
Vol:.(1234567890)

International Journal of Parallel Programming (2020) 48:692–712
https://doi.org/10.1007/s10766-020-00663-1

1 3

Improving the Performance of Actors on Multi‑cores 
with Parallel Patterns

Luca Rinaldi1 · Massimo Torquati1   · Daniele De Sensi1 · Gabriele Mencagli1 · 
Marco Danelutto1

Received: 16 October 2019 / Accepted: 27 May 2020 / Published online: 4 June 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The Actor-based programming model is largely used in the context of distributed 
systems for its message-passing semantics and neat separation between the concur-
rency model and the underlying hardware platform. However, in the context of a 
single multi-core node where the performance metric is the primary optimization 
objective, the “pure” Actor Model is generally not used because Actors cannot 
exploit the physical shared-memory, thus reducing the optimization options. In this 
work, we propose to enrich the Actor Model with some well-known Parallel Patterns 
to face the performance issues of using the “pure” Actor Model on a single multi-
core platform. In the experimental study, conducted on two different multi-core sys-
tems by using the C++ Actor Framework, we considered a subset of the Parsec 
benchmarks and two Savina benchmarks. The analysis of results demonstrates that 
the Actor Model enriched with suitable Parallel Patterns implementations provides a 
robust abstraction layer capable of delivering performance results comparable with 
those of thread-based libraries (i.e. Pthreads and FastFlow) while offering a safer 
and versatile programming environment. 

Keywords  Actors · Parallel patterns · Programming model · Multi-cores

1  Introduction

The Actor Model (AM) proposed by Hewitt et al. [24] is attracting a revived atten-
tion among software developers and academics. In the AM, the concurrent unit 
is the Actor. Actors are isolated entities with an internal state that can receive 

This work has been partially supported by University of Pisa PRA 2018 66 DECLware: Declarative 
methodologies for designing and deploying applications.

 *	 Massimo Torquati 
	 torquati@di.unipi.it

1	 Computer Science Department, University of Pisa, Pisa, Italy

http://orcid.org/0000-0001-6323-3459
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-020-00663-1&domain=pdf


693

1 3

International Journal of Parallel Programming (2020) 48:692–712	

messages from other Actors, perform computations, manage their internal state, and 
send messages to other Actors. An Actor can interact with other Actors only if it 
knows their logical addresses. Two distinct Actors do not share any data, so low-
level data races are avoided by design. The model allows a complete separation of 
the software design from its deployment at run-time. Notable implementations of 
the AM are: Akka [4] written in Java/Scala, Orleans [7] written in C#/.NET, Erlang 
[5] with its specific language, and the “C++ Actor Framework” (CAF) entirely writ-
ten in modern C++ [13]. The message-passing style of non-blocking and asynchro-
nous interactions via immutable messages among Actors, make the AM particularly 
attractive for exploiting the potential parallelism of large distributed systems to tar-
get scale-out scenarios. However, in the context of a single multi-core node where 
the application programmer wants to maximize the performance metric of his/her 
Actor-based application (i.e. scale-up scenario), the AM is not largely used because 
of its performance issues related to the narrow margins offered by the AM to exploit 
the physical shared memory of the system. In a way, the classical (or “pure”) AM 
trades single node performance for scalability to a large number of nodes.

Several research efforts tried to overcome the performance issues of the “pure” 
AM on the single node by implementing smart techniques at the Run-Time System 
(RTS) level, e.g., copy-on-write and locality-aware scheduling [20]. However, none 
of these specific and low-level optimizations were capable of significantly increas-
ing the performance of Actor-based applications on shared-memory platforms at 
the same level of concurrent libraries designed explicitly for multi-cores, such as 
OpenMP, Intel TBB [31], and FastFlow [3].

Some popular library-based implementations of the AM are built on top of lan-
guages that allow shared-memory visibility. Examples are Akka using Java, and 
CAF using modern C++. Such implementations cannot enforce the Actor isola-
tion property [16] because the programmer can always define some global state that 
can be shared by some of the Actors. On the one hand, this gives high flexibility 
to the programmer allowing him/her to use the physical shared-memory for tuning 
and optimizing performance-critical parts of the Actor-based application. On the 
other hand, the usage of the shared-memory exposes the user to potential data races 
and data inconsistencies that have to be explicitly handled by the application pro-
grammer through proper synchronizations (either via message exchange or by using 
locks), which partially vanishes the programmability benefits of using the “pure” 
model.

In this work, we aim to increase the performance of the “pure” AM on multi-
cores by leveraging the physical shared-memory without compromising the Actor’s 
isolation property and avoiding explicit management of the shared-memory by the 
application programmers. The idea is to provide the Actor programmer with a set 
of Parallel Patterns (PPs) [30], i.e. high-level parallel programming abstractions, 
with a well-defined functional and parallel semantics that can be used to parallel-
ize a given problem (or a given class of problems). Examples of PPs are: Pipeline, 
Map-Reduce, Task-Farm, and Stencil. To fully integrate PPs in the AM, we propose 
to implement them as “macro Actors” so that they look like standard Actors to the 
programmer. They interact with other Actors and PPs only by using explicit mes-
sages, and they can be dynamically spawned. The shared-memory and all low-level 



694	 International Journal of Parallel Programming (2020) 48:692–712

1 3

platform-specific optimizations, such as reference passing to avoid data copies, 
native threads exploitation, and thread-to-cores affinity [32], are used only in the 
implementation skeleton of the PP and they are entirely transparent to the applica-
tion programmer. Therefore, a PP behaves like a standard Actor, but its internal 
implementation, based on concurrent Actors, does not necessarily comply to the 
“pure” AM. Moreover, since the implementation schemes of PPs are provided to the 
user as a library with suitable APIs, this enables the separation of concerns software 
design principle between the application programmer and the patterns provider. The 
application programmer has the responsibility to select the proper PP, whereas the 
patterns provider has the responsibility to produce an efficient and memory-safe 
implementation of PPs.

We implemented PPs as an open-source library for the “C++ Actor Framework” 
[12] (CAF). We validate our approach over a set of applications chosen according 
to the computational model that the PPs implement (e.g., Divide&Conquer, Map, 
Pipeline, Farm). In particular, we consider QuickSort and Recursive Matrix Multi-
plication from the Savina benchmark suite and black-scholes, ferret, can-
neal, and raytrace from the Parsec benchmark suite. The results obtained by 
running the benchmarks on two different multi-core platforms (Intel Xeon and IBM 
Power8), demonstrate that the AM enriched with a proper set of PPs provides an 
enhanced programming model capable of delivering performance results compara-
ble with those obtained by thread-based libraries (i.e. Pthreads and FastFlow [3]) 
on multi-cores while offering a safer and more flexible programming environment.

The remaining of this paper is organized as follows: Sect. 2 provides the back-
ground information. Section 3 describes the design and implementation of the PPs, 
Sect. 4 describes and discusses the results obtained during the experimental phase. 
Section 5 presents related works and Sect. 6 summarizes the main results.

2 � Background

In this section, we provide the necessary background to understand the contribu-
tions of this work. Specifically, we summarize the main concepts of the Actor Model 
and of the Parallel Pattern approach to parallel programming. Finally, we provide an 
overview of the CAF framework that we used for implementing the PPs presented in 
Sect. 3.

The Actor Model The Actor Model is a concurrent programming model first 
proposed by Hewitt et  al. [24] in the context of Artificial Intelligence to model 
systems with thousands of independent processors, each having a local memory 
and connected through some high-performance network. Later, the AM has been 
formalized by Agha et al. [1, 2]. In the AM, every distinct execution flow is con-
sidered an Actor. Actors are uniquely identified by an opaque identifier (address) 
so that they can be addressed during send operations. Actors can dynamically 
spawn other Actors. They do not share data, and the only way to observe or mod-
ify the internal state of an Actor is through explicit messages. Each Actor has a 
private mailbox of unbounded capacity, which stores an ordered set of messages 
received by that Actor. However, there is no guarantees on the processing order of 



695

1 3

International Journal of Parallel Programming (2020) 48:692–712	

messages. The messages can be sent to any other Actor that processes them asyn-
chronously and sequentially. The memory isolation, the message-passing style of 
communication, and the serial execution of messages, allow to eliminate the use 
of locks when the AM is employed on shared-memory systems. Synchronization 
is achieved only through the exchange of messages. In principle, in this model, 
the programmer is not aware of the underlying platform, therefore the Run-Time 
System (RTS) is the only responsible for the efficient execution of Actors.

Pattern-Based Parallel Programming One of the approaches for raising the 
level of abstraction in parallel computing is based on the concepts of Parallel Pat-
terns [30] and Algorithmic Skeletons [15], which are schemes of parallel compu-
tations that recur in many applications and algorithms. These parallel abstractions 
are made available to programmers as high-level programming constructs with a 
well-defined functional and extra-functional semantics. Each parallel pattern has 
one or more implementation schema (often called implementation skeleton) on 
the basis of the parallel platform considered. Different models of communications 
synchronizations and coordination for the tasks execution can be used to imple-
ment a given pattern. Notable examples of PPs are Pipeline, Map, Map-Reduce, 
Task-Farm, Divide&Conquer. Combinations of PPs and Algorithmic Skeletons 
are used in several programming frameworks and libraries such as Microsoft PPL 
[11], Intel TBB [31], SkEPU [18] and FastFlow [3].

The CAF Library The C++ Actor Framework (CAF) is an Actor-based frame-
work implemented in modern C++ [12, 13]. Actors are modeled as lightweight 
state machines that are mapped onto a fixed set of RTS threads called Work-
ers. Instead of assigning dedicated threads to Actors, the CAF RTS includes a 
scheduler (which implements a Work-Stealing algorithm) that dynamically allo-
cates ready Actors to Workers. Whenever a waiting Actor receives a message, it 
changes its internal state and the scheduler assigns the Actor to one of the Worker 
threads for its execution.

In CAF, Actors are created using the spawn function, which can create an 
Actor from a function, or a class. It returns a network-transparent Actor handle 
corresponding to the Actor address. Communication happens via explicit mes-
sage-passing by using the send command. Messages are buffered into the mail-
box of the receiver Actor in arrival order. The response to an input message can 
be implemented by defining a set of behaviors each of which is a C++ lambda 
function.

Actors using blocking system calls (e.g., I/O functions) might suspend a RTS 
thread creating either imbalance in the workload or starvation. To solve these 
issues, CAF provides detached Actors that will be executed by a dedicated OS 
thread, instead of the Work-Stealing scheduler. Although detached Actors have 
their private executors, they implement the same event-based protocol for the 
execution of mailbox messages as the default lightweight Actors (the default 
Actors are also called scheduled Actors). When a detached Actor is spawned, a 
new OS thread is created. This increases the management costs of these Actors if 
compared with scheduled Actors, but it enables more flexibility and full control 
of the Actor scheduling and of its processor affinity [32].



696	 International Journal of Parallel Programming (2020) 48:692–712

1 3

3 � Designing Parallel Patterns as Actors

Actor-based applications are characterized by unstructured communication graphs 
where Actors are often created dynamically and have a short life-span. Besides, 
it has been observed that, in many Actors-based applications, a small number of 
Actors (called hub Actors) exchange significantly more messages than the other ones 
composing the application [20].

By means of PPs abstractions, we want to bring a communication structure in 
Actor-based applications, and to enable some optimizations, which are generally 
not allowed by the “pure” AM without breaking the principles of the model itself 
(e.g., sharing a data structure by exploiting the physical shared-memory). During 
the design of PPs, we used the following guidelines:

•	 PPs must smoothly integrate with existing Actors;
•	 PPs interface must comply with the AM;
•	 to maximize the performance, the implementation skeletons of PPs could not 

necessarily respect the AM, and they can rely on all low-level features and mech-
anisms offered by the shared-memory platform.

We designed the PPs in such a way that they look like standard Actors, i.e., they 
receive input data only through messages and produce results by sending messages 
to other Actors. Instead, their implementation skeletons use the shared-memory con-
currency model. We decided to implement these PPs by leveraging the Actors pro-
vided by the CAF library without introducing another model/library (i.e., OpenMP 
or FastFlow) to avoid issues of mixing different RTSs (e.g., defining the number of 
threads of each RTS, handling different affinity policies, handling different schedul-
ing of tasks). Therefore, a pattern in the PPs library is implemented by spawning 
a set of CAF Actors cooperating in a predefined communication scheme through 
explicit messages and shared memory variables. Moreover, CAF offers the option 
of spawning Actors also as private threads (i.e. detached Actors), thus enabling the 
possibility to control Actors directly without using the Work-Stealing scheduler 
(which is used instead for scheduled Actors). This permits to avoid the indirection 
between the logical Actor entity and the underline RTS threads used to execute 
Actors, which, sometimes, may introduce extra overhead.

In the following, we discuss the implementation of a set of PPs1 implemented on 
top of the CAF framework, dividing them in two sets: Data-parallel PPs namely 
Map, Divide&Conquer; and Control-parallel PPs namely Seq, Pipeline, and Farm. 
The first set of patterns internally exploits shared-memory to optimize the perfor-
mance. The second set enables nesting and composition of PPs focusing more on 
structuring the concurrent graph of Actors and PPs.

1  The implementations are available at https​://githu​b.com/ParaG​roup/caf-pp.

https://github.com/ParaGroup/caf-pp


697

1 3

International Journal of Parallel Programming (2020) 48:692–712	

3.1 � Data‑Parallel PPs

Map The Map pattern is a data-parallel paradigm that applies the same function to 
every element of an input collection. The input collection of data, possibly but not 
necessarily coming from a stream of collections, is split into multiple sub-collec-
tions where each one can be computed in parallel by applying the same function. 
The results produced are collected in one single output collection, usually having the 
same type and size of the input.

The efficiency of the Map pattern on multi-cores depends on the ability to share 
the input collection on which the user function has to be applied. Data races are 
avoided by design because the parallel semantics of the Map pattern is such that 
distinct concurrent entities work on disjoint sub-collections. Data sharing has the 
advantage of avoiding costly data copies required by the message-passing model.

Figure 1 shows the implementation skeleton of the Map pattern. It uses a “mas-
ter” entity, called Sched, which is in charge of partitioning the input collection and 
scheduling data partitions toward a pool of Worker entities. The Sched also waits 
for the end of the computation of the Workers to implement a barrier before sending 
out the final result. 

Listing 1 shows how to configure and spawn a Map pattern with the PP library. 
The user provides a C++ lambda function that works in-place on a specific range of 
elements of the input collection implemented with a container. Both the number of 
internal Workers and the scheduling policy are two optional parameters. The first, 
if not set, is equal to the number of active cores; the second parameter can be set to 
either static assignment of partitions (the default value) or dynamic assignment 
of partitions.

The static scheduling policy splits the input collection into several partitions 
equal to the number of Workers. The Sched Actor sends the references of each par-
tition to the corresponding Worker. This policy works well when the computational 
workload is equally (or almost equally) distributed among all elements of the input 
collection. The dynamic scheduling policy, instead, is supposed to be used when a 

Fig. 1   The Map pattern imple-
mentation scheme



698	 International Journal of Parallel Programming (2020) 48:692–712

1 3

static partitioning of the input collection may lead to serious workload balancing 
issues among Workers.

The dynamic policy gets as argument a user-defined chunk size used to split the 
input collections. Then, chunks of data elements are dynamically fetched by the 
Workers leveraging the C++ std::atomic data type implementing an atomic counter 
shared by all Workers and initialized by the Sched Actor. It is worth to remark that 
the shared atomic counter is used only to implement the scheduling policy, and it 
is visible only to the Worker Actors implementing the Map pattern, which are not 
defined by the application programmer.

The Sched Actor initializes the atomic counter to zero and sends a first message 
to all Workers containing the size of the collection and the number of elements to 
fetch each time the shared variable is accessed (i.e. the computation granularity). 
Each Worker executes a fetch_add atomic operation on the shared variable to 
retrieve the next range of contiguous collection elements to compute. The computa-
tion finishes when all Actors retrieve a range of collection elements whose iterator 
indexes are greater than or equal to the number of elements in the collection. Then, 
the Workers notify the Sched Actor of their work completion by sending an appro-
priate message.

CAF enforces the Actor isolation property by calling the C++ copy constructor 
on those message objects sent to more than one destination Actors, which do not use 
the input message in read-only mode (i.e. non-constant input data types). To work 
in-place (i.e. in a read-write mode) on message types that are input collections, the 
Map PP inhibits those implicit copies to enable the sharing of the same collection to 
multiple Workers. To this end, we defined a C++ type, called NsType, which inter-
nally manages a heap-allocated data and implements the copy constructor without 
effectively doing a memory copy. The Sched Actor moves the user input collection 
inside a NsType object, and then sent it to the Workers. After the computation, the 
Sched Actor executes the same steps in the reverse order and produce the output 
result. This implementation guarantees that the shared-memory layer inside the PP 
is transparent to the application programmer.

Divide&Conquer In Divide and Conquer (D&C) algorithms, during the Divide 
(or Split) phase, the problem is recursively decomposed into smaller sub-problems 

Listing 1   The code to build and 
spawn the Map pattern



699

1 3

International Journal of Parallel Programming (2020) 48:692–712	

building a tree of calls. In the Conquer (or Merge) phase, the partial results pro-
duced by the solution of the sub-problems at a given level of the tree are adequately 
combined to build the final result. A D&C algorithm can be parallelized by execut-
ing, on different CPU cores, the Split and Merge phases for those sub-problems that 
do not have a direct dependency in the recursion tree. At each level of the tree, a 
new set of concurrent tasks is available to be executed up to the point where the 
sub-problems are small enough that it is more convenient to compute them using the 
sequential algorithm.

As shown in Fig. 2, we implemented this pattern by dynamically spawning CAF 
Actors, which recursively spawn new Actors for each sub-problem produced by the 
divide function. The Actor spawned evaluates the condition function. If this func-
tion returns false, the divide function is called. If it evaluates to true (e.g., when 
the size of the sub-problem is smaller than a given cut-off value), the sequential 
algorithm is called, and the partial result produced is returned back to the spawning 
Actor. The generic spawning Actor waits for all partial results, and then it executes 
the merge function whose result will be sent to its spawning Actor, and then it ter-
minates. The DivConq implementation skeleton uses the physical shared-memory to 
avoid unnecessary data copies during the dynamic spawning of Actors, which work 
in-place on different input ranges by using the same techniques described for the 
Map.

Listing 2 shows the interface of the DivConq PP. The pattern is created by pass-
ing a user defined Container and four functions that work on continuous portions of 
the input container called Ranges (Rng in Listing 2).

3.2 � Control‑Parallel PPs

Seq The Seq (Sequential) represents a single concurrent entity and it is useful to 
integrate within the PPs library a custom Actor implemented by the user. The Seq 
pattern can be seen as a factory of a specific CAF Actor. It allows to spawn different 

Fig. 2   The DivConq pattern 
implementation scheme



700	 International Journal of Parallel Programming (2020) 48:692–712

1 3

copies of the same Actors and to use them in different points of a PPs composition. 
In the left-hand side of Fig. 3 there is the implementation scheme of the Seq pat-
tern. The right-hand side of Fig. 3 shows two ways of creating a Seq pattern from 
an existing Actor type MyAct. In the first case (line 1) the Actor will be initialized 
without any parameter. In the second case (line 2), the user provides a callback that 
will be called as soon as the user Actor will be spawned to initialize it.

Pipeline A pipeline pattern is a sequence of stages connected in a linear chain. 
Distinct stages of the same chain work in parallel on subsequent input elements (usu-
ally called stream of items). Each stage computes a partial result and sends it to the 
next stage of the sequence. The stages of the Pipeline pattern can be any sequence of 
PPs presented in this section, as shown in Fig. 4. The Pipeline takes care to connect 
each stage in the correct order.

Farm A Farm pattern is composed of a pool of concurrent entities called Workers 
executing in parallel on different data elements of the input stream. Input elements 
are forwarded to the Workers according to some predefined scheduling policy (e.g., 
round-robin, random, etc.), or using a user-defined policy. Precisely, the Farm pat-
tern replicates a given number of times the PP provided as an argument. As for the 
Pipeline, the argument can be any valid combination of the patterns presented in this 
section. The number of replicas can be left unspecified, meaning that a default value 
will be used (e.g., the number of active CPU cores). Finally, it is also possible to 
customize the scheduling policy for the input messages by defining a function with 

Listing 2   The code to build and 
spawn the DivConq pattern

Fig. 3   The Seq pattern implementation scheme (right). The example code for building a Seq by using the 
MyAct CAF Actor (left)



701

1 3

International Journal of Parallel Programming (2020) 48:692–712	

a specific signature. Figure 5 shows both the internal implementation scheme of the 
Farm pattern and a simple example code for instantiating it.

3.3 � Composition of Parallel Patterns

The patterns in the PPs library, can be composed to build more complex compu-
tation structures. Specifically, the Farm and Pipeline patterns can have as internal 
elements any patterns, while Seq, Map and Divide&Conquer are leaf-nodes of the 
skeleton tree composition and they cannot contain other patterns.

Figure 6 exemplifies how a pattern composition can be used inside of an Actor-
based application. The Pipeline pattern is fed by two standard Actors, and the results 
produced by the Workers of the second Farm pattern (i.e. by the last stage of each 

Fig. 4   The Pipeline pattern 
implementation schema (top). 
An example code for building 
and spawning an instance of a 
three-stage pipeline (bottom)

Fig. 5   The Farm pattern 
implementation schema (top). 
An example code for building a 
Farm pattern with N sequential 
workers and the round-robin 
policy (bottom)



702	 International Journal of Parallel Programming (2020) 48:692–712

1 3

Pipeline Workers) are sent to another standard Actor of the application through 
messages.

4 � Evaluation

The experiments were conducted on two different multi-cores (Xeon and Power8) 
considering a subset of Savina [26], and Parsec [8] benchmarks.

Xeon A dual-socket Intel E5-2695 Ivy Bridge CPUs running at 2.40GHz and fea-
turing 24 cores (12 per socket). Each hyper-threaded core has 32 KB private L1, 256 
KB private L2 and 30 MB of L3 shared cache. The machine has 64 GB of DDR3 
RAM, using Linux 3.14.49 x86_64 with the CPUfreq performance governor ena-
bled. Available compiler gcc version 7.2.0.

Power8 A dual-socket IBM server 8247-42L with two Power8 processors each 
with ten cores organized in two CMPs of 5 cores working at 3.69 GHz. Each core 
(8-way SMT) has private L1d and L2 caches of 64 KB and 512 KB, and a shared 
on-chip L3 cache of 8 MB per core. The total number of cores is 20 physical and 
160 logical. The machine has 64 GB of RAM, using Linux 4.4.0-47 ppc64 shipped 
with Ubuntu 16.04. Available compiler gcc version 8.2.0.

Savina It is a set of benchmarks specifically conceived for evaluating AM imple-
mentations. They can be classified in three categories: i) micro-benchmarks, ii) con-
currency benchmarks, and iii) parallelism benchmarks. The first set contains simple 
benchmarks dedicated to test specific features of the Actor RTS (e.g., time to spawn 
an Actor). The second set contains classical concurrency problems (e.g., Dining-
Philosophers). The third set includes applications that demand more computation 
(e.g., Matrix Multiplication). We selected two applications of the parallelism bench-
marks set, namely quicksort and recMM,2 because they are both implemented 
using recursive algorithms (which are not present in the Parsec benchmarks), and 

Fig. 6   Composition of two Farms using a Pipeline pattern. The first Farm has a Map pattern replica as 
worker, whereas the second Farm uses Pipeline of Seq as workers

2  Application code available at https​://githu​b.com/ParaG​roup/caf-pp.

https://github.com/ParaGroup/caf-pp


703

1 3

International Journal of Parallel Programming (2020) 48:692–712	

because they are well-known problems with a straightforward implementation in the 
“pure” Actor Model.

Parsec It is a collection of several complex parallel applications for shared-
memory architectures with high system requirements. Indeed, they are real appli-
cations covering many different domains such as streaming applications, scientific 
computing, computer vision, data compression and so forth. Recently, the Parsec 
benchmarks have been used to compare and assess programming models targeting 
multi-cores [14, 17]. For testing the PPs library, we selected ferret, black-
scholes, raytrace and canneal benchmarks.3 The first one is a data stream-
ing application, whereas black-scholes and raytrace are two data-parallel 
applications with different computational granularity and different workload balanc-
ing issues. The last one is a fine-grained master-worker computation.

All experiments have been executed multiple times and the average value 
obtained has been used to compute the speedup reported in the folloowing plots. 
The standard deviation is generally low and not reported in the plots.

In the next two subsections, we first highlight the performance problems of using 
the “pure” AM on multi-core platforms and how the PPs proposed can be used to 
significantly improve the performance without breaking the model. Then, by using 
the Parsec benchmarks, we compare the performance of the PPs library with that 
obtained by using the native Pthreads implementation shipped with Parsec, and the 
FastFlow implementation that uses the same PPs approach to parallelize the bench-
marks. It is worth to remark that the FastFlow performance of Parsec benchmarks 
has been already compared with other specialized frameworks on multi-cores dem-
onstrating comparable (and in some cases better) overall performance [17].

4.1 � “Pure” Actor Model Versus Actors + Parallel Patterns

Here we compare the performance of the “pure” AM with the AM enriched with the 
PPs library. We consider quicksort and recMM from Savina benchmarks, and 
black-scholes from the Parsec benchmark suite. The quicksort applica-
tion implemented in the Savina benchmark follows the “pure” AM semantics. There 
are not shared variables among Actors. During the Split and the Merge phases of 
the recursive algorithm, the sub-vectors are copied both before sending them to the 
spawned Actors and when the results come back. Instead, in the DivConq pattern 
implementation, the internal pattern shared-memory is used to work in-place on the 
original input vector avoiding unnecessary copies.

Figure 7 shows the performance improvement of the PPs approach with respect 
to the “pure” AM implementation of the quicksort, considering different size of 
the input vector, i.e. 10 M, 50 M, and 100 M elements, and a fixed cut-off value of 
2000 elements. As expected the performance improvement increases with the vector 
size, because of the overhead of copying message data in the Savina implementa-
tion. The two versions have roughly the same maximum scalability (namely ∼3.5 on 
the Xeon and ∼4.2 on the Power8), but very different maximum speedup (3.7 vs 

3  Application code available in the P3ARSEC repository at https​://githu​b.com/ParaG​roup/p3ars​ec.

https://github.com/ParaGroup/p3arsec


704	 International Journal of Parallel Programming (2020) 48:692–712

1 3

1.0 on the Xeon, and 4.2 vs 1.0 on the Power8, for the PPs version vs the “pure” 
AM implementation, respectively).

Differently from the quicksort application, the recMM implementation in the 
Savina benchmarks does not use a “pure” AM implementation. In fact, all Actors 
share both the two input matrices as well as the resulting matrix. In this case, mes-
sages are used as a synchronization mechanism for accessing the shared data. We 
implemented the application using the DivConq PP which allows us to confine in a 
cleaner way the Actors that share the data. As expected, the patterned version and 
the Savina version perform almost the same (both obtain a maximum speedup of 
more than 22 on both platforms, by using matrices of 4096 × 4096 elements and a 
cut-off value of 128 × 128 ). Then, we implemented the Savina version without any 
data sharing in a “pure” AM fashion. The results obtained (not reported here for 
space reasons) show an improvement of the PPs version of about five times on the 
Xeon and of about six times on the Power8. The scalability of the two versions are 
roughly the same ( ∼18 on the Xeon and ∼21 on the Power8), whereas the maxi-
mum speedup of the PPs version is much higher on both platforms. These results 
confirm the importance of exploiting the physical shared memory to optimize the 
performance metric of Actor-based applications on multi-cores.

Lastly, we consider the black-scholes Parsec benchmark, a real application 
that prices a portfolio of European options using the Black-Scholes partial differ-
ential equations [9]. This application can be parallelized iterating a fixed number 
of times a Map pattern [17]. We first implemented a “pure” Actor version of the 
Map parallel pattern. Then, we used the Map pattern presented in Sect. 3 for produc-
ing a second version. In the first version, we used a feature of the CAF library that 
allows to share the same input message if it is used in read-only mode by the receiv-
ing Actors. With this feature, a master Actor sends the input container to a pool of 
Worker Actors. Then, each Actor internally creates a new output vector for storing 
the partial result. The partial results are then collected by the master Actor, which 
merges them producing the final result. This implementation creates two copies of 
the input vector at each iteration, where one is created in parallel by the Worker 
Actors. Although this implementation already uses an optimization of the “pure” 
AM, it performs considerably worse than the one based on the Map PP, which 

Fig. 7   Improvement of the PPs version compared to the “pure” AM version of the quicksort bench-
mark on the Xeon and Power8 platforms



705

1 3

International Journal of Parallel Programming (2020) 48:692–712	

internally makes more extensive use of the shared memory (Fig. 8). In the next sub-
section, together with other benchmarks, we compare the speedup of the PP-based 
black-scholes application against other parallel frameworks.

4.2 � Testing Actors + Parallel Patterns with Some Parsec Benchmarks

In this section, we study the PPs-based parallelization of the Parsec benchmarks 
selected. The performance results obtained are compared with those of the native 
Pthreads and FastFlow implementations. The FastFlow implementation uses the 
same pattern-based approach of the PPs library, as described in De Sensi et al. [17].

Ferret This application is based on the Ferret toolkit [29] used for content-based 
similarity search on different kinds of data, including images, audio and video. In the 
Parsec benchmark, the toolkit is configured to perform similarity search on images. 
In the Pthreads implementation, the application is composed by six different stages. 
The first and last stages are sequential while each of the other stages is executed 
by a separate thread pool. Different pools communicate by using fixed-size queues. 
The implementation uses a single Pipeline pattern containing four Farm patterns as 
stages, each one with the same number of Worker Actors (implemented with Seq 
patterns). The first and last stages of the pipeline are instead Seq patterns reading 

Fig. 8   Improvement of the PPs version compared to the “pure” AM version of the black-scholes 
benchmark on the Xeon and Power8 platforms

Fig. 9   Speedup of the ferret benchmark of the Pthreads, FastFlow (FF) and CAF plus PPs 
(CAF + PP) implementations on the Xeon and Power8 platforms considering as baseline the Pthreads 
version with 1 thread



706	 International Journal of Parallel Programming (2020) 48:692–712

1 3

and writing from/to the local disk. The same logical nesting of PPs is used in the 
FastFlow version. Figure 9 shows the speedup of the ferret benchmark on the 
two platforms considered. The results obtained by using the PPs library are compa-
rable to those obtained by both the native Pthreads and FastFlow implementations.

Blackscholes and Raytrace The CAF implementations of black-scholes and 
raytrace use the Map pattern described in Sect.  3. black-scholes applies 
the same function to all elements of an array. The computation is repeated a fixed 
number of times (100 in our test). raytrace implements a computation over 
an input matrix representing, at different time intervals, a frame of an animated 
scene. The primary difference between these two data-parallel computations is 
that raytrace has a very unbalanced workload both within the single frame as 
well as between different frames. Instead, for black-scholes, the workload is 
almost evenly distributed among all elements of the array. Therefore, for black-
scholes it is reasonable to use a static scheduling policy of the array’s partitions 
while for raytrace a dynamic scheduling policy of the frame’s partitions has to 
be used to obtain acceptable speedup.

Figure 10 shows the speedup of the black-scholes benchmark. The speedup 
of the PPs version is close to the other two versions on the Xeon platform. On the 
Power8 platform the speedup is aligned with that of the native Pthreads imple-
mentation. After every iteration, the Sched Actor waits for the completion of all 
Workers before sending back the final result to the spawning Actor, which then 
starts a new iteration on the same array (barrier synchronization). The barrier is 
implemented by using standard inter-Actor messages. During the tests, we found 
that the barrier synchronization between Actors takes less time if the entire pattern 
is spawned as detached (cf. Sect. 3).

The raytrace benchmark parallelization has been implemented with the Map 
pattern. Differently from black-scholes, it uses the dynamic scheduling policy 
with a chunk size of 1 element. Figure  11 shows the speedup of the raytrace 
benchmark on the Xeon platform (this benchmark does not compile on the Power8 
platform due to some assembly instructions used in the Parsec implementation). In 
this case, the CAF version performs almost identically to the Pthreads and the Fast-
Flow versions, confirming the low-overhead introduced by the implementation skel-
eton of the Map pattern.

Fig. 10   Speedup of the black-scholes benchmark of the Pthreads,FastFlow (FF) and CAF plus 
PPs (CAF  +  PP) implementations on the Xeon and Power8 platforms considering as baseline the 
Pthreads version with 1 thread



707

1 3

International Journal of Parallel Programming (2020) 48:692–712	

Canneal This application minimizes the routing cost of a chip design. The algorithm 
applies random swaps between nodes and evaluates the cost of the new configuration. 
If the new configuration increases the routing cost, the algorithm performs a rollback 
step by swapping the elements back. The Pthreads version follows an unstructured 
interaction model among threads that execute atomic instructions on shared data struc-
tures. At the end of each iteration, a barrier is executed and each thread checks the ter-
mination condition. The FastFlow implementation instead, uses a master-worker pat-
tern in which the master evaluates the termination condition and restarts the Workers 
if the termination condition is not met. We implemented the same logical schema used 
in the FastFlow version by using a standard CAF Actor connected to the Map PP. The 
CAF Actor is the master Actor that checks the termination condition, whereas the Map 
pattern is used for the computation as a “software accelerator” (i.e., the result of the 
computation is sent back to the master Actor). The Map pattern uses a static scheduling 
policy, and the input container has as many entries as the number of Worker Actors so 
that each Worker works on a single element of the container. If the termination condi-
tion is met on the result produced by the Map, the master Actor stops the computation. 
Otherwise, the process is repeated.

Figure 12 shows the speedup of the canneal benchmark on the Xeon platform 
(this benchmark does not compile on the Power8 platform because the assembler 
instructions it uses are not available). As for black-scholes, the Map pattern is 
spawned as detached. The results obtained are very close to the ones obtained by the 
Pthreads and FastFlow versions.

Fig. 11   Speedup of the ray-
trace benchmark of the 
Pthreads, FastFlow (FF) and 
CAF plus PPs (CAF + PP) 
implementations on the Xeon 
platform considering as baseline 
the Pthreads version with 1 
thread

Fig. 12   Speedup of the can-
neal benchmark of the 
Pthreads, FastFlow (FF) and 
CAF plus PPs (CAF + PP) 
implementations on the Xeon 
platform considering as baseline 
the Pthreads version with 1 
thread



708	 International Journal of Parallel Programming (2020) 48:692–712

1 3

4.3 � Summary of Results

To summarize the results, we can observe that the PPs proposed in Sect. 3 and imple-
mented in the CAF framework introduce low overhead and can be profitably used to 
speed-up performance-critical portion of the application in which the pattern can be 
used. The shared-memory abstraction, confined within the skeleton implementation of 
the patterns, gives a significant performance boost to applications if compared with a 
“pure” AM implementations. This evaluation confirmed that Actors+Parallel Patterns 
is a flexible parallel programming model capable of obtaining performance comparable 
to state-of-the-art implementations on multi-core platforms, without renouncing to the 
features of the AM.

5 � Related Work

In the AM, the parallel execution of messages within a single Actor is not 
allowed. Similarly, data cannot be shared between Actors by construction. These 
restrictions may lead to scalability issues and to the difficulty of fully exploiting 
the features of modern shared-memory platforms.

Two distinct approaches are aiming at overcoming these limitations. The first 
one tries to improve the performance of all mechanisms used to execute Actors 
efficiently, mainly the Actor scheduling strategies [6, 20, 34, 35]. The second 
approach, instead, follows the direction of extending the AM with new features 
and constructs [10, 19, 22, 25, 27, 33]. Our work falls in the second category. We 
added a new parallel abstraction level on top of the AM, providing the user with 
a set of PPs suitable to efficiently solve a large class of problems and having their 
implementation skeletons optimized for multi-core platforms.

Concerning the first approach, aiming at optimizing the RTS of Actor-based 
library, Francesquini et  al. [20] designed a NUMA-aware run-time environment 
based on the Erlang virtual machine. They introduced the concept of hub Actors, 
i.e. Actors with a longer lifespan that create and communicate with many short-
lived Actors composing the application. In the proposed system, short-lived 
Actors are carefully placed on the same NUMA node of hub Actors, thus obtain-
ing an average increase in the application performance. Trider et  al. [35] per-
formed a systematic study of the scalability limits of the Erlang language and 
its VM, presenting a coherent set of technologies, developed within the EU FP7 
RELEASE project, to improve its scalability and reliability. Barghi and Karsten 
[6], proposed an improved version of the Work-Stealing scheduler for the CAF 
framework, which takes into account locality and NUMA awareness for Actors. 
The new scheduler offers comparable or better performance than the default CAF 
scheduler. Torquati et al. [34], the CAF RTS has been optimized to improve the 
reactivity of Actors and to reduce the latency of messages in streaming applica-
tions composed by one or more pipelines.

Concerning the second approach, Scholliers et al. [33] observed that the AM 
is too strict, and they proposed PAM (Parallel Actors Monitor), a scheduler that 
expresses a coordination strategy for the parallel execution of messages within a 



709

1 3

International Journal of Parallel Programming (2020) 48:692–712	

single Actor. Since messages can be processed in parallel within the same Actor 
in PAM, the programmer is no longer forced to partition the input data to exploit 
parallelism. The authors of PAM proposed an AmbientTalk implementation of 
the scheduler, which uses a thread pool inside an Actor. Our approach promotes 
a more structured approach to these kinds of parallel problems, which on the one 
hand reduces the programmer’s freedom, but on the other hand, provides suitable 
abstractions with a precise parallel semantics that can be customized and com-
bined to solve the problem at hand.

Some authors proposed to use transactional memory to manage concurrent 
modifications of the Actor state [22], rather than an ad-hoc internal scheduler 
[33]. Incoming messages are executed in parallel on a thread pool, and the state 
modifications are managed as transactions, thus if two modifications conflict, 
the state is reverted and the modification executed again in a different order. To 
improve performance in situations where there are many concurrent state modifi-
cations, the authors proposed to divide the mailbox into two queues, one for read-
only messages (i.e., messages that do not modify the Actor’s internal state), and 
one for the other messages. The two queues are then scheduled on two configur-
able thread pools to decrease conflicts in the transactional memory.

De Koster et al. [27] proposed a global shared state (the Domain abstraction) 
that the Actors can access to reduce message and synchronization overheads. 
The authors proposed four different variants of the Domain, namely Immuta-
ble Domain, Isolated Domain, Observable Domain, and Shared Domain. Each 
one enforces different properties and guarantees on the data they manage with 
respect to the accesses executed by different Actors. Our approach is based on 
PPs abstractions as the way to encapsulate shared states and to coordinate concur-
rent accesses according to the parallel semantics of the patterns.

Skel [10] is a parallel library written in Erlang. It provides the user with a set 
of PPs (e.g., pipeline, farm and seq) that can be composed in a functional way. 
Each pattern is implemented by using Erlang Actors and can be customized by 
providing a set of functions. The main aim of the authors of Skel is to provide a 
skeleton-based library in Erlang to improve programmability and increase Erlang 
program performance. Our approach differs because we leverage PPs to address 
the restrictions of the AM by encapsulating low-level optimizations within the 
patterns.

In our previous work [32], we proposed to extend the AM with a software 
accelerator to decrease the execution time of data-parallel computations. We pro-
posed an effective way to partitioning CPU resources between the Actor’s sched-
uler and the data-parallel accelerator. We provided a preliminary implementation 
of the Map pattern that could be executed on the software accelerator. A similar 
approach was presented in [25], where the authors extend the C++ Actor Frame-
work (CAF) to support external HW accelerator (e.g., GPUs) through OpenCL for 
speeding up data-parallel computations. The extension implements an OpenCL 
manager and a new OpenCL Actor. The OpenCL manager supports the interac-
tion with OpenCL capable devices and it can spawn OpenCL Actors.

Finally, for the sake of completeness, several works have been made in the 
context of Active Objects to overcome some of the limitations of the AM. An 



710	 International Journal of Parallel Programming (2020) 48:692–712

1 3

Active Object (AO) is a pattern of concurrency largely inspired by the AM. An 
AO runs in its thread of control. The goal is to decouple the object method invo-
cation from its execution to simplify object access [28]. Henrio et al. [23], pro-
posed the Multi-Active Object model, which extends the Active Object model, 
allowing each activity to be multi-threaded. Hains et  al. [21], proposed a new 
programming model that uses Active Objects to coordinate BSP (Bulk Synchro-
nous Parallel) computations. Fernandez-Reyes et al. [19] proposed an extension 
of the AO model with the ParT abstraction, capable of running efficient data-
parallel computations in a non-blocking fashion with the ability to execute multi-
ple dependent ParT in parallel and to stop the execution on those values that are 
discovered to be irrelevant for the final result.

6 � Summary and Future Directions

In this paper, we discussed the performance limitation of using the “pure” AM in the 
context of high computational demanding applications on multi-cores. As reported 
in many research works, and as confirmed by our experimental results, the Actor 
isolation property may substantially impair the overall performance of Actor-based 
applications on multi-cores. To overcome this problem, we proposed to enrich the 
AM with a set of well-known Parallel Patterns (PPs) capturing recurrent parallel 
problems. Such patterns are provided to the programmer as a library of highly-opti-
mized skeletons implemented in CAF. PPs transparently encapsulate the use of the 
shared-memory and all low-level optimizations needed to maximize their perfor-
mance. At the same time, they offer a clean Actor-like interface that perfectly inte-
grates with the AM without breaking Actor isolation. The resulting programming 
model combines the best of the two worlds, offering at the user a versatile, safe, and 
efficient programming environment, also on multi-core platforms.

As future work, we want to extend the PP library with more patterns and test the 
model on heterogeneous distributed systems.

References

	 1.	 Agha, G.A.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cam-
bridge (1986)

	 2.	 Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation. J. Funct. 
Program. 7(1), 1–72 (1997)

	 3.	 Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and efficient stream-
ing on multi-core. In: Pllana, S., Xhafa, F. (eds.) Programming Multi-core and Many-Core Comput-
ing Systems, Parallel and Distributed Computing, Chapter 13. Wiley, New York (2017). https​://doi.
org/10.1002/97811​19332​015.ch13

	 4.	 Allen, J.: Effective Akka: Patterns and Best Practices. O’Reilly Media, Inc., Sebastopol (2013)
	 5.	 Armstrong, J.: The development of Erlang. SIGPLAN Not. 32(8), 196–203 (1997). https​://doi.

org/10.1145/25894​9.25896​7

https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1145/258949.258967
https://doi.org/10.1145/258949.258967


711

1 3

International Journal of Parallel Programming (2020) 48:692–712	

	 6.	 Barghi, S., Karsten, M.: Work-stealing, locality-aware actor scheduling. In: 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pp. 484–494 (2018). https​://doi.
org/10.1109/IPDPS​.2018.00058​

	 7.	 Bernstein, P., Bykov, S., Geller, A., Kliot, G., Thelin, J.: Orleans: distributed virtual actors for pro-
grammability and scalability. Microsoft Research. Available https​://www.micro​soft.com/en-us/resea​
rch/publi​catio​n/orlea​ns-distr​ibute​d-virtu​al-actor​s-for-progr​ammab​ility​-and-scala​bilit​y/ (2014)

	 8.	 Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: characterization and archi-
tectural implications. In: 17th International Conference on Parallel Architectures and Compilation 
Techniques, PACT ’08, pp. 72–81. ACM (2008). https​://doi.org/10.1145/14541​15.14541​28

	 9.	 Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–54 
(1973)

	10.	 Bozó, I., Fordós, V., Horvath, Z., Tóth, M., Horpácsi, D., Kozsik, T., Köszegi, J., Barwell, A., 
Brown, C., Hammond, K.: Discovering parallel pattern candidates in Erlang. In: Proceedings of 
the 13th ACM SIGPLAN Workshop on Erlang, Erlang ’14, pp. 13–23. ACM (2014). https​://doi.
org/10.1145/26334​48.26334​53

	11.	 Campbell, C., Miller, A.: A Parallel Programming with Microsoft Visual C++: Design Patterns for 
Decomposition and Coordination on Multicore Architectures, 1st edn. Microsoft Press, Redmond 
(2011)

	12.	 Charousset, D., Hiesgen, R., Schmidt, T.C.: Revisiting actor programming in C++. Comput. Lang. 
Syst. Struct. 45(Supplement C), 105–131 (2016)

	13.	 Charousset, D., Schmidt, T.C., Hiesgen, R., Wählisch, M.: Native actors—a scalable software 
platform for distributed, heterogeneous environments. In: Proceedings of the 4rd ACM SIGPLAN 
Conference on Systems, Programming, and Applications (SPLASH ’13), Workshop AGERE!, pp. 
87–96. ACM (2013)

	14.	 Chasapis, D., Casas, M., Moretó, M., Vidal, R., Ayguadé, E., Labarta, J., Valero, M.: PARSECSs: 
evaluating the impact of task parallelism in the parsec benchmark suite. ACM Trans. Archit. Code 
Optim. 12(4), 41:1–41:22 (2015). https​://doi.org/10.1145/28299​52

	15.	 Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel program-
ming. Parallel Comput. 30(3), 389–406 (2004)

	16.	 De Koster, J., Van Cutsem, T., De Meuter, W.: 43 years of actors: a taxonomy of actor models and 
their key properties. In: Proceedings of the 6th International Workshop on Programming Based on 
Actors, Agents, and Decentralized Control—AGERE 2016, pp. 31–40. ACM Press (2016). https​://
doi.org/10.1145/30018​86.30018​90

	17.	 De Sensi, D., De Matteis, T., Torquati, M., Mencagli, G., Danelutto, M.: Bringing parallel patterns 
out of the corner: the p 3arsec benchmark suite. ACM Trans. Archit. Code Optim. 14(4), 33:1–33:26 
(2017). https​://doi.org/10.1145/31327​10

	18.	 Ernstsson, A., Li, L., Kessler, C.: Skepu 2: flexible and type-safe skeleton programming for het-
erogeneous parallel systems. Int. J. Parallel Program. 46(1), 62–80 (2018). https​://doi.org/10.1007/
s1076​6-017-0490-5

	19.	 Fernandez-Reyes, K., Clarke, D., McCain, D.S.: Part: an asynchronous parallel abstraction for spec-
ulative pipeline computations. In: Nielson, H.R., Tuosto, E. (eds.) Coordination Models and Lan-
guages, pp. 101–120. Springer, Berlin (2016)

	20.	 Francesquini, E., Goldman, A., Méhaut, J.F.: Improving the performance of actor model runtime 
environments on multicore and manycore platforms. In: Proceedings of the 2013 Workshop on Pro-
gramming Based on Actors, Agents, and Decentralized Control, AGERE! 2013, pp. 109–114. ACM 
(2013). https​://doi.org/10.1145/25413​29.25413​42

	21.	 Hains, G., Henrio, L., Leca, P., Suijlen, W.: Active objects for coordinating BSP computations 
(short paper). In: Di Marzo Serugendo, G., Loreti, M. (eds.) Coordination Models and Languages, 
pp. 220–230. Springer, Berlin (2018)

	22.	 Hayduk, Y., Sobe, A., Felber, P.: Dynamic message processing and transactional memory in the 
actor model. In: IFIP International Conference on Distributed Applications and Interoperable Sys-
tems, pp. 94–107. Springer (2015)

	23.	 Henrio, L., Huet, F., István, Z.: Multi-threaded active objects. In: De Nicola, R., Julien, C. (eds.) 
Coordination Models and Languages, pp. 90–104. Springer, Berlin (2013)

	24.	 Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial intelligence. 
In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence, IJCAI’73, pp. 
235–245. Morgan Kaufmann Publishers Inc. (1973)

https://doi.org/10.1109/IPDPS.2018.00058
https://doi.org/10.1109/IPDPS.2018.00058
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/2633448.2633453
https://doi.org/10.1145/2633448.2633453
https://doi.org/10.1145/2829952
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/3132710
https://doi.org/10.1007/s10766-017-0490-5
https://doi.org/10.1007/s10766-017-0490-5
https://doi.org/10.1145/2541329.2541342


712	 International Journal of Parallel Programming (2020) 48:692–712

1 3

	25.	 Hiesgen, R., Charousset, D., Schmidt, T.C.: OpenCL Actors - Adding Data Parallelism to Actor-Based Pro-
gramming with CAF, pp. 59–93. Springer, Berlin (2018). https​://doi.org/10.1007/978-3-030-00302​-9_3

	26.	 Imam, S.M., Sarkar, V.: Savina—an actor benchmark suite: enabling empirical evaluation of actor 
libraries. In: Proceedings of the 4th International Workshop on Programming based on Actors 
Agents & Decentralized Control—AGERE! ’14, pp. 67–80. ACM Press (2014). https​://doi.
org/10.1145/26873​57.26873​68

	27.	 Koster, J.D., Marr, S., Cutsem, T.V., D’Hondt, T.: Domains: sharing state in the communicating event-loop 
actor model. Comput. Lang. Syst. Struct. 45, 132–160 (2016). https​://doi.org/10.1016/j.cl.2016.01.003

	28.	 Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral pattern for concurrent program-
ming. In: Vlissidis, J.M., Coplien, J.O., Kerth, N.L. (eds.) Pattern Languages of Program Design 2, 
pp. 483–499. Addison-Wesley Longman Publishing Co., Inc., Reading (1996)

	29.	 Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Ferret: a toolkit for content-based similarity 
search of feature-rich data. SIGOPS Oper. Syst. Rev. 40(4), 317–330 (2006)

	30.	 Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st edn. Addison-Wes-
ley Professional, Reading (2004)

	31.	 Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism. 
O’Reilly Media, Inc., Newton (2007)

	32.	 Rinaldi, L., Torquati, M., Mencagli, G., Danelutto, M., Menga, T.: Accelerating actor-based applica-
tions with parallel patterns. In: 27th Euromicro PDP Conference, pp. 140–147. Pavia, Italy (2019). 
https​://doi.org/10.1109/EMPDP​.2019.86716​02

	33.	 Scholliers, C., Tanter, É., De Meuter, W.: Parallel actor monitors: disentangling task-level parallel-
ism from data partitioning in the actor model. Sci. Comput. Program. 80, 52–64 (2014). https​://doi.
org/10.1016/j.scico​.2013.03.011

	34.	 Torquati, M., Menga, T., De Matteis, T., De Sensi, D., Mencagli, G.: Reducing message latency 
and CPU utilization in the CAF actor framework. In: 26th Euromicro International Conference on 
Parallel, Distributed and Network-based Processing, PDP 2018, March 21-23, 2018, pp. 145–153. 
Cambridge, UK (2018). https​://doi.org/10.1109/PDP20​18.2018.00028​

	35.	 Trinder, P., Chechina, N., Papaspyrou, N., Sagonas, K., Thompson, S., Adams, S., Aronis, S., Baker, 
R., Bihari, E., Boudeville, O., Cesarini, F., Stefano, M.D., Eriksson, S., fördős, V., Ghaffari, A., 
Giantsios, A., Green, R., Hoch, C., Klaftenegger, D., Li, H., Lundin, K., Mackenzie, K., Roukou-
naki, K., Tsiouris, Y., Winblad, K.: Scaling reliably: improving the scalability of the Erlang dis-
tributed actor platform. ACM Trans. Program. Lang. Syst. 39(4), 17:1–17:46 (2017). https​://doi.
org/10.1145/31079​37

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-00302-9_3
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1016/j.cl.2016.01.003
https://doi.org/10.1109/EMPDP.2019.8671602
https://doi.org/10.1016/j.scico.2013.03.011
https://doi.org/10.1016/j.scico.2013.03.011
https://doi.org/10.1109/PDP2018.2018.00028
https://doi.org/10.1145/3107937
https://doi.org/10.1145/3107937

	Improving the Performance of Actors on Multi-cores with Parallel Patterns
	Abstract
	1 Introduction
	2 Background
	3 Designing Parallel Patterns as Actors
	3.1 Data-Parallel PPs
	3.2 Control-Parallel PPs
	3.3 Composition of Parallel Patterns

	4 Evaluation
	4.1 “Pure” Actor Model Versus Actors + Parallel Patterns
	4.2 Testing Actors + Parallel Patterns with Some Parsec Benchmarks
	4.3 Summary of Results

	5 Related Work
	6 Summary and Future Directions
	References




