, they offer suboptimal
performance and even infeasible performance for all benchmarks. It is interesting
that, despite relying on compiler directives, whose API is usually terser than that
of libraries, the OpenMP and Cilk manual versions yield consistently worse pro-
grammability metrics than the skeletons. This way, depending on the metric used,
the OpenMP manual version requires between 83 and 193% for more effort than
parallel_stack_recursion for uts, between 13 and 46% for N Queens,
between 16 and 25% for fib and between 12 and 44% for knapsack. An important
reason for this in the case of the OpenMP and Cilk manual benchmarks is the need to
write two versions of the algorithm in order to obtain the best performance, something
which was already observed in [14]. The first version is the one invoked by the user
and it contains the OpenMP directives as well as tests to decide whether the solution
of a problem should rely on task parallelism or be performed as a sequential task.
The second implementation is purely sequential and it takes care of these latter tasks
avoiding any overhead associated to the parallelization.

The case offloorplan is an exceptionwhere the skeletons requiremore programming
effort than the other implementations. This is caused by the fact that some adaptations
had to be made to be able to treat this problem as a D&C problem. Also, the sequential
version had to be added to the code of the skeletons to activate optimizations in the
manual version that avoids memory copies that are not necessary for a sequential
execution. This extra effort that the user must make is rewarded by obtaining the best
performance of all the benchmarks using a custom partitioner, even for a problem that
was difficult to adapt as a D&C problem.
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Table 2 Performance metrics of the topsorts application

Performance metrics
Threads Execution time (s) Speedup

Sequential 1 4795.639 −−
parallel_recursion 6 1108.858 4.325

12 617.832 7.762

24 336.389 14.256

parallel_stack_recursion 6 868.439 5.522

12 471.229 10.177

24 235.966 20.323

In the case of uts the sequential and OpenMP versions are muchmore complex than
the ones based on skeletons because they have to explicitly create and manage data
structures to perform the processing of the trees that in the skeleton implementations
are implicitly provided by the library runtime. It is also interesting that sometimes,
despite the better performance observed in Sect. 4.1, our skeleton offers slightly better
programmability metrics than parallel_recursion. This is mostly associated
to the simpler post method of parallel_stack_recursion, which by being
restricted to a single element, avoids loops and computations on numbers of children
that are required in the analogous method of parallel_recursion.

4.3 Practical Original Application

The benchmarks floorplan and knapsack used in the previous sections solve actual
problems in a realistic fashion and could be thus part of an application. However, in
this section our skeleton will be further evaluated in the context of a totally original
application not taken fromanybenchmark suite. This application, called topsorts, com-
putes the topological sorts of a direct acyclic graph using the reverse search approach
for enumeration [5]. A topological sort or order is a linear ordering of the nodes where
for each directed edge from node A to node B, node A appears before node B in the
ordering. Topological orderings are not unique and have a variety of practical applica-
tions, for example, in resolving dependencies when building a program, or in general
when scheduling any set of tasks with dependencies. Demonstrating the paralleliza-
tion of this reverse search process implemented as a D&C algorithm by means of our
skeleton is very interesting, as this strategy has many applications in a wide range of
fields, from Biomechanics to Chemistry or Robotics [31].

Since the APIs of parallel_recursion and parallel_stack_
recursion are very similar, we parallelized the application with both skeletons.
As sequential baseline we used an optimized version of the original code, while the
input was a graph with 42 nodes and 61 edges.

Table 2 shows the performance of the sequential and the parallel versions when
using 6, 12 and 24 threads. The simple partitioner was used because we could not
find a heuristic from which a custom partitioner could benefit in this very imbalanced
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problem. The automatic partitioner was also tested for parallel_recursion,
but the performance was very poor, resulting in a speedup of ≈1.83 regardless of
the number of threads used. As we can see, the performance and scalability obtained
by parallel_stack_recursion is noticeably better than the one provided by
parallel_recursion, while the effort made in the implementation is basically
identical given the analogous API. In this regard, our parallel versions only required
11 more lines of code than the sequential implementation, which we find very reason-
able given the performance obtained and the irregularity of the problem.

In conclusion, the feasibility of the implementation of reverse search by means of
our library demonstrates that it can be successfully used in a large set of applications
for solving practical problems. With relatively little effort from the programmer, the
skeleton provides automatic parallelization with dynamic load balancing that allows
obtaining good performance in multithreaded executions.

5 RelatedWork

The divide-and-conquer parallel pattern is supported by a number of skeletons in
the literature. Like ours, some of them are restricted to shared memory systems, the
advantage with respect to the distributed system counterparts being the reduced com-
munication and synchronization costs as well as the easier load balancing. In this
category we find Skandium [20], which follows a producer-consumer model in which
the tasks are pushed and popped froma shared ready queue by the participating threads.
The DAC parallel template [9] supports three different underlying runtimes, OpenMP
[25], Intel TBB [26] and FastFlow [2], who take the responsibility of balancing the
workload among the threads. These two proposals have in common that the skeleton
only needs to be fed the input data and functions for identifying base cases, splitting
non-base cases, combining partial results and solving base cases, which are indeed the
basic components of a D&C algorithm.

Our work derives from the parallel_recursion skeleton [13], explained
in detail in Sect. 2. This skeleton supports an optional partitioner object that helps
the runtime to decide when the resolution of a non base problem must be solved
sequentially or in a parallel fashion. This is in contrast with the previously discussed
approaches, which always parallelize the resolution of every non base case. They
can, though, mimic a similar behavior at a higher programming cost by identifying
as base cases also those non basic problems whose parallelization is not worthy and
including a sequential D&C implementation for their resolution in the function that
takes care of the base cases. As we have seen, even with this higher degree of control,
parallel_recursion is not well suited to problems that exhibit a large degree
of imbalance.

Another task-based approach that cares about the task granularity is [29], which
implements an automatic granularity control. At compile-time it generates multiple
versions of each task, increasing granularity by task unrolling and subsequent removal
of superfluous synchronization primitives. A runtime heuristic automatically chooses
the code version to execute at each task spawning point.
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In the distributedmemory realmwefind eSkel [8], which provides parallel skeletons
for C on top of MPI, including one for D&C. The API is somewhat low-level because
of the limitations of the C language, which leads for example to the exposure of MPI
details. A template library for D&C algorithms without this problem is Muesli [6],
which is designed in C++ and built on top of MPI and OpenMP, although the latter has
only been applied to data-parallel skeletons, so that its D&C skeleton is only optimized
for distributed memory.

Lithium [3] is a Java library specially designed for distributedmemory that provides,
among others, a parallel skeleton for D&C. The implementation is based on macro
data flow instead templates and extensively relies on runtime polymorphism. This is
in contrast with Quaff [12], whose task graph must be encoded by the programmer
by means of C++ type definitions which are processed at compile time to produce
optimized message-passing code. These static definitions mean that tasks cannot be
dynamically generated at arbitrary levels of recursion and, although the library allows
skeleton nesting, it has the limitation that this nesting must be statically defined.

Finally, there are D&C skeletons specifically oriented to multi-core clusters, as
they combine message-passing frameworks in order to support distributed memory
with multithreading within each process. This is the case of [17], which supports load
balancing by means of work-stealing. The proposal though is only evaluated with very
balanced algorithms and unfortunately, contrary to ours, it is not publicly available.
Furthermore, their balancing operations always involve a single task, which, as we
have seen, can be very inefficient. Another work in this area is dparallel_recursion
[14], an evolution of [13] in which the shared memory portion relies on [13] and offers
thus the same behavior.

It is interesting to notice that while skeletons have been traditionally directly used
by programmers, their scope of application is growing thanks to very promising novel
research. Namely, the development of techniques and tools to identify computational
patterns and refactor the codes containing them [18,19] not only simplifies the use
of skeleton libraries by less experienced users, but it can even lead to the automatic
parallelization of complex codes on top of libraries of skeletal operations.

There are other high level proposals that support the parallelization of D&C prob-
lems beyond skeletons. For example, Petabricks [4] proposes a new implicitly parallel
programming language and compiler. Programs written in this language can natu-
rally describe multiple algorithms for solving a problem and how they can be fit
together. This information is used by the compiler and runtime to create and autotune
an optimized hybrid algorithm. In this category is also the Merge [21] framework,
which couples a new language based on map-reduce and associated compiler with a
dynamic runtime that automatically distributes computations among different cores
in a heterogeneous multi-core system.

Internally, our new proposal bases its implementation on the use of a stackwhere the
problems that must be distributed and processed are stored, as can be found in previous
works [27]. The proposed skeleton uses work-stealing, a technique to distribute the
work of the stack that has turned out to be very flexible in most situations and presents
good scalability. There are different libraries that use work-stealing, such as [10]
for distributed memory or [30] for shared memory. Both libraries present several
differences, but they have in common with our approach that they divide the stack
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queue in two sections, a local section and a shared section. In [32] a variety of solutions
that use different types of work-stealing techniques are collected and analyzed, each
one being adapted to their specific needs and having its advantages and drawbacks.
Our implementation relies on some of these strategies and adapts them to specifically
suit to D&C problem solving.

6 Conclusions

Divide-and-conquer is a very important pattern of parallelism that appears in many
problems and can be used to implement other very relevant patterns. This makes
very relevant and useful the development of tools that allow the easy and optimized
implementation of this pattern, one of the best solutions being algorithmic skeletons. In
this paper we have introducedparallel_stack_recursion, a C++ algorithmic
skeleton that implements this pattern in shared memory with a focus on problems with
large levels of recursion and/or high degree of imbalance. While our proposal is a
complete redesign of parallel_recursion, a highly optimized skeleton for the
same pattern, it manages to keep an almost identical interface.

Our evaluation shows that indeed the new skeleton can be applied in situations
in which parallel_recursion breaks due to stack memory limitations, which
justifies by itself its development. Furthermore, the new skeleton is on average 11.2%
faster than parallel_recursion in the benchmarks and applications that the
latter one supports excluding knapsack, where our library is greatly benefited from
the prune system. The new approach is also 18.0% and 13.1% faster than optimized
OpenMP and Cilk implementations respectively if we disregard the knapsack and
fib benchmarks, where for the latter the compiler gives an unfair advantage to our
skeletons. The maximum speedups however can go up to 42.6% when compared to
parallel_recursion, 77.6% when compared to the OpenMP and 20.9% when
comparex to the Cilk, again discarding fib and knapsack. Despite these performance
advantages, the evaluation shows that the development effort associated to our new
proposal is consistently similar to that of parallel_recursion and noticeably
better than that of optimized OpenMP and Cilk. This latter observation is particularly
true in the case of our largest benchmark, uts, in which versions not based on a skeleton
have to manually define and manage data structures in order to support the highly
irregular processing and the load balancing it needs to attain good performance. The
standard non-optimized OpenMP and Cilk versions have best programmability efforts
metric than the skeleton implementations, but a worse performance in all benchmarks.
Finally, an unbalanced practical application has also been parallelized using the new
skeleton, obtaining a very good performance with relatively little effort.

As future work we plan to develop a version of this skeleton optimized for systems
such as current multi-core clusters, whose optimal exploitation involves the usage of
distributed and shared memory programming paradigms.
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