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Abstract
Data assimilation is an analysis techniquewhich combines observations and the numer-
ical results from theoretical models to deduce more realistic and accurate data. It is
widely used in investigations of the atmosphere, ocean and land surface. Due to the
complicated data structure of the inputs from dynamical models and the increase of
the amount of model data, the parallelization of data assimilation suffers from high
overhead on file reading and data communication. In this paper, we propose a flexible
parallel data access approach for reading a large number of data from disks firstly.
Using this approach, the data access conflict is avoided successfully, and the fre-
quency of disk addressing operations is also decreased significantly. Next, we design
a communication-avoiding strategy to reduce the communication volume at the cost
of some additional computations. Furthermore, we present a “pipe-flow” scheme for
data exchange to conduct conflict-free message passing. Consequently, a fast data-
obtaining algorithm is developed for the data assimilation. Our experiments show that
the fast data-obtaining algorithm gains a performance of 5× speedup compared with
the baseline, which is excellent at data-obtaining for the parallel data assimilation. Due
to the reduction of disk addressing operations, the new approach achieves 6× speedup
on average for the file reading process. Since a large amount of data movement can be
avoided, the new approach achieves 2.7× speedup on average for the communication
between processors.
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1 Introduction

Data assimilation is a powerful technique which has been widely applied in investi-
gations of the atmosphere [17,20], ocean [11,30], and land surface [24]. It combines
observation data and the underlying dynamical principles governing the system to pro-
vide an estimate of the state of the system which is better than the observation or the
model result alone [10]. In recent years, with the development of high resolution data
assimilation, the size of each sample becomes very large, and the number of observa-
tion data is increasing significantly [6]. Consequently, real applications usually need
to deal with the data with hundreds or thousands of GB. Hence, the data assimilation
becomes a scientific big data problem.

In order to execute the data assimilation parallelly in a system with several pro-
cessors, the domain localization strategy is commonly used [16,29], which updates
the value of each physical variable on a point of 2D or 3D space by only considering
observations within a given radius of influence r [15]. Based on this basic idea, the
processors could assimilate data on different subdomains simultaneously. The com-
putation time would reduce almost linearly with the number of processors increasing.
Consequently, the time for computation can be ignored, while the time for reading
data would dominate the main part of total runtime. Since the high resolution data
analysis requires a large number of input data, the assimilation process can easily be
bottlenecked by an inefficient approach to bring input data to processors. In the recent
decay, many I/O optimization methods have been developed to speed up the process
of file reading in the data assimilation [2], such as the concurrent access approach,
the in-memory workflow method and so on. They give good solutions for different
situations respectively, and are widely used in applications.

In this work, we consider a special data assimilation which is widely used in real
applications to analyze the simulation results from dynamical models, such as Hybrid
Coordinate Ocean Model (HYCOM). In this assimilation process, not all simulation
results from dynamical models are involved. The useful input data is discontinuously
stored in different locations of disks. Itwould result in a largenumber of disk addressing
operations and the long time for file reading. On the other hand, in the data assimilation
for HYCOM, the data analysis of each physical variable on a mesh point only depends
on few observations, which leads to the computation time is much less than the I/O
time. Therefore, it is difficult to improve the performance by overlapping I/O and
computation similar to recent work [27].

In order to efficiently optimize the data-obtaining process in the data assimilation
for real applications, this work would do a deeper investigation of the computation
workflow. Inspired by the concurrent access approach [27], we also choose some
processors only for file reading, and divide the data-obtaining process into two stages:
file reading and data communication. Furthermore, the corresponding optimization
approaches for I/O and data movement are considered respectively based on the in-
depth analysis of bottlenecks brought by the application requirements.

In this work, we make the following key contributions:
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– Propose a flexible parallel data access approach for reading a large number of data
from disks. Using this approach, the data access conflict is avoided successfully,
and the frequency of disk addressing operations is also decreased significantly.

– Design a communication-avoiding strategy to reduce the communiation volume
at the cost of some additional computations.

– Present a “pipe-flow” scheme for data exchange to conduct confict-free message
passing.

– Develop a fast data-obtaining algorithm for data assimilation, based on our opti-
mization strategies for file reading and data communication.

– Evaluate the performance of the fast data-obtaining algorithm with large data sets,
which demonstrates the high scalability and significant performance improvement
on the data-obtaining process.

2 Background and RelatedWork

2.1 Hybrid Coordinate OceanModel

TheHybridCoordinateOceanModel (HYCOM) [8,28]was developed from theMiami
Isopycnic Coordinate Ocean Model [3,4,7]. It is characterized by a hybrid vertical
coordinate that transfers smoothly from the isopycnal coordinate in the open, stratified
ocean to the terrain-following sigma coordinate in the coastal regions and to the z
coordinate in themixed layer andunstratified seas. Such setupmay reasonably simulate
coastal or open-sea ocean states by combining the advantages of different types of
coordinates. The K-profile parameterization vertical mixing scheme [18] is included
in HYCOM. The model domain spans the Pacific and Indian oceans from 27◦ E to
290◦ E and from 50◦ S to 60◦ N with several vertical hybrid layers. The HYCOM
is forced by the 6-hourly fields, which include temperature, dew point temperature,
mean sea level pressure, and wind. The lateral boundary conditions and sea surface
salinity fields are relaxed toward monthly climatologies taken from the Generalized
Digital Environmental Model [25]. In this work, HYCOM is one of data sources. The
useful inputs for data assimilation are a part of direct results from HYCOM, and they
are discontinuously stored in disks.

2.2 AssimilationMethod

Data assimilation is an analysis technique in which the observed information is accu-
mulated into the model state by taking advantage of consistency constraints with laws
of time evolution and physical properties. Recent decades have witnessed the devel-
opment of the assimilation technique [5,13]. Several assimilation methods have been
proposed, such as the optimal interpolation, theKalmanfilter [14,22], variationalmeth-
ods (3D-Var [1,19] and 4D-Var [9,23]), and so on. The assimilationmethod considered
in this paper, is Ensemble Optimal Interpolation (EnOI) method [12,21].

A simulation result provided the dynamical model such as HYCOM usually con-
tains M physical characteristics (M � 1), while there are justm characteristics which
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Fig. 1 Data structure of background ensemble members

would be needed for the data assimilation (m < M).Without loss of generality, assume
that the useful characteristics are the first m ones. In our algorithm design, we will
discuss how to obtain m out of M characteristics in general cases. After getting the
m characteristics, the first m1 ones are used to correct the latter m2 characteristics
(m = m1+m2). On the nx ×ny longitude–latitude mesh of the earth surface, ϕi ∈ R

n

and ψi ∈ R
n represent the analysis field and the background field for the i th physical

characteristic respectively, and n = nx · ny is the size of the model state vector. Let
di ∈ R

hi be the perturbed observation for the i th physical characteristic, and hi is
the number of measurements. Based on the statistical error correction, EnOI method
gives the solution as follows

ϕi = ψi + F(Ai , ψ1, . . . , ψm1 , d1, . . . , dm1) ∈ R
n, i = m1 + 1, . . . ,m1 + m2,

(1)

where the function F(·) is the analysis increment, and Ai is the background ensemble
for i th physical characteristic taken from the model integration. Ai can be written as

Ai = [ai,1, ai,2, . . . , ai,N ] ∈ R
n×N .

Let a j = [a1, j , a2, j , . . . , aM, j ]. a j is called the j th background ensemble member
( j = 1, 2, . . . , N ). N is the number of ensemble members. For each a j , the element
ai, j ∈ R

n can be represented as

ai, j = (ai, j [1], ai, j [2], . . . , ai, j [n])T ,

in which ai, j [k] is the kth element value of ai, j on the kth mesh point of the longitude–
latitude mesh. Figure1 shows the data structure of background ensemble members.
Futhermore, the background error covariance matrix can be estimated by
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Bi = Ãi Ã
T
i , (2)

where

Ãi = [ãi,1, ãi,2, . . . , ãi,N ] = 1√
N − 1

(Ai − āi ⊗ 1TN ). (3)

Here, āi is the ensemble mean, 1TN ∈ R
N is a vector whose N components are all

ones, and ⊗ denotes the outer product of two vectors. The superscript T denotes
matrix transpose. By using the first m1 background fields ψi (i = 1, 2, . . . ,m1), a
measurement error can be presented as

U =

⎛
⎜⎜⎜⎝

d1 − H(ψ1, d1)
d2 − H(ψ2, d2)

...

dm1 − H(ψm1 , dm1)

⎞
⎟⎟⎟⎠ , (4)

and H is an observation operator which maps from the model space to the observation
space. In general, the analysis increment of EnOI reads

F(Ai , ψ1, . . . , ψm1 , d1, . . . , dm1) = α Ãi S
T (αSST + R)−1U , (5)

where

S = (S1, S2, . . . , SN ), and S j =

⎛
⎜⎜⎜⎝

H(ã1, j , d1)
H(ã2, j , d2)

...

H(ãm1, j , dm1)

⎞
⎟⎟⎟⎠ . (6)

In the Eq. (5), R is the estimated data error covariance matrix, and the parameter α is
a scalar for tuning the magnitude of the covariance.

2.3 Parallel Implementation

In order to execute the data assimilation parallelly in a system with several processors,
the localization is commonly used [16,29], which updates the value of each physi-
cal variable on a mesh point by only considering observations within a given radius
of influence r such as 400 km. Based on this basic idea, the domain decomposition
is proposed, in which the whole computation domain is split into nsd subdomains.
Assume that there are also nsd computation processors in the system, and each pro-
cessor is responsible for the local data update in a subdomain. For the kth subdomain
Dk , we define the expansion D̄k as the point set which includes the subdomain Dk

and all additional points needed for local computation. For instance, if the kth sub-
domain is Dk = [xk1 , xk2 ] × [yk1 , yk2 ], then the expansion of Dk can be represented as
D̄k = [xk1 − ξ, xk2 + ξ ]× [yk1 − η, yk2 + η]. Denote ψk

i and ψ̄k
i as the constraints of ψi
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on Dk and D̄k respectively. For example, ψk
i = (ψk

i [ j1], . . . , ψk
i [ jhk ]) ∈ R

hk where
hk is the number of mesh points in Dk , and all j1th, . . ., jhk th mesh points are in Dk .
Similarly, we can define dki , a

k
i, j on Dk , and d̄ki , ā

k
i, j on D̄k respectively. According

to the Eqs. (1) and (5), the analysis field on Dk can be represented as

ϕk
i = ψk

i + F(Ak
i , ψ

k
1 , . . . , ψk

m1
, dk1 , . . . , d

k
m1

), i = m1 + 1, . . . ,m1 + m2,

(7)

where

F(Ak
i , ψ

k
1 , . . . , ψk

m1
, dk1 , . . . , d

k
m1

) = α Ãk
i (S

k)T (α(Sk)(Sk)T + Rk)−1(Uk).

here Rk is the estimated data error covariance matrix on the kth subdomain. Ãk
i can

be calculated by

Ãk
i = [ãki,1, ãki,2, . . . , ãki,N ], where ãki, j = aki, j − āi√

N − 1
. (8)

Moreover,

Sk = (Sk1 , S
k
2 , . . . , S

k
N ), where Skj =

⎛
⎜⎜⎜⎜⎝

H(āk1, j , d̄
k
1 )

H(āk2, j , d̄
k
2 )

...

H(ākm1, j
, d̄km1

)

⎞
⎟⎟⎟⎟⎠

, (9)

and

Uk =

⎛
⎜⎜⎜⎝

dk1 − H(ψ̄k
1 , d̄k1 )

dk2 − H(ψ̄k
2 , d̄k2 )

...

dkm1
− H(ψ̄k

m1
, d̄km1

)

⎞
⎟⎟⎟⎠ . (10)

In each subdomain, after the necessary data is acquired, the local analysis (7) is com-
puted independently, and then all results are mapped back onto the global domain.

The parallel implementation of the data assimilation is shown in Alogrithm 1.
First of all, the kth processor has to obtain the observations d̄ki , the characteristics
āki, j , and the background field ψ̄k

i (i = 1, 2, . . . ,m1, j = 1, 2, . . . , N ) on the kth

expansion D̄k . Secondly, Sk and Uk are calculated according to the Eqs. (9) and (10)
respectively. Using āki, j , R

k is constructed. Thirdly, the kth processor reads other

background ensemble elements āki, j on D̄k and background fields ψk
i on Dk with

i = m1 + 1, . . . ,m1 +m2 and j = 1, 2, . . . , N . Finally, Ãk
i follows from the Eq. (8).

Furthermore, the Eq. (7) leads to the final result ϕk
i .
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Algorithm 1 Parallel Data Assimilation
Require: Background ensemble members a j ( j = 1, 2, . . . , N ), and background fields ψi , perturbed

observations di (i = 1, 2, . . . , M), and observation operator H ;
Ensure: Analysis field ϕki ;
1: // The k-th processor obtains data on the expasion of k-th subdomain (k = 1, 2, . . . , nsd );
2: Obtain āki, j from a j with i = 1, 2, . . . ,m1, j = 1, 2, . . . , N ;

3: Obtain ψ̄k
i from ψi with i = 1, 2, . . . ,m1;

4: Obtain d̄ki from di with i = 1, 2, . . . ,m1;
5: //The k-th processor executes local computation;
6: Calculate H(āki, j , d̄

k
i );

7: Deduce Sk according to (9);
8: Deduce Uk according to (10);
9: Construct Rk using āki, j ;
10: //The k-th processor obtains data on the expasion of k-th subdomain;
11: Obtain āki, j from a j with i = m1 + 1, . . . ,m1 + m2, j = 1, 2, . . . , N ;

12: Obtain ψk
i from ψi with i = m1 + 1, . . . ,m1 + m2;

13: //The k-th processor executes local computation;
14: for i = m1 + 1 to m1 + m2 do
15: Deduce Ãki according to (8);

16: ϕki = ψk
i + α Ãki (S

k )T (α(Sk )(Sk )T + Rk )−1(Uk );

17: Write ϕki into disks;
18: end for
19: Return;

2.4 Parallel Optimization

Two main parts in Algorithm 1 are local computation and data-obtaining. The local
computation involves the singular value decomposition to realize the matrix inverse,
which takes up most of the total runtime as the number of processors is small. How-
ever, the time for local computation can decease almost linearly with the number of
processors increasing, which leads to the decrease of the size (or number of mesh
points) of each subdomain. On the other hand, the background ensembles Ai with
about hundreds of GB have to be read from disks. If Ak

i are read directly from disks by
multiple processors in parallel, the data access conflict would occur. When the number
of processors increases, I/O time would continue to rise. Therefore, the file reading
process is the performance bottleneck of the data assimilation.

In recent works, the in-memory workflow method is commonly used for I/O-
intensive tasks. In this way, all processors are divided into two parts: I/O processors
and computation processors. All data are read by I/O processors and stored in their
memory. The computation processors would fetch data from I/O processors. If the data
have to be used repeatedly, the in-memory workflow only needs to read the data from
disks once. All data always flow within the memory of different processors, which
could avoid frequent I/O operations. Although the in-memory workflow method is
widely applied in some I/O libraries such as PIO, it is not helpful for improving I/O
behaviour of Algorithm 1. The reason is that, in Algorithm 1, all data are used only
once, and the I/O time is much longer than the computation time.
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In order to avoid multiple processors accessing a disk at the same time, the con-
current access approach has been proposed [27]. This approach also uses some I/O
processors for file reading, which seems similar to the in-memory workflow. But,
the motivation of the concurrent access approach is to transform the task of the data
assimilation from I/O-intensive one to CPU-intensive, which provides an opportunity
for overlapping I/O and computation. However, in the application of Algorithm 1 for
HYCOM, the data analysis of each physical variable on a mesh point only depends
on few observations. Consequently, the time for local computation can be ignored
compared with the I/O time. Hence, it is impossible to use the concurrent access
approach to change Algorithm 1 from I/O-intensive to CPU-intensive. Even though
the optimization strategy may be designed for overlapping I/O and computation, the
overlap ratio must be small. In this work, we would focus on the design to improve
the data-obtaining process in Algorithm 1.

3 AlgorithmDesign

In this section, we describe our algorithm design for the parallel data assimilation.
Firstly, we propose a flexible parallel data access approach for reading the background
ensembles on each subdomain. Next, we design a communication-avoiding strategy
to reduce the communication volume at the cost of some additional computations.
Thirdly, we present a “pipe-flow” scheme for data exchange to conduct conflict-free
message passing. Finally, our algorithm design leads to a new algorithm, which is
called as Fast Data-obtaining Algorithm.

3.1 Parallel Data Access Approach

There are two main challenges in the designing of the file reading approach. On one
hand, in the recent file system, a disk only supports a limited number of processors to
access it simultaneously. If a lot of processors would access the same disk at the same
time, many processors have to wait for the disk resource to become available. Hence,
it is inefficient to use all processors for reading data from disks directly. Consequently,
the first challenge is how to avoid the data access conflict. On the other hand, in the real
applications, each ensemble member obtained from the dynamical model, usually has
M physical characteristics, while the data assimilation only involves m of them. This
factmeans that, for the j th background ensemblemember a j = [a1, j , a2, j , . . . , aM, j ],
the usefulm elements have to be selected from the set {a1, j , a2, j , . . . , aM, j }. In the file
system, each ensemble a j is stored as an independent file. If the whole ensemble a j are
read into thememory, it is likely to bring large I/O volume and causememory overflow.
If the processors only read the usefulm elements of a j , the file reading process would
involve a discontinuous data access, which results in many disk addressing operations
and an inefficient disk access. Therefore, the second challenge is how to decrease the
amount of disk addressing operations when the useful m elements of a j are read.

In order to solve two bottlenecks above for file reading in the data assimilation, we
propose a parallel data access approach as follows. Firstly, inspired by the concurrent
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Fig. 2 Code skeleton for determining each element of v j and an example with m = 7 and M = 14. For a
background ensemble a j , the red and white blocks represent the useful and needless physical characteristics
respectively (Color figure online)

access approach in [27], we also choose q processors (q ≥ 1) only for file reading
(I/O processors) and the other processors for local analysis (Computation processors).
Each I/O processor only needs to access N/q ensembles. Secondly, the I/O processor
runs a test program to obtain the approximate values of time t1 for reading a vector
with length of n such as ai, j , and time t2 for one disk addressing. Based on t1, t2
and the input information which contains the indexes of the useful m elements in
a j , the I/O processor for accessing a j would construct a vector v j which determines
how the processor access a j (Fig. 2). If an element of v j equals to “K ” (K ≥ 0),
the I/O processor needs to read the concurrent continuous K elements of a j , such as
ai0+1, j , ai0+2, j , . . . , ai0+K , j , and then starts a new disk addressing to find the next
useful data. If an element of v j is equal to “− 1”, the I/O processor stops the data
access on a j . Thirdly, after getting the necessary data ai, j , the I/O processor splits
it into several small ones āki, j , and sends āki, j to the computation processor which is

responsible for the data assimilation on the kth subdomain Dk .
In the approach above, the I/O processors should be chosen according to the com-

putational environment. In a distributed-memory system, a node usually has several
cores. In order to take full advantage of the memory and network bandwidth of nodes,
it is efficient to use one core of a node as the I/O processor. Since the number of
I/O processors can be fixed, the new approach effectively avoids a lot of processors
accessing a disk during the total number of processors becomes large. Furthermore,
although the new approach also has to read some needless data, it could effectively
decrease the I/O time and the frequency of disk addressing.
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(a) (b)

Fig. 3 Localization. a the domain decomposition. b the kth subdomain and its expansion. The solid and
dashed boxes represent the kth subdomain Dk and the expansion D̄k respectively. The yellow triangles
show the observation points. Red circles highlight the positions where the data of āki, j on blue mesh points

and d̄ki on yellow observations points are necessary for calculating H(āki, j , d̄
k
i ) (Color figure online)

3.2 Communication-Avoiding Strategy

To calculate H(āki, j , d̄
k
i ) (or H(ψ̄k

i , d̄ki )), the computation processors have to read

āki, j (or ψ̄k
i ) and d̄ki from disks directly, or receive them from I/O processors. On one

hand, since the size of each whole perturbed observation di is small, the computation
processors can obtain di fast from disks in the inital stage when the I/O processors
access ai, j . After getting di , the kth computation processor only needs to screen out
d̄ki from di . On the other hand, for each Dk = [xk1 , xk2 ] × [yk1 , yk2 ], its expansion is
D̄k = [xk1 − ξ, xk2 + ξ ] × [yk1 − η, yk2 + η]. Since the values of ξ and η are fixed, the
halo area D̄k/Dk would dominate most part of the expansion D̄k during the number
of subdomains increases and the size of Dk decreases (Fig. 3). This fact would result
in the significant increment of communication volume when the number of processors
enlarges.

In order to control the communication volume, we do a deep investigation of the
calculation of H(ãki, j , d̄

k
i ). We find that H(āki, j , d̄

k
i ) only involves the āki, j around

observation points (the red circles highlight the areas in Fig. 3b). This fact implies
that the volume of the necessary data for the computation of H(āki, j , d̄

k
i ) is small. If

I/O processors just send the necessary data, a large number of data movement can
be avoided. Consequently, a communication-avoiding strategy is proposed as follows.
Firstly, the computation processors read di from disks, and then screen out d̄ki from
dki . Secondly, the kth computation processor calculates the positions of all observation
points in the expansion D̄k . The lth observation point corresponds to the place where
the lth element of d̄ki is observed (the yellow triangles in Fig. 3b). Furthermore, the
computation processors send the location information of observation points to I/O
processors. Based on the locations, I/O processors choose the elements of āki, j on the
mesh points around the observation points (in the red circles of Fig. 3b), and send them
to the kth computation processor. Finally, the kth computation processor calculates
H(āki, j , d̄

k
i ).
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By theway,when the number of processors is less than one thousand, it is reasonable
for the conventional way to use the computation processor to receive the whole data
of āki, j from I/O processors, because the computation of positions of observation

points in D̄k is time-consuming. However, if thousands of processors are used, the
size of each subdomain is not very large. Hence, the search process for the positions
of observation points will be completed in seconds. Furthermore, using the location
information of observation points, the I/O processors only need to send very little
data to the computation processors for calculating H(āki, j , d̄

k
i ), which achieves the

communication-avoiding successfully.

3.3 “Pipe-Flow” Scheme for Data Exchange

After reading ai, j from the disk, the I/O processor needs to split ai, j into nsd some
small data āki, j (k = 1, 2, . . . , nsd ), and send āki, j to the kth computation processor
for the local computation on the kth subdomain, which requires a carefully designed
communication strategy to conduct a conflict-free message passing. For example,
we should avoid concurrent sending of data from several I/O processors to the same
computation processor, otherwise both the number of message and the volume of data
received by this processor aremuch larger other computation processors, which results
in an imbalanced usage of the network.

Therefore, it is important to specify an optimized sequence of communications.
For that purpose, we design a “pipe-flow” scheme as shown in Fig. 4. In the “pipe-
flow” scheme, there are several different steps in the arrangement of communications.
Communications are done like a flow from an I/O processor to different computation
processors (Fig. 4). First of all, all computation processors are assigned to q groups.
Next, In the kth step (1 ≤ k ≤ q), the i th I/O processor broadcasts data to the
computation processors in the j th group, where j = i + k − 1 if i + k − 1 ≤ q,
otherwise j = i + k − 1− q. After q steps, the kth computation processor would get
all āki, j ( j = 1, 2, . . . , N ) for the i th physical characteristic.

3.4 Fast Data-Obtaining Algorithm

Based on the discussion above, a fast data-obtaining algorithm for data assimilation
is proposed (Algorithm 2), where some processors (I/O processors) are chosen for
file reading, the others (Computation processors) are for the local updates on different
subdomains.

Firstly, I/O processors read m1 useful background ensemble elements ai, j from
a j = [a1, j , a2, j , . . . , aM, j ] in disks (i = i1, i2, . . . , im1 ). By using the parallel data
access approach, a largenumber of disk addressingoperations are avoided successfully.
Furthermore, m1 background fields ψi also could be obtained from disks efficiently
(i = i1, i2, . . . , im1 ). After obtaining ai, j and ψi , I/O processors could screen out
āki, j and ψ̄k

i on the expansion D̄k of the kth subdomain respectively. Moreover, I/O

processors do not rush to send āki, j and ψ̄k
i to the kth computation processor, but just

wait to receive the information about the positions of all observation points in D̄k .
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Fig. 4 “Pipe-flow” scheme for data exchange
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Algorithm 2 Fast Data-obtaining Algorithm
Require: Background ensemble members a j ( j = 1, 2, . . . , N ), and background fields ψi , perturbed observations di

(i = 1, 2, . . . , M), and observation operator H ;
Ensure: Analysis field ϕki ;
1: // I/O processors read data from disks;
2: Read the background elements ai, j from a j in disks using Parallel Data Access Approach (i = i1, i2, . . . , im1 , j =

1, 2, . . . , N );
3: Read the background fields ψi from disks directly (i = i1, i2, . . . , im1 );
4: // I/O processors execute computation;
5: Screen out āki, j from ai, j (i = i1, i2, . . . , im1 , j = 1, 2, . . . , N );

6: Screen out ψ̄k
i from ψi (i = i1, i2, . . . , im1 );

7: // The k-th computation processor reads data from disks;
8: Read di from disks directly (i = i1, i2, . . . , im1 );
9: // The k-th computation processor executes local computation;
10: Screen out d̄ki from di (i = i1, i2, . . . , im1 );

11: Calculate the positions of all observation points in the expansion D̄k for avoiding a large amount of communication
volume;

12: // The k-th computation processor communicates with I/O processors;
13: Send the location information of observation points to I/O processors;
14: // I/O processors communicate with the k-th computation processor;
15: Receive the locations of the observation points in the expansion D̄k ;
16: // I/O processors execute computation;
17: Choose the elements of āki, j on the mesh points around the observation points;

18: // I/O processors communicate with computation processors;
19: Send the chosen elements of āki, j to the k-th computation processor using “Pipe-flow” Scheme (i =

i1, i2, . . . , im1 , j = 1, 2, . . . , N );

20: Send ψ̄k
i to the k-th computation processor using “Pipe-flow” Scheme (i = i1, i2, . . . , im1 );

21: // The k-th computation processor communicates with I/O processors;
22: Receive the necessary elements of āki, j from I/O processors (i = i1, i2, . . . , im1 , j = 1, 2, . . . , N );

23: Receive ψ̄k
i from I/O processors (i = i1, i2, . . . , im1 );

24: // The k-th computation processor executes local computation;
25: Calculate H(āki, j , d̄

k
i );

26: Deduce Sk according to (9);
27: Deduce Uk according to (10);
28: Construct Rk using āki, j ;

29: // I/O processors read data from disks;
30: Read other background ensemble elements ai, j from a j in disks using Parallel Data Access Approach (i =

im1+1, . . . , im1+m2 , j = 1, 2, . . . , N );
31: Read other background fields ψi from disks directly (i = im1+1, . . . , im1+m2 );
32: // I/O processors execute computation;
33: Screen out āki, j from ai, j (i = im1+1, . . . , im1+m2 , j = 1, 2, . . . , N );

34: Screen out ψk
i from ψi (i = im1+1, . . . , im1+m2 );

35: // I/O processors communicate with computation processors;
36: Send āki, j to the k-th computation processor using “Pipe-flow” Scheme (i = im1+1, . . . , im1+m2 , j = 1, 2, . . . , N );

37: Send ψk
i to the k-th computation processor using “Pipe-flow” Scheme (i = im1+1, . . . , im1+m2 );

38: // The k-th computation processor communicates with I/O processors;
39: Receive āki, j from I/O computation processors (i = im1+1, . . . , im1+m2 , j = 1, 2, . . . , N );

40: Receive ψk
i from I/O computation processors (i = im1+1, . . . , im1+m2 );

41: // The k-th computation processor executes local computation;
42: for h = m1 + 1 to m1 + m2 do
43: i = ih ;
44: Deduce Ãki according to (8);

45: ϕki = ψk
i + α Ãki (S

k )T (α(Sk )(Sk )T + Rk )−1(Uk );

46: Write ϕki into disks;
47: end for
48: Return;
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Secondly, when I/O processors screen out āki, j and ψ̄k
i , the kth computation pro-

cessor can readm1 perturbed observations di from disks directly (i = i1, i2, . . . , im1 ),
which is a fast procedure due to the small size of di . After getting di , the kth computa-
tion processor would screen out d̄ki from di . Based on d̄ki , it calculates the positions of
all observation points in the kth expansion D̄k , and then sends the location informa-
tion of observation points to I/O processors, which could make sure I/O processors to
only provide the kth computation processor the necessary data. The motivation of our
communication-avoiding design is to reduce the communication volume through some
additional computations. Furthermore, since it is time-consuming to deduce the posi-
tions of all observationpoints,weuse all computationprocessors to execute the tasks on
different expansions in parallel, rather than using the limited number of I/O processors.

Thirdly, after receiving the locations of the observation points in the expansion
D̄k , I/O processors could choose the elements of āki, j on the mesh points around
the observation points, and then send the useful elements to the kth computation
processor, which can reduce the communication volume significantly compared with
communicating the whole āki, j . Meanwhile, ψ̄k

i are also sent. In order to avoid an
imbalanced usage of the network and the conflict of message passing, the “pipe-flow”
scheme is used for data exchange. As soon as the necessary elements of āki, j and ψ̄k

i

are obtained, the kth computation processor can deduce Sk , Uk and Rk .
Fourthly, I/O processors further read other m2 background ensemble elements ai, j

and m2 background fields ψi from disks using the parallel data access approach (i =
im1+1, . . . , im1+m2 ). Next, they screen out āki, j and ψk

i from ai, j and ψi respectively,

and then send āki, j and ψk
i to the kth computation processor using the “pipe-flow”

scheme.
Finally, after obtaining āki, j and ψk

i (i = im1+1, . . . , im1+m2 ), the kth computation

processor executes the local analysis on the subdomain Dk and deduce ϕk
i . This local

data assimilation is done at each subdomain in parallel.

4 Evaluation

In this section, we present the performance evaluations of Fast Data-obtaining Algo-
rithm (FDA) on Tianhe-2 supercomputer.

4.1 Computational Environment and Data Set

Tianhe-2 was the fastest supercomputer in the world from 2013 to 2015. It is equipped
with two Intel Ivy Bridge CPUs (24 cores) for every node, and its interface nodes are
connected using InfiniBand networks. The system software includes a 64-bit Kylin
OS, an Intel 14.0 compiler, a customized MPICH-3.1 for TH Express-2, and a self-
designed hybrid hierarchy file system H2FS. In our numerical experiments, we have
used 204 nodes of Tianhe-2, where 24 nodes are only for I/O process, and the others
are for local computation. Furthermore, MPI-IO library is installed in Tianhe-2 for
parallel I/O processes. Hence, MPI-IO library is used in the file reading process of
both FDA and our baseline.

123



764 International Journal of Parallel Programming (2020) 48:750–770

In our test, the data assimilation involves 120 background ensemble members from
HYCOM (N = 120), and over 100,000 observations are used. Each ensemblemember
contains 314 physical characteristics (M = 314). Not all 314 physical characteristics
need to be considered in the data analysis. Only 117 of the characteristics are necessary
in the assimilation process (m = 117). Based on the statistical regularity from the first
30 characteristics (m1 = 30), the assimilation process adjusts the latter 87 charac-
teristics (m2 = 87). Besides, the 120 background ensemble members are taken from
a long-time ocean model integration with the 0.1◦ spatial resolution and 30 vertical
levels. In the 2-dimensional latitude–longitude mesh, nx × ny = 3600 × 1800.

4.2 Baseline

In the performance evaluation, the baseline is chosen from [26], which is widely
used for data assimilation. First of all, the baseline divides all processors into ng
groups. In each group, a processor (I/O agent) is selected for file reading. Secondly,
each background ensemble member is divided into ng overlapped bars along latitude
direction. Each I/O agent is responsible for reading a bar respectively. Thirdly, I/O
agent splits the data bar into several overlapped small blocks, and then broadcasts
different blocks to different processors within its group. Finally, after obtaining all
local data, each processor only needs to execute the local analysis on some subdomain
respectively. It is worth noting that, this approach uses MPI-level communication to
broadcast data, but the communication process is fast due to the size of each block
being small.

In order to verify the high performance of the baseline,we compare the baselinewith
an original algorithm, in which all processors useMPI-IO library to read the necessary
data directly and then do the local analysis respectively.As shown in Fig. 5, the baseline
is faster than the original algorithm. With the number of processors increasing, the

Fig. 5 Runtime of baseline and original algorithm. In the original algorithm, all processors directly use
MPI-IO library for file reading
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Fig. 6 Volume and time of file reading

performance gap between two algorithms becomes wider, which results from the
uncontrollable increment of I/O time in the original algorithm. Even though MPI-IO
library is used, the file reading process in the original algorithm has a poor behaviour.
The main reason is that the data access conflict would become serious as a growing
number of processors take part in the file reading process. However, in the baseline, the
fixed number of processors are used for file reading. Therefore, its I/O time remains
stable throughout, which indicates that the baseline is excellent at data-obtaining for
the parallel data assimilation. This is our reason for choosing it as the baseline. It
is clear that, during the total number of processors becomes larger, the time for both
pretreatment and communication processes increases fast,which is one of performance
deficiencies of the baseline. The improvements of the baseline would involve our
contributions in this work.

4.3 Volume and time of file reading

In Fig. 6, the average I/O volume in FDA is about 85% of that in the baseline, while
the average I/O time of FDA is less than 31s, which is only 1/6 of the baseline’s I/O
time. Themain reason is that, the time for disk addressing dominates the total I/O time,
and our optimization decreases the frequency of disk addressing significantly. In the
test, the number of disk addressing in the baseline is 14,040, while it equals to 20 in
FDA. This fact indicates that the number of disk addressing is reduced by 99.9% in the
new approach. Moreover, the I/O volume in FDA decreases proportionally with the
number of I/O processors increasing, because each I/O processor in FDA can flexibly
avoid the access to useless elements of a j . However, the I/O volume decreases slowly
in the baseline.
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Fig. 7 Communication volume and time

4.4 CommunicationVolume and Time

Figure 7 shows the communication volume and time varying with the number of
processors increasing. When the number of processors equals to 4320, compared with
the baseline, FDA reduces the total communication volume by 110 GB which is 94%
of the communication volume of the baseline, and decreases the communication time
by 97.1s which is 80% of the communication time of the baseline. The main reason is
that our communication-avoiding strategy avoids a large number of data movements
successfully. On the other hand, when the number of processors exceeds 1800, both the
communication volume and time of the baseline increase almost linearly. However, as
the number of processors increases from 960 to 4320, both the communication volume
and time of FDA change slightly with only small fluctuations, which demonstrates the
good communication efficiency of FDA.

4.5 Total Time for Data-Obtaining

The performance of different methods on the data-obtaining process is shown in Fig. 8.
In this experiment, 24 I/O processors and 480 computation processors are used in
each method. When the number of ensemble members increases from 20 (19GB) to
120 (116GB), the total time for file reading, communication and pretreatment in the
baseline increases by 121s, while it only goes up by 11s in FDA. When the data
volume reaches 116 GB, FDA saves 133s compared with the baseline, which nearly
equals to 80% of the data-obtaining time in the baseline. Furthermore, the trend in
Fig. 8 shows that the performance gap between the two algorithms continues to widen
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Fig. 8 Total time for data-obtaining

Fig. 9 Overall performance

as the data volume increases further, which demonstrates the good performance of the
new approach on data-obtaining for large data sets.

4.6 Overall Performance

The overall performance is shown in Fig. 9. For the baseline, when the number of
processors increases from 480 to 4320, the time for file reading is always more than
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130s. Meanwhile, both the communication time and the time of pretreatment for com-
munication increase from about 20 to 130 s respectively. Although the computation
time decreases with the number of processors increasing, the runtime of the baseline
becomes longer when the number of processors is greater than 960. However, in FDA,
the I/O process always takes less than 25s. As the number of processors increases
from 480 to 4320, the computation time reduces from 102 to 11s, while the communi-
cation time and the time of pretreatment for communication increase by less than 10 s
respectively. When 4320 processors are used, the total runtime of FDA is just 88.1s,
which achieves 5× speedup compared with the baseline.

5 Conclusion

In this paper, we have designed a fast data-obtaining algorithm for the data assimilation
which is usually applied in real applications. By proposing the flexible parallel data
access approach, a large number of disk addressing operations are avoided success-
fully. Through some additional computations for searching the positions of observation
points, we design a communication-avoiding strategy to significantly reduce the
communication volume. Furthermore, by considering a “pipe-flow” scheme for data
exchange, we conduct conflict-free message passing. The experimental evaluation
demonstrates the good scalability of the new algorithm and its significant performance
improvement on the data-obtaining process.
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