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Abstract
Remaining useful life (RUL) prediction plays an important role in guaranteeing safe
operation and reducing maintenance cost in modern industry. In this paper, we present
a novel deep learning method for RUL estimation based on time empirical mode
decomposition (EMD) and temporal convolutional networks (TCN). The proposed
framework can effectively reveal the non-stationary characteristics of bearing degra-
dation signals and acquire time-series degradation signals which namely intrinsic
mode functions through empirical mode decomposition. Furthermore, the feature
information is used as the input to convolution layer and trained by TCN to predict
remaining useful life. The proposed EMD–TCN model structure maintains a superior
result compared to several state-of-the-art convolutional algorithms on public data sets.
Experimental results show that the average score of EMD–TCN model is improved
by 10–20% than traditional convolutional algorithms.
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1 Introduction

Modern industrial enterprises usually need to maintain their production equipment in
well working condition for a long time to remain competitive. It is critical to improving
the availability, stability, and safety of equipment under the premise of reducing equip-
ment maintenance loss. Therefore, how to predict the equipment’s useful life becomes
a crucial task. Accurate equipment life prediction can provide equipment state warn-
ings formaintenance operations in advance. In consequence, the unexpected downtime
and enterprise losses are also reduced for the rational arrangement of maintenance per-
sonnel, which is also significant for attendant social and economic benefits. Currently,
Condition-Based Maintenance (CBM) and Predictive Maintenance (PM) are the most
effective methods [1]. Contrary to the traditional maintenance after the failure, these
two methods optimize equipment maintenance strategies via diagnosis and prognosis
of faults. In the CBM or PM, the maintenance of the equipment is based on observing
or predicting the health status of equipment.

Typically, a CBM system includes seven parts: sensor, signal processing system,
fault detection system, health assessment system, fault prediction system, test support
system, and finally display part, where failure prediction is a core part. Recently, more
and more attention of academy has been focused on failure prediction methods, as
well as the industrial field [2]. And, numerous failure prediction methods have been
proposed, which can be divided into two categories: model-based methods and data-
driven methods [3]. The model-based prediction methods rely on analytical models
to describe the operating state of industrial equipment [4]. However, the aging mech-
anism of real device systems is usually non-linear, randomized and dynamic, which
causes difficulty to obtain accurate results by an analytical model [5]. The data-driven
approach is designed to transform the device’s detection and operational data into the
degradation information of the device, which reveals the system operational status
and corresponding degradation mechanismmodel [6]. Such methods exploit Artificial
Intelligence (AI) and statistical methods to learn the degradation patterns of devices
and predict the remaining useful life (RUL) of the device [7]. Data-driven methods
can be applied to the scenario which is difficult to build analytical model [8], they
are effective to transform noisy data into logical information for remaining useful life
estimation. The proposed EMD–TCN framework in this paper is a kind of data-driven
method.

Machine learning is the mainstream method in today’s data-based prediction meth-
ods. Convolutional neural network (CNN), a model which can learn a high-level
representation of data, is wildly used for the excellent application, such as the visual
target recognition, machine translation, and prediction of RUL [9]. And one type vari-
ety of CNN is long short-term memory (LSTM), which is also used to predict useful
life due to it can remain the recent memories of input. The condition of the commercial
unit not only relate to current data but also relate to history data recently. Recently,
with the rapid development of deep learning, a new architecture had been invented—
temporal convolutional networks (TCN) which inspired by both memories of LSTM
and have the ability to extract abstract features as CNN.

Empirical mode decomposition (EMD), is a signal decomposition method that
can be effective for energy time-series forecasting [10]. EMD implements a sifting
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algorithm to adaptively decomposes time-series signals to its AM/FMmodulated sub-
components. These subcomponents are called intrinsic mode functions (IMFs).

The contributions of this paper can be summarized as follows:

(1) Empirical mode decomposition algorithmwas applied to extract more identifiable
features of original signal for RUL estimation. The local features at different time
scales are maintained to enhance the prediction accuracy of the network.

(2) The proposed systematic approach combines temporal convolutional network
(TCN) method and empirical mode decomposition algorithm into a framework,
which could realize a data-driven fault prediction model to estimate RUL.

(3) The proposed method is evaluated on Prognostics and Health Management 2012
(PHM2012) data [11]. Experimental results show that our framework makes good
utilization of the inherent information of the data, and provides the RUL of the
device in advance of failure.

The rest of the paper is organized as follows. In Sect. 2, related work about remain-
ing useful time estimation is discussed. Section 3 presents the theoretical background
of the proposed framework. Section 4 provides an analysis of the dataset and exper-
imental results. Some concluding remarks and recommendations for future work are
summarized in Sect. 5.

2 RelatedWork

The reliability, availability, and safety of a system are determining factors in the effec-
tiveness of industrial performance [12]. Hence, predicting the remaining useful life
(RUL) before the failure occurs, given the current machine condition to help engineers
to reasonably judge the working state of equipment is crucial. The main methods for
estimating the remaining useful life can be divided into a model-based approach and
a data-driven approach.

The model-based approach assumes that an accurate physical degradation model
can be obtained to predict the development of the failure process [13].A series of
model-basedmethods have been proposed for RULprediction. A comprehensive prog-
nostic process based on data collected from model-based simulations under nominal
and degraded conditions is described [14]. In this process, the remaining useful life
prediction is obtained by mixing mode-based life predictions through time-averaged
mode probabilities. Li et al. [15] present a stochastic defect propagation model for the
remaining useful life prediction of defective bearings. A model-based diagnostic sys-
tem [16] consists of a number of nonlinear models representing a set of rolling element
bearing faults. However, in practical complex production systems, the aging mecha-
nism of the system is usually random and difficult to obtain. Model-based methods
are usually difficult to build accurate physical degradation models and the parameters
of the model require extensive experiments and empirical data to determine.

The data-driven method is designed to transform the raw monitoring data into rel-
evant information related to system degradation process and the degradation models
are derived without concerning about the physics of the system degradation processes
[17]. The data-driven approach usually consists of two phases: the first phase learns
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the fault degradation process and then the second phase predicts the future state of the
fault [18]. The data-driven methods mainly use artificial intelligent (AI) approaches
and statistical approaches to learn the degradation patterns and estimate the remain-
ing useful life of devices. The statistical model-based approaches require the use of
parameters of the engineered system under consideration to formulate a statistical
model. The data gathered over a period of time are used as input to this model and the
remaining useful life is determined. Banjevic et al. [19] discussed the RUL estima-
tion for a Markov failure time process, including the joint model of the proportional
hazard model (PHM) and the Markov property of the covariate evolution as a special
case. Sankararaman et al. [20] investigated the use of the inverse first-order reliability
method (inverse-form) to quantify the uncertainty in the remaining useful life. The
inverse-form method is used to quickly obtain probability bounds of the remaining
useful life estimation, and then the overall entire probability distribution of remaining
useful life estimation is calculated.

Artificial intelligence technology has been increasingly applied to machine diagno-
sis andRULestimation.Akindof popularAI techniques forRULestimation is artificial
neural networks. The goal of these methods is either to formalize the description of
the transformation rules that link the inputs and outputs or to construct a prototype
that exhibits behavior approximate to the system. Neural network as a kind of parallel
computing model has good nonlinear mapping ability and are able to model extremely
complex functions. They are easy to use, robust, and have the ability to generalize.
Hence, they are effective to predict the remaining useful life. A TSNN model [21]
for RUL prediction, performs an additive latent failure risk estimation and multiple
binary classifications for predicting RUL-specific probabilities, which is optimized
by minimizing the censoring KL divergence between the actual survival process and
the resulting probabilities. Tian et al. [22] developed a robust estimation approach for
RUL based on the ANN. The age and multiple condition monitoring measurement
values at the present and previous inspection points as the inputs of the ANN model
and the ANN model will estimate the life percentage as an output. In order to reduce
the influence of the noise factors in the signal, the data is fitted using a generalized
function of the Weibull failure rate function. The entire degradation process is taken
into consideration by this RUL prediction approach. Since there are significant dif-
ferences in the patterns of the changes at different degradation stages, it is difficult
to fit the entire degradation process with a single accurate model. Soualhi et al. [23]
presented an approach that combined Hilbert-Huang transform (HHT), the support
vector machine (SVM), and the support vector regression (SVR) for the monitoring
of ball bearings degradation. Remaining useful life was obtained by using a one-step
time-series prediction based on SVR.

Our group at SIAT, CAS also proposed a lot of algorithms and tools for fault
prediction and anomaly detection.AnAMF–LSTM[24] algorithm for abnormal traffic
detection in network by using deep learning model was presented. Zhu [25] presented
an anomaly detection method based on feedforward neural network (FNN) model and
convolutional neural network (CNN), which has a strong ability for network anomaly
detection. A dynamic network anomaly detection system [26] by combining long
short termmemory (LSTM) and attention mechanism (AM) was designed to maintain
the security of the network. Ye [27] proposed fault detection models for detecting
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the fault behaviors and interferences of up-to-date AI applications in container-based
cloud systems. Firstly, the container-based cloud system fault injection frameworkwas
proposed. Then, based on the quantile regression method, the fault detection model
was designed to detect potential faults in containers. While this paper focuses on RUL
prediction.

3 Methodology

3.1 Empirical Mode Decomposition

In 1998, Huang et al. [10] proposed empirical mode decomposition (EMD) method
to decompose time-series data without any limitation on the character, which has a
significant superiority in handling non-stationary and nonlinear data. Therefore, the
EMD method has been applied effectively in multiple engineering fields such as the
ocean, atmosphere, celestial and geophysical data analysis.

The principle of the EMD method is to decompose time-series signals into a finite
number of intrinsic mode functions (IMFs) which represent various components of
signals containing local characters in different time scales. An IMF must satisfy two
necessary criteria: one is that the number of local extreme points and zero-crossing
points must be equal or at most one difference in the whole time scale. The other is
that at any time point, the envelope mean value of local maximum value and local
minimum value must be zero or close to zero.

The essence of the empirical mode decomposition method is to obtain the intrinsic
fluctuation pattern by characterizing the time scale of the data and then decompose
the data. The decomposition process is:

(a) For a given original signal data x(t), finding all the maxima points of the original
data sequence x(t) and using the cubic spline interpolation function to fit the upper
envelope emax (t) of the original data. Similarly, finding all the minimum values
to fit the lower envelope emin(t).

(b) Themean of the upper envelope emax (t) and the lower envelope emin(t) is recorded
as m1:

m1 = 1

2
(emax (t) + emin(t)) (1)

(c) After subtracting the mean from the original signal data, a new data sequence
h1(t) is obtained from x(t) by Eq. (2) :

h1 = x(t) − m1. (2)

(d) If h1 satisfies the oscillating mode condition [28], it is taken as the first IMF and
recorded as f1(t) = h1(t).
If h1 does not satisfy the condition, repeat the above step (a) to (c) and regard
h1(t) as the analysis signal until the IMF generation condition is met. The first
IMF obtained is recorded as f1(t).
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Fig. 1 An example of empirical mode decomposition of original signal

(e) Separate f1(t) from the original signal data and compute residue signal :

r1(t) = x(t) − f1(t) (3)

the residue signal r1(t) as neworiginal signal data, repeat steps (a) to (d) to separate
a series of components that meet the IMF conditions :

r2(t) = r1(t) − f2(t)
.

.

rn(t) = r(n−1)(t) − fn(t)

When rn(t) cannot satisfy the IMF condition, the decomposition process terminates
and the original signal data x(t) is decomposed as follows:

x(t) =
n∑

i=1

fi (t) + rn(t) (4)

where n is the number of IMFs, fi (t) is the IMFs and rn(t) represents the residue.
Figure 1 depicts an example of empirical mode decomposition of original signal data.

3.2 Temporal Convolutional Network

Temporal convolutional network (TCN) [29] is a kind of sequential prediction model
that is designed to learn hidden temporal dependencies within input sequences. It
is a simple convolutional architecture outperforms canonical recurrent neural net-
works. TCN takes the sequence (x0, x1, . . . , xT ) as the inputs, and the corresponding
(y0, y1, . . . , yT ) as the expected outputs. Formally, a sequence produced by model
such as function f : XT+1 → Y T+1 that mapping:
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Fig. 2 Architecture elements of TCN, d is dilation factor and k is filter size

y0, y1, . . . , yT = f (x0, x1, . . . , xT )

TCN is a deep convolutional architecture characterized by layered stacks of dilated
causal convolutional filters with residual connections [29]. Causal convolutions allow
the model to make predictions on continuous streaming trace data, this character is
necessary for Prognostics andHealthManagement (PHM).Dilated convolutions allow
precise control over the receptive field while residual connections enable the model
to have high-capacity and stable training. The architecture of TCN is as follows:

In general, multi-dimension sensor signals can be directly used as the input of
the convolution layer. TCN can discover the intrinsic relationship between signal
features with higher prediction accuracy and avoiding personal bias. It turns out that
TCN has achieved good results and application in computer vision, such as image
classification, target detection. In this paper, we exploit the potential of TCN in the
fields of Prognostics and Health Management (PHM). A temporal convolutional layer
consists of 1-D fully-convolutional network (FCN) and causal convolutions. 1-D fully-
convolutional network (FCN) enables the length of each hidden layers as same as the
length of the input layer. Causal convolutions, where output at time t can only be
obtained from the convolution operation of t − 1 and previous time step, so that they
can ensure that the prediction of the time t does not use future information [30].

3.2.1 1-D Fully-Convolutional Network (FCN)

Let x�−1 be the input of the �th layer and x� be the output of the �th layer, since one
layer has multiple feature maps, we use x�

j represents the jth feature map of layer �,
and it can be obtained by following formula:

x�
j = f

(
∑

i=1

x�−1
j ∗ w�

i, j + b�
j

)
(5)

w�
i, j represents the 1-D weight kernel of the jth feature map of the �th layer while b�

j
denotes the bias of the jth feature map of the �th layer, a non-linear activation function
f (·), which in the most case would be a rectified linear unit activation (ReLu) [31].
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3.2.2 Dilated Convolutions

For a 1-D sequence input x∈ R
n and a filter f : {0, . . . , k − 1} → R, the dilated

convolution operation F on element s of the sequence is defined as:

F(s) = (x ∗d f )(s) =
k−1∑

i=1

f (i) · xs−d·i (6)

where d denotes the dilation factor, k is the filter size, and s − d · i denotes the
direction of the past. As Fig. 2 shows, with the number of layers increases, dilation
becomes larger, the output of the top layer can represent a larger range of inputs, which
effectively expanding the receptive field of a ConvNet. The receptive field is crucial
for time-series modeling because it explicitly limits the learnable feature periodicity
at a given layer.

3.2.3 Residual Connections

A residual connection combines the input and the convolution signal of the layer (As
shown in Fig. 3). This kind of learning framework enables the training process easier
and it effectively allows the layer to learn the modification of the identity map which is
beneficial to deep network training. Let Ẑ ( j,l)

t be the result of the dilated convolution
of the lth layer and jth block at time t and Zt

( j,l) be the result after adding the residual
connection, denoted by

Ẑ ( j,l)
t = f (W0 Ẑ

( j,l−1)
t−d + W1 Ẑ

( j,l−1)
t + b) (7)

and

Zt
( j,l) = Z ( j,l−1)

t + V Ẑ ( j,l)
t + e (8)

where Wi ∈ R
Fw×Fw and weight matrices W = [W0,W1] parameterizes the filter, Fw

denotes the number of filters, b is the bias vector and b ∈ R
Fw . V ∈ R

Fw×Fw denotes
the weight matrix and e ∈ R

Fw is the bias vector for the residual block.
As Fig. 3 shows, in a residual block, the TCN has two layers of dilated causal

convolution and non-linearity. Weight normalization was applied to convolutional
filters for normalization. Besides, for regularization, a spatial dropout was added after
each dilated convolution.

However, in standard ResNet [32] the input is added directly to the output of the
residual function, while in TCN (and general ConvNets), the input and output can have
different widths. To account for the difference between the input and output widths,
we use an additional 1 × 1 convolution to ensure element-wise addition

⊕
receiving

tensors of the same shape.
The proposed model combined empirical mode decomposition with temporal con-

volutional network to predict RUL as shown in Fig. 4. First, The empirical mode
decomposition is used to preprocess the data and obtain intrinsic mode functions

123



International Journal of Parallel Programming (2020) 48:61–79 69

Dilated Causal Convolution

Weight Normalization

ReLU

Dropout

Dilated Causal Convolution

Weight Normalization

ReLU

Dropout

+

1×1 Convolution
（optional)

Fig. 3 A residual block of TCN

Fig. 4 The EMD–TCN
framework for RUL estimtion
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10s
Time

 0.1s  0.1s
Recording phases with a sampling frequency of 25.6kHz

Fig. 5 Vibration signal data collection scheme

(IMFs) which represent various features of original signals in different time scales.
Then, features of original signals are analyzed and the remaining useful life is pre-
dicted by TCN. EMD–TCN model has the capability of feature extraction like CNN
and it is capable of building long term time dependencies like LSTM. The proposed
framework can provide valuable information for enterprises to estimate the remaining
useful life.

4 Experiments

This section is organized into three parts. Firstly, we introduce the dataset used in our
RUL estimation. Secondly, we show the performance measures of our model. Finally,
the results of our experiments were demonstrated.

4.1 Dataset Description

The PHM2012 dataset is widely used as a criterion of performance evaluation. It was
collected from a new experimental platform for equipment bearing accelerated aging
test, PRONOSTIA [11]. The platform provides aging data for equipment bearings
under different working conditions with different motor speeds and radial forces,
where the operational data is consistent with the normal degradation process of the
bearing. In other words, the bearing is running from a completely new state to the fault
occurs.

PRONOSTIA consists of three main parts: the rotating part, the fault generating
part and the data acquiring part. Bearing aging is accomplished by a radial force
generator acting on the ball bearing, and the aging data of the bearing is collected by a
shock sensor and a temperature sensor. The vibration sensor consists of two mutually
perpendicular accelerators with a sampling frequency of 25.6 kHz in every 10 s and
0.1 s sampling data once. Figure 5 shows the data collection scheme.

Bearing aging data in PRONOSTIA is composed of three working conditions: (1)
1800 rpm with 4000 N load; (2) 1650 rpm with 4200 N load; (3) 1500 rpm with the
5000 N load. There are 7534 samples in the training dataset and 13,965 samples in
the testing dataset, and each time point contains 2560 vibration data.
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Fig. 6 Aging bearing data, two accelerator data for the first and second behavioral vibration sensors

Fig. 7 The scoring function of RUL estimation

Depending on the bearing and its degradation process, the failure mode of each
bearing varies significantly. As shown in Fig. 6, the full-life vibration data generated
by PRONOSTIA under condition 1 for training is heterogeneous. The data generated
by PRONOSTIA has the following aging modes: (a) The ideal aging mode. That is, as
time progresses, the aging of the bearing with obvious and monotonous trends. Such
data can easily predict the RUL of the device by using the threshold. (b) Sudden aging.
In some cases, the aging of the bearing occurs abruptly without a slow incremental
increase. (c) The theoretical model is mismatched. (d) The degree of noise affects the
bearing aging process.

4.2 PerformanceMeasures

The scoring function and mean square error (MSE) are used to evaluate the accuracy
of the RUL estimation model. The remaining useful life of the bearing predicted by
the model is RULi while Act RULi represents the true remaining useful life of the
bearing. The error rate of the ith test data is calculated by Eq. (9):
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Fig. 8 EMD decomposition of accelerator sensor data
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Fig. 8 continued

%Eri = 100 × Act RULi − RULi

Act RULi
(9)

A positive rediction performance is the ability of the model to predict RUL earlier
(Eri > 0 or RULi < Act RULi ), a negative prediction performance is that the model
produces a higher prediction than the actual RUL (Eri < 0 or RULi > Act RULi )
which means failure will be occured to machine before the estimated time. Therefore,
under-predictive and over-predictive will be treated in different forms, the accuracy
score of RUL is calculated by Eqs. (10) and (11) :

Ai =
{
exp−ln(0.5)·(Eri /5), if Eri < 0

exp+ln(0.5)·(Eri /20), if Eri ≥ 0
(10)

Score = 1

n

n∑

i=1

Ai (11)

Figure7 depicts the evolution of the scoring function. We also use Mean Square
Error (MSE) to overcome the sensitivity to outliers of the scoring function. MSE is
given by

MSE =
∑n

i=1 Er
2
i

n
(12)
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Fig. 9 The prediction results of different convolutional neural networks

4.3 Results and Discussion

The overall operation of the experiment is divided into three parts, decomposing the
original input data, training with the TCN networks, and integrating the results to
produce the final result.

The PHM 2012 data contains X-axis vibration and Y-axis vibration. First, EMD is
used to decompose X and Y respectively, where five IMFs and the remaining residual
are respectively obtained. Since there are 2560 vibration data at each time point, the
original data mode is (2560, 2). After processed by EMD, the data mode is (2560, 12).
The data that processed by EMD is shown in Fig. 8. As Fig. 8 shows, each IMF has
different characteristics of fluctuating. The first several IMFs have more energy and
possess more intrinsic information than the latter.

We trained TCNmodel by using processed bearing aging training dataset, then, test
our framework on testing dataset. We conduct a series of comprehensive experiments
tomanifest the superiority of EMD–TCN framework, CNNandLSTMare investigated
for comparisons. The experimental results are shown in Table 1. The results indicate
that LSTMandCNNcan hardly capture degrading trend exactly but TCN is effective in
prediction by combine history condition and convolution. Our framework intergrated
TCN with EMD method has a significant improvement compared with the traditional
convolutional neural network. In this paper, we have shown that the average score
of EMD–TCN model is improved by 10–20% than CNN and LSTM and the error of
EMD–TCNmodel is minimum, which proves that our method is effective to remaning
useful life estimation.
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Fig. 10 The prediction results of TCN with different dilation value

Table 2 Sensitive test of
different dilation value of TCN

TCN_3 TCN_4 TCN_5 TCN_6 TCN_7

Score 0.41 0.42 0.46 0.47 0.47

MSE 0.12 0.11 0.10 0.10 0.10

The prediction results of different convolutional neural networks are compared
with the ground truth of the RUL have shown in Fig. 9. All of networks can detect the
degradation situation on the test bearings and all predict curves are downtrend during
the lifecycle of bearings. Figure 9 depicts that the result of EMD–TCN framework is
closest to the ground truth, EMD–TCN framework outperformed in all convolutional
neural networks.

The influence of the number of dilation of TCN on the prognostic performance
is investigated and the results are presented in Fig. 10. The value of score and MSE
are described in Table 2, Our results indicate that with the increase of the dilation
value, the prediction accuracy has increased initially and then remains the same. The
training loss of TCN with different dilation value is depicted in Fig. 11. With the
increase of dilation value, the loss of TCNmodel is decreased and the TCNmodel has
a better generalization ability. The TCN with a higher dilation value is more robust
for remaining useful life estimation.
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Fig. 11 The loss of TCN with different dilation value

5 Conclusion

This paper proposed a novel deep learning model structure for RUL estimation. We
firstly decompose the original signal data by empirical mode decomposition (EMD)
and expand the data to 12 dimensions. Then, the processed datasets are used to train
the TCN respectively. The PHM2012 dataset is used to contrast the performance of
different models. Experiments are conducted to demonstrate the effectiveness and
superiority of our EMD–TCN model. The experimental results have shown that the
EMD–TCNmethod is effective for RUL estimation of industrial applications. Finally,
the impact of memory length has been explored. In the future, we plan to extend the
proposed framework to other prognostic applications.
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